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In this first chapter, we give some motivation to look at the material
in this book.
What we aim to do is to accompany you to the top of the Peak of
Abstraction and show you the view from above, from which you will
be able to see that many things that look different have the same
structure.
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1.1. Sapiens: a compositional retrospective
The word intelligence, from Latin intellego, comes from Proto-Indo-European
*h1entér (“between”) and *leǵ (“to gather”), and we can translate it as the abil-
ity to gather things together to obtain some goal; this, for us, is the essence of
intelligence.
The things to gather could be abstract, such as pieces of evidence to achieve a
conclusion, or physical, like ingredients to prepare a tasty meal, or the parts to
create machines that will prepare tasty meals.
Intelligence is not unique to Homo sapiens; other animals can reason, build, and
use language. Some animals excel at things that sapiens cannot do. The sapienses
will never experience the richness of the smells of things and processes in the
world like canis does. The sapienses will never have the same spatial awareness
of an octopus with eight arm-legs and neurons distributed all along its body.
But sapienses developed a trick no other animal did. They mastered abstraction
and compositionality. Composing and decomposing is what gave sapiens an
edge.
Sapiens decomposed the process of survival and created societies. Once, a single
sapiens had the ability to survive by themselves, or in a very small pack of sapiens.
Eventually they figured out that it was much more efficient to divide up the work,
so that some could specialize in hunting, some in gathering, some in fighting,
some in rearing children.
About 10,000 years ago, sapiens invented agriculture; it was a momentous
change, as it was the first time that they could change the world around them and
bend nature to their will. Up to that moment, it was the other way around: as they
moved beyond Africa, sapienses adapted to the environment; bodies optimized to
run after prey in savannas became optimized to fish in tropical seas or to heard
cattle on the Alps.
More specialization. Today only 1% work at food production. In fact, you could
take most sapiens and put them in the most fruit-rich plains, the most prey-rich
savanna, and, alone, they would die in days.
With a sedentary society, while the grains and the rice grew by themselves in the
field, they found the time to inventwriting. Theymanaged to decompose thought
into a sequence of symbols, which could be written on clay, and re-composed
back by the receiver to reconstruct the original thought. Writing is a teleportation
device and a time machine.
Money is abstraction of resources.
Artisans, creating the product from start to finish, are inefficient. In the industrial
age, workflows are decomposed in steps, and a system is put in place for the
product to be assembled from each step.
Lately, Sapiens has cultivated an inclination to createmachines that could help
them think. The most important conceptual shift is that Sapiens needs now to
express knowledge formally and computationally. By “formally”, we mean the
choice of a formal system shared by man and machine. By “computationally”, we
mean that such knowledge needs to be able to produce actual results to use.

You are reading a draft compiled on 2024-12-09 11:28:28Z
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1.2. Compositional thinking for engineers
The thesis of this book is thatmost engineering fields would benefit from knowing
and using the language of applied category theory to address the design and
analysis of complex systems.
What is a “system”?
Here is a great quote*:

A system is composed of components;
a component is something you understand.

Howard Aiken

The first part of the quote, “A system is composed of components”, is plain as day
as much as it is tautological. We could equally say: “A system is partitioned in
parts”.
The second part, “a component is something you understand”, is where the
insight lies: we call “system” what is too complex to be understood naturally by a
human.
Aiken referred to computer engineering, but we find exactly the same sentiment
expressed in other fields. In systems engineering, Leveson puts it as “complexity
can be defined as intellectual unmanageability” [15].
We will be content of this anthropocentric and slightly circular definition of sys-
tems and complexity: “systems” are “complex” and “components” are “simple”.
Whether something is a complex system also depends on the task that we need
to do with it. One way to visualize this is to imagine a “phenomenon” as a high-
dimensional object that we can see from different angles. For each task, we have
a different projection. The decomposition of the system in components can be
different according to the task. For example, a system that might be easy to
simulate could be very difficult to control.
The tools presented in this book will make it easier to think about different
representations of the same system.

* This quote is by Howard Aiken (1900-1973), creator of the MARK I computer, as quoted by Kenneth
E. Iverson (1920-2004), creator of programming languageAPL, as quoted inbut ultimately source-less
and probably apocryphal.
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Table 1.1.: Use of colors

sets 𝐀,𝐁
posets 𝐏,𝐐
categories C,D
objects 𝑋,𝑌
morphisms 𝑓∶ 𝑋 → 𝑌
functors 𝐹∶ C→ D
natural
transformations

𝛼∶ 𝐹 ⇒ 𝐺

1.3. Departures from traditional exposition
[experts only]

This section is for experts only. Skip at a first reading.
This section describes the “departures from tradition” in our text. Wemade several
choices to streamline the traditional exposition of category theory, to make it
more understandable and relevant to the engineering field.

Induction vs deduction

The greatest difference between this text and a mathematical text is the use
of an inductive exposition rather than a deductive explanation. In a typical
mathematical exposition of category theory, one defines a general mathematical
structure, and then give several specific examples [23].
Instead, here we first build up the examples as something that is interesting per
se, and then we show how they can all be instances of the same general concept.
In this way, the general concept is well motivated. The path laid by the book is
one of spiral learning.
For example, we look at various constructions from specific to general:

set product→ poset product→ categorical product. (1)

Similarly, we discuss

monoid morphisms→ category actions→ functors. (2)

Materials covered

⊳ Certain topics (limits, Yoneda’s lemma, etc.) that would be traditionally dis-
cussed relatively early, are not discussed in this volume. We ordered topics by
usefulness in engineering.

⊳ The main text uses traditional set theory. To ground the exercises, we use
slightly more formal type theory foundations (setoids, etc.). It is in our plan
to transition completely to type theory also in the main text. Please contact us
if you can help!

Use of colors

⊳ We use colors to aid in the parsing of formulas and diagrams (Table 1.1). We
also color the composition operations. In this way it is easy to see the types at
first glance: 𝑓 # 𝑔, 𝐹 # 𝐺, etc.

⊳ Color is not necessary to infer meaning. The choice of colors is colorblind-
friendly for red-green color blindness. (One of the authors is colorblind.)
Please let us know if this is not the case.

Notation and conventions

⊳ In general, we use diagrammatic notation 𝑓 #𝑔 (pronounced “𝑓 then 𝑔”) rather
than 𝑔 ◦ 𝑓 (pronounced “𝑔 after 𝑓”) for function and morphism composition.

⊳ In the discussion of semigroups, we use “#” rather than “◦” as the semigroup
composition operation. This is because for us a semigroup/monoid is a special
(semi)category with only one object.

You are reading a draft compiled on 2024-12-09 11:28:28Z



1.3. Departures from tradition 7

Table 1.2.: Tuple subcategories of well-known
categories

original tuples subcategory
Set (Def. 13.11) ⦉ Set⦊ (Def. 18.3)
Pos (Def. 14.8) ⦉ Pos⦊ (Def. 25.33)
Rel (Def. 14.1) ⦉ Rel⦊ (Def. 25.35)

⊳ In Chapter 11 we discuss covariant and contravariant actions. We do not use
the terms left and right actions because they are notation-dependent.

⊳ We abundantly use semicategories ( semifunctors, etc.). For us, semicategory
is the primitive definition. A category is a semicategory with a particular
property: having identities at each object.

Extensive use of tuples
We extensively use tuples and tuples concatenation to work directly with strict
monoidal categories.
This is a list of standard categories together with their “tupled” definition.

Treatment of monoidal categories
We noticed that there is a step increase in difficulty associated to natural trans-
formations, without much immediate justification. In our trajectory, natural
transformations appear first associated to monoidal categories. The role they
play there is associated to very technical checks. Nothing exciting! We made the
decision to provide a version of monoidal categories that are strict, so that there
is no need for natural transformations.
We also noticed sever examples of interest (e.g. proper LTI system) that are only
semicategories, but they still have a notion of trace.
Furthermore, we noticed that in applications that there are several interesting
examples that have a notion of vertical composition but the monoidal structure
is not functorial on the nose: for example, systems with states.
Because there is a large part of concrete code exercises, it was not convenient
for us to just wave our hands and say things like “let’s just consider the strict /
modulo isomorphism version”.
In conclusion, in Chapter 25 we introduce several notions of “stacking” cate-
gories, which are defined for semicategories, are strict in the vertical composition
operation, and for which the functoriality of the monoidal structure is not a
given.
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In this chapterwe discuss the various types of “compositions” we find
in applications. The basic idea is thinking about recipes that produce
something given a list of ingredients. We can ask many things about
these recipes: does the order of ingredients matter? Can we go from
results back to ingredients? Recipes can also be chained. And, we
can think about meta-recipes that have other recipes as ingredients
or results.

The city of Lucerne made of Lego at Legoland, Billund, Denmark.
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Figure 1.: The 1961 Lego patent.
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2.1. Stacking blocks
The first encounter children have with composition is with toy blocks like Lego.
It is a coincidence that there is a lego in intellego (as explained in 1.1); the lego in
Lego is a contraction from Danish leg godt, which means to play well.
Legos are compositional in this sense: when you put together two blocks, you
can treat the ensemble as one block for the purpose of composing it with other
blocks.
We are going to use the following graphical notation to talk about composition.
We draw a black bar, and we write the ingredients at the top, and the results at
the bottom.

ingredient ingredient ingredient
.

result result
(1)

Note that the order of the ingredients matters. For instance, we can have the
following recipes for the composition of red and white bricks. We scan the list of
ingredients from left to right and then place the bricks on top of what is already
on the table.
Composing red and white produces a red-white brick:

. (2)

Composing white and red produces a white-red brick:

. (3)

We can compose more than one brick. For example, red, white, blue, make a
red-white-blue brick:

. (4)

In Lego, we can also decompose. If we have a red-white-blue brick, we can also
recover the single bricks:

. (5)

If you have 3 bricks on a table, you can also permute them:

. (6)

Consequently, if you have a red-white-blue brick, you can disassemble, permute,
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12 2. Putting things together

and reassemble to obtain a blue-white-red:

.

. (7)

The aforementioned recipe contains several concrete steps to go from the initial
ingredient to the final result. If we do not care about the detailed steps, we can
summarize the recipe as follows, by eliding the intermediate steps and only
remember the ingredient and the results:

. (8)

Alternatively, you can think of (8) as the statement of a theorem, and of (7) as
the proof of the theorem.
Sometimes we want to think about the transformations that are reversible. For
example, we can assemble 3 red bricks into a red-red-red brick:

. (9)

We can also do the opposite:

. (10)

To describe the bi-directionality, we use a double line:

. (11)

The flat pieces of Lego we have looked are actually one third shorter than a
“regular” piece:

, , , . (12)

What is the relation between a red-red-red assembly and a full red brick? One
point of view that will be very useful is thinking in terms of “substitution”: if I
have one of those, can I use it as if I had the other? Lego bricks are very strong
when assembled: a red-red-red assembly can certainly substitute a regular brick
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2.1. Stacking blocks 13

in terms of structural functionality. Therefore, given a red-red-red we can treat it
as a full block, but not vice versa:

. (13)
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14 2. Putting things together

(a) Subtractive composition

(b) Additive composition

Figure 2.: Additive vs subtractive composition

2.2. Mixing colors
We now look at how we can compose colors. In Denmark there is a small group
of Lego purists: they are only able to conceive of Lego assemblies where all
bricks have the same color. For them, a blue, red, white brick, make a block of a
color they call horrible:

. (14)

If you ask a color purist, they will tell you that red and red make red:

. (15)

Furthermore, white and white make white:

. (16)

However, white and red make horrible:

. (17)

We can think of many other ways to compose colors. For example, we can think of
formalizing what happens when youmix paint. Red and white in equal measure
give pink. By mixing and mixing we can obtain all the shades that go from red to
white:

, , ,

, .

(18)

Colors on a monitor mix in an additive way. Two dark reds give a brighter red.
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2.2. Mixing colors 15

Red and white remains white:

, ,

, .

(19)

Green, red, blue additively make white:

. (20)

A different way to compose colors is by using the subtractive rules in the CMY
(cyan, magenta, yellow) color space. These rules formalize the physical process
of offset printing: we produce colors by putting pigments that block the other
colors:

, , . (21)

This is how you produce red, blue, green from CMY:

, , . (22)

Finally,we can thinkof apaint-over-it composition rule: the first color is replaced
by the second:

, , .
(23)
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16 2. Putting things together

2.3. Recipes as ingredients
We can think at a higher level, by having recipes as ingredients.
For example, the following shows that if a dark blue stain gives you a light blue
stain, and a light blue stain gives you a orange stain, you can produce a orange
stain from a dark blue stain:

. (24)

Note that to activate the meta-recipe above, no windsor stain was needed. In fact,
for the above to be valid, it is not even necessary to postulate that windsor stains
exist.
We can do abstraction by replacing some ingredients with placeholders. When
we write a recipe with placeholders, we mean that the recipe is valid whatever
is put in the placeholders, with the constraint that if two placeholders are of a
similar color should hold the same thing.
For example, if a windsor stain gives me a B, and B gives me a rob roy stain, then
a windsor stain gives me a rob roy stain, not matter what B is:

B

B

. (25)

We can abstract further by saying that: if A gives me B, and B gives me C, then A
gives me C:

A

B

B

C

.

A

C

(26)
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2.4. Commutativity and associativity 17

2.4. Commutativity and associativity
With the power of abstraction we can talk about properties of the rules them-
selves.
For example, we can define commutativity as follows. A composition operation is
commutative if getting a C from A and B holds if and only if B and A also give
a C:

A B

C

.

B A

C

(27)

For associativity, we want to say that, given three things A, B, C, composing A
with B and then the result with C is the same thing as composing A with the
result of B and C.

A B

...

C

C

.

A

A

B C

...

(28)

It is easy to see that this is valid for Lego composition.

. (29)
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18 2. Putting things together

. (30)

Table 2.1 shows the properties of the 4 composition rules for composing colors
that we described earlier.
The table also notes the presence of a neutral element and an annihilating element.
A neutral element, is an element which, when composed with another element,
does not change the original color. Using the additive composition rule, for
instance, this element is black. On the other hand, when considering the lego
purists composition rule no neutral element can be found (indeed, composing
with any element will result in a color change).
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2.4. Commutativity and associativity 19

Table 2.1.: Properties of color composition rules

Lego purist Mixing paint Apply paint Additive Subtractive

Commutative? ✓ ✓ ✗ ✓ ✓

Associative? ✓ ✗ ✓ ✓ ✓

Annihilative element? ✗

Neutral element? ✗ ✗ ✗
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20 2. Putting things together

2.5. Composing recipes
We can also compose recipes themselves.
For example, imagine that in our analysis of Lego composition we decompose its
color from the shape. Each element is now described by a color and a shape:

.

,
(31)

We can now define composition of color-shape pairs by composing the Lego-
purist rule for colors with a color-neutral shape composition rule.
For example, given two pairs

, and , , (32)

we can find what their composition is by looking at what happens when we
compose the components:

.

, ,

,

(33)

We can generalize this as follows:

, ,

,

(34)
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2.6. Isomorphisms 21

2.6. Isomorphisms
Do you know the game “spot the 5 differences”? In this book we are going to play
the opposite game, which is “spot how several different things are the same at
some level of abstraction”.
Consider two Lego worlds in which all colors are red or all colors are white:

(35)

and

. (36)

We could create Lego theories for each of the worlds. Although they would
describe different worlds, the theories would be isomorphic.
If we confine ourselves with composing Lego blocks with the same section, then
all it counts is the height of the stacks. The equations above are saying 1+1 = 2:

1 1
.

2
(37)

If we are dealing with addition, then there are many other things that follow the
same rules. For example, we might look at composing two pieces of rope. If we
have a piece of rope of length 𝑎 and one of length 𝑏, you can tie them together to
get a rope of length 𝑎 + 𝑏:

𝑎 𝑏
.

𝑎 + 𝑏
(38)

The algebra of ropes captures the algebra of bricks: the bricks are a special case
because they have integer height, while ropes can be of any length.
We want to show you a rope trick. Suppose that we want to be more precise
than (38) to describe the process of composing ropes, by keeping track of the extra
rope that is needed to make a knot:

.
(39)

One first attempt would be to call 𝑘 the extra rope for the knot, and have rules
like (40): from 𝑎 + 𝑘 and 𝑘 + 𝑏 we obtain a piece of rope of 𝑎 + 𝑏:

𝑎 + 𝑘 𝑘 + 𝑏
.

𝑎 + 𝑏
(40)

This is fine but not elegant. If you want to compose further, you need to introduce
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22 2. Putting things together

a notion of subtraction:

𝑎 + 𝑏 𝑘 + 𝑐
.

𝑎 + 𝑏 + 𝑐 − 𝑘
(41)

A more elegant way is the following: consider only ropes of the form 𝑘 + 𝑎 + 𝑘,
so that we can account for the rope needed for the knots at either ends:

𝑘 + 𝑎 + 𝑘 𝑘 + 𝑏 + 𝑘
.

𝑘 + 𝑎 + 𝑏 + 𝑘
(42)

Now when we compose, the 2 𝑘s on the inside elide, and we are left with 2 𝑘s at
either end, ready to be knotted with other pieces of rope. Notice that all ropes
so created have the 2 extra 𝑘s. We can just remove them from the notation. We
obtain new rules for ropes that take into account the knots:

𝐴 𝐵
.

𝐴 + 𝐵
(43)

And here’s the magic trick: if we don’t take into account the knot materials we
have the simple rule (38); if we do take into account the knot materials, for any
arbitrary length 𝑘, we obtain (43) which is exactly the same as (38).

Exercise1. Explain the trick: Where did the extra material go?
See solution on page 23.
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Solutions to selected exercises
Solution of Exercise 1. Note that (38) describes composition for ropes of any
arbitrary size, while (43) describes compositions for ropes whose length can be
written as 𝑘 + 𝑎 + 𝑘, hence with a minimum size of 2𝑘. Therefore, the rope

1
(44)

in the first theory describes a physical rope of length 1, while the rope

1
(45)

in the second theory describes a rope of length 1+ 2𝑘. They are different theories
that happen to have isomorphic rules. Note that the rope 𝑘 + 𝑘 acts just like the
identity 0. If you connect 𝑘 + 𝑎 + 𝑘 to 𝑘 + 𝑘, you obtain 𝑘 + 𝑎 + 𝑘, for all values
of 𝑎.
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Augusta Raurica is a Roman archaeological site in Switzerland, located on the south bank of the Rhine river (near Basel).
It was founded by Lucius Munatius Plancus around 44 B.C.
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Sets and functions are fundamental notions in mathematics. In this
chapter we give an informal treatment of those set-theoretic no-
tions which are important for the purposes of this book, while avoid-
ing more complicated aspects. The material in this section should
be mostly familiar to anyone with some training in engineering,
computer science, a natural science, mathematics, etc.We suggest
nonetheless reading through: we set some conventions, and some
contents may be new or rendered from a new perspective.

The Alphorn is a “labrophone”, consisting of a straight multi-meter-long wooden natural horn and a wooden cup-shaped mouthpiece. It is used by mountain
dwellers in Swiss alps as musical instruments and communication tools.



28 3. Sets and functions

3.1. Logical preliminaries
We assume the reader to have some familiarity with elementary logical concepts
and notation, in the way that they are typically used for reasoning and writing
proofs in undergraduate mathematics. We recall some basic notions, giving a
“naive” treatment intended as a rudimentary foundation and to fix our notation.
A more formal treatment is outside the scope of this text.

Deduction

The building blocks for reasoning mathematically are logical statements (some-
times called propositions, assertions, logical formulas, etc.) which, in principle,
may be evaluated to be either true or false, depending on the situation and the
assumptions made. In particular, a statement might depend on variables, and the
truth or falsity of the statement might vary depending on how these variables are
evaluated.
Tomakemathematical proofs, we start with some assumptions (statements which
we take, for the sake of our argument, to be true), and then we apply rules of
reasoning, often called inference rules, which allow us to deduce new statements
from these. These new statements are the “conclusions”. This process is often
iterated many times in order to arrive at a statement that we seek to prove.
If we can infer a statement 𝑄 when given a statement 𝑃, we write

𝑃
.

𝑄 (1)

Other common ways of phrasing this are ‘𝑃 implies 𝑄’ or ‘𝑄 follows from 𝑃’, and
another notation for this, often used in logic, is 𝑃 ⊢ 𝑄.
If 𝑄 can be inferred from statements 𝑃1,… , 𝑃𝑛, then we write

𝑃1 𝑃2 … 𝑃𝑛 .
𝑄 (2)

This notation also allows for combining multiple steps of inference, leading to a
“proof tree” such as

𝑃1
𝑄1

𝑃2 𝑃3
𝑄2 .

𝑅 (3)

When we write
𝑃
,

𝑄 (4)

this means that 𝑄may be inferred from 𝑃 and vice versa.
If we want to say that a statement 𝑄 is simply true – that it can be deduced from
zero assumptions – then we write

.
𝑄 (5)
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Connectives

Logical connectives are operations that allow us to construct new logical state-
ments from given ones.
Two familiar logical connectives are “and” and “or”, usually denoted in infix
notation by the symbols ∧ and ∨, respectively. We think of each of these as a
function that takes two logical statements as its arguments, and returns a new
logical statement. If 𝑃 and 𝑄 are logical statements, then

𝑃 ∧ 𝑄 (6)

is the new logical statement which is true precisely when both 𝑃 and 𝑄 are true,
and otherwise is false. And

𝑃 ∨ 𝑄 (7)

is the logical statement that is true precisely when either 𝑃 or 𝑄, or both, are
true.
A logical operation that only takes on argument is negation: if 𝑃 is a statement,
its negation

¬𝑃 (8)

is the statement that is true if and only if 𝑃 is false.
Furthermore, it is useful to include in our logical language the symbols

⊤ and ⊥ (9)

for “true” and “false”, respectively, which we think of as connectives taking zero
arguments.

Calculus with connectives

Various rules, for example expressed using equations, relate the different logical
connectives to each other and dictate how to calculate with them. For instance,
rules such as

(𝑃 ∧ 𝑄) ∨ 𝑅 = (𝑃 ∨ 𝑅) ∧ (𝑄 ∨ 𝑅) (10)

or
¬(𝑃 ∧ 𝑄) = (¬𝑃 ∨ ¬𝑄) (11)

or
¬(¬𝑃) = 𝑃. (12)

Note that we use parentheses above to make clear in which order to evaluate
a compound logical formula. Conventions about how strongly different logical
operations “bind” allow us to use less parentheses. For example, logical negation
is taken to bind at the strongest level, so we can write ¬𝑃 instead of ¬(𝑃) in logical
formulas, without introducing ambiguity.

Variables and quantifiers

Beyond connectives, our logical language also includes variables, as well as the so-
called quantifier symbols ∃ and ∀, read “there exists” and “for all”, respectively.
The quantifiers may be viewed as operations that have two arguments: the first
argument is a variable, say 𝑥, and the second argument is a logical statement that
might depend on 𝑥. The result is again a logical statement. For example, given a
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30 3. Sets and functions

statement 𝑃(𝑥) possibly depending on 𝑥,

∃𝑥 𝑃(𝑥) (13)

denotes the statement “there exists an 𝑥 such that the statement 𝑃(𝑥) is true”.
Similarly,

∀𝑥 𝑃(𝑥) (14)

is the statement “for all 𝑥, the statement 𝑃(𝑥) is true”.
Wewill use the notation∃!𝑥 𝑃(𝑥) to say “there exists precisely one𝑥 such that𝑃(𝑥)
is true”.

Implication as a connective
In addition to expressing the fact that ‘𝑃 implies 𝑄’ using the notation

𝑃
,

𝑄 (15)

we can also express the statement ‘𝑃 implies 𝑄’ using implication as a logical
connective. We use the notation ‘⇒’ for this connective, and we think of it as a
function of two variables: given statements 𝑃 and 𝑄, it spits out the new state-
ment 𝑃 ⇒ 𝑄. It may be expressed (or defined) as

(𝑃 ⇒ 𝑄) = (¬𝑃 ∨ 𝑄), (16)

depending on whether one wishes to take⇒ as a primitive connective or define
it as a compound connective via (16). This is a matter of convention.
The relationship between (15) and “𝑃 ⇒ 𝑄” is that (15) says “the statement 𝑃 ⇒ 𝑄
is true”; another way to say this would be to write

.
𝑃 ⇒ 𝑄 (17)

Another connective that is useful (and commonly used) is called equivalence. We
use the symbol ‘⇔’ for it, and define it by

𝑃 ⇔ 𝑄 ∶= (𝑃 ⇒ 𝑄) ∧ (𝑄 ⇒ 𝑃). (18)

When the statement 𝑃 ⇔ 𝑄 is true we say ‘𝑃 and 𝑄 are equivalent’ or that ‘𝑃 is
true if and only if 𝑄 is true’. Also, this is the same as saying

𝑃
,

𝑄 (19)
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Figure 1.:We represent sets as “clouds” or “bags”
of non-repeating elements.

3.2. Sets
Intuitively speaking, sets describe “collections of things” – whether it be a collec-
tion of people, of objects, of abstract symbols, etc. The “things” making up a set
are called the elements of the set.
There is also one (unique) special set that has no elements. It is called the empty
set, and it is denoted by the symbol ∅.

Specifying a set by naming its elements
One way to specify a set is to write out the elements of the set, separated by
commas, and surrounded by curled brackets. For example, the set consisting of
the symbols “ ”, “ ”, “ ” and “ ” is indicated by { , , , }.
When we specify a set in this way, the order in which we write the elements does
notmatter: { , , , } and { , , , } and { , , , } are, for instance,
different ways of indicating one and the same set.
However, we do not allow repetitions of elements of sets: we do not consider { ,
, , , , } as a valid way of indicating a set. At best, { , , , , , }

could be interpreted as specifying the set { , , , }. (One might be tempted
to read { , , , , , } as meaning that “ ” appears “three times”. This
corresponds to the notion of “multiset” – which is something different from a set
– but we are not considering multisets here.)
Because the elements of a set are in general not ordered in any way, we can
visualize sets as “clouds” or “bags” of elements, as in Fig. 1.

The size of a set
The usual name for the size of a set is its cardinality. If a set has finitely-many
elements, then its size or cardinality is just the number of elements it contains.
For example, the set { , , } has cardinality equal to 3.
Sets with finite cardinality are called finite sets. If a set is not finite, there are
different possible “infinite sizes”. We will delve into distinguishing different
infinite cardinalities only later when we need to.
Our notation for the size of a set 𝐀 will be 𝖼𝖺𝗋𝖽(𝐀) or |𝐀|. For now, we will agree
that 𝖼𝖺𝗋𝖽(𝐀) can be either zero (for the empty set), a natural number, or simply
“infinite”. For sets of infinite size, there are different, distinct possible cardinalities
(different infinities); we will discuss a bit later a way of making sense of this.

Set membership
When some “thing” is an element of a set, we also say that that thing is amember
of that set, or that it belongs to that set.
The symbol to indicate membership is “∈”: for example,

∈ { , , , } (20)

is the statement that is an element of the set { , , , }. To indicate that
something is not an element of a set we use the symbol “ ̸∈”.
You may now be wanting to ask: what counts as a “thing” here, anyway? In
many rigorous treatments of set theory (there are various different theories), the
mathematical world is, roughly speaking, made up of sets.
In other words, a “thing” is a set*. We will not delve into the rabbit holes of formal
* To give a glimpse of how this can work, consider the following formal model for the natural
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set-theory here, however one basic (and sometimes confusing) point is that sets
can be elements of other sets.
For example, we might consider the set

{ , { }, { , , , }}, (21)

which has three elements: namely , { }, and { , , , }. Each of , { },
and { , , , } is a “thing”, and these three things happen to be assembled
together in the set (21). Based on our conventions (curly brackets specify sets),
both { } and { , , , } are sets (and for our purposes, we do not need to say
rigorously what kind of thing might be).
From the above discussion it is hopefully now clear that, given sets 𝐀, 𝐁, and 𝐂,
say, we can build for example a new set

{𝐀, 𝐁, 𝐂} (22)

whose elements are 𝐀, 𝐁, and 𝐂. It is hopefully also clear for example that ∅
and {∅} are different sets (this is sometimes a confusing case!). The former is the
empty set (it has no elements), while the latter is a set which has precisely one
element, and that element happens to be the set ∅.

Equality
Given two sets, we say they are equal if and only if “they have the same elements”.
For example, we have seen that { , , , } and { , , , } and { , ,
, } are all equal as sets, because their elements are the same. In particu-

lar, this example shows that a given set might have many names or symbolic
representations.
From one perspective, the criterion for knowing when sets are equal reduces
to knowing when elements (or “things”) are equal. If 𝐀 and 𝐁 are sets, then to
check if 𝐀 = 𝐁, we need to check if respective elements of 𝐀 and 𝐁 are equal.
From another perspective, the question of equality of sets can be expressed in
terms of membership: 𝐀 and 𝐁 are equal if and only if the statements 𝑥 ∈ 𝐀
and 𝑥 ∈ 𝐁 are logically equivalent (𝑥 is a variable that can be instantiated with
the elements of 𝐀 or 𝐁):

𝐀 = 𝐁
.

𝑥 ∈ 𝐀

𝑥 ∈ 𝐁 (23)

Note that there are two levels of double lines. Because the first set of double lines
is wider, we read the statement as stating an equivalence between 𝐀 = 𝐁 and
𝑥 ∈ 𝐀

𝑥 ∈ 𝐁 .

Subsets
Consider the set { , , }, and compare it with { , , , }. Each of the
elements of the first set is also an element of the second set; in such a case we say

numbers, using sets: define the number zero to be the empty set ∅, define the number one to be the
one-element set {∅}, define the number two to be the two-element set {∅, {∅}}, etc.
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that the first set is a subset of or is included in the second set. In symbols,

{ , , } ⊆ { , , , }. (24)

Generally, given sets 𝐀 and 𝐁, the statement 𝐀 ⊆ 𝐁 (that 𝐀 is a subset of 𝐁) is
logically equivalent to the statement

𝑥 ∈ 𝐀

𝑥 ∈ 𝐁 (25)

in sequent form and equivalent to the statement

∀𝑥 ∈ 𝐀∶ 𝑥 ∈ 𝐁 (26)

in terms of the “for all” universal quantifier.
Returning to (24), the second set is, on the other hand, not included in the first
set, since is an element of the second set, but not the first. If we say a set 𝐀 is
“strictly included” in another set 𝐁, then we mean “included in and not equal”;
the notation for this is 𝐀 ⊂ 𝐁.
The notation for inclusion and strict inclusion of sets is analogous to the notation
in the context of numbers for “less than or equals”, 𝑥 ≤ 𝑦, and “strictly less
than”, 𝑥 < 𝑦, respectively.
In general, if we do not use the adjective “strictly”, then “inclusion” means that
equality is also possible. In particular, in our terminology it is true that any set 𝐀
is included in itself: 𝐀 ⊆ 𝐀.
Inclusion and equality are related as follows: given sets 𝐀 and 𝐁,

𝐀 ⊆ 𝐁 𝐁 ⊆ 𝐀
.

𝐀 = 𝐁 (27)

Many times, in order to prove a statement of the form𝐀 = 𝐁 it is a useful strategy
to prove the two statements 𝐀 ⊆ 𝐁 and 𝐁 ⊆ 𝐀 each.
With respect to inclusion of sets, the empty set ∅ has (once again) some slightly
tricky behavior: ∅ is a subset of any other set. To seewhy thismakes sense, consider
the formulation (26): when𝐀 is the empty set, this statement is always true, since
quantifying “for all” over the empty set poses no condition at all.

Specifying a set via a logical statement

In addition to the “naming the elements” way of specifying a set, many times sets
are specified with the help of a logical “statement” or “sentence” which serves as
a condition which characterizes its elements.
The idea is this: we start out with some given set 𝐁, and then we consider a
statement 𝑆(𝑥)which depends on a variable 𝑥, which we think of as running over
the elements of𝐁. We can then ask: forwhichelements𝑥 of𝐁 is the statement𝑆(𝑥)
true? These elements form a subset of 𝐁, often denoted

{𝑥 ∈ 𝐁 ∣ 𝑆(𝑥)}. (28)

For example, let 𝐁 = { , , } and consider the statement

𝑆(𝑥) = “𝑥 is a fruit”. (29)

Something incorrect or unclear or missing? Report issues on GitHub by clicking here.

https://github.com/ACT4E/ACT4E/issues/new?labels=chap:sets;body=Chapter:%20Sets and functions%0ASection:%20 Sets%0AVersion:%202024-12-09%0A%0ACheck%20all%20that%20apply:%0A-%20(%20)%20Something%20incorrect%0A-%20(%20)%20Something%20not%20clear%0A-%20(%20)%20Something%20missing%0A%0APlease%20describe%20more%20in%20detail%20below.%20Feel%20free%20to%20change%20the%20title%20to%20something%20more%20informative.%0A;title=Sets and functions%20/%20 Sets%20/%202024-12-09


34 3. Sets and functions

Then we can form the set

{𝑥 ∈ 𝐁 ∣ 𝑥 is a fruit} = { , }. (30)

There is an interesting special case of this way of constructing subsets of a set 𝐁:
what if, for a given statement 𝑆(𝑥), none of the elements 𝑥 ∈ 𝐁 are such that 𝑆(𝑥)
is true? Then the result is the empty set.
As an example, consider the statement

𝑆(𝑥) = “𝑥 is the name of a planet”. (31)

Then, for the set 𝐁 = { , , }, the set defined as

{𝑥 ∈ 𝐁 ∣ 𝑥 is the name of a planet} (32)

is equal to the empty set.

Logical statements quantified over a set
The above describes how to define a set using a logical statement. Often times we
also conversely use a set to formulate a logical statement. For example a statement
of the kind “there exists 𝑥 ∈ 𝐀, such that the statement 𝑃(𝑥) is true”. Our notation
for this will be

∃𝑥 ∈ 𝐀∶ 𝑃(𝑥). (33)

Similarly,
∀𝑥 ∈ 𝐀∶ 𝑃(𝑥). (34)

denotes the statement “for all 𝑥 ∈ 𝐀, 𝑃(𝑥) is true”.

Remark 3.1 (Do you want to be more formal?). The statements (33) and (34) can
be formulated in the formats “∃𝑥 𝑄(𝑥)” and “∀𝑥 𝑄(𝑥)”, respectively, that were
introduced in Section 3.1 for the logical symbols ∃ and ∀:

∃𝑥 ((𝑥 ∈ 𝐀) ∧ 𝑃(𝑥)), (35)

and
∀𝑥 ((𝑥 ∈ 𝐀) ⇒ 𝑃(𝑥)). (36)

However, (33) and (34) are easier to read and are common usage.

Some special sets we’ll often use
Familiar sets of numbers For us, the set of natural numbers† is

ℕ = {0, 1, 2, 3, 4, …}. (37)

These can be extended to the set ℤ of integers (or “whole numbers”)

ℤ = {0, +1, −1, +2, −2, +3, −3, …}, (38)

which in turn may be extended to the rational numbersℚ, the real numbers ℝ,
and the complex numbers ℂ. In formal set theory, these sets can actually be quite
a nuisance to define rigorously; for our purposes this is unnecessary, and we will

† Whether zero should be included in the definition of the natural numbers is a question of convention,
and there is no clear universal agreement on this. We choose to follow the ISO 80000-2 standard [12]
that includes zero as part of the natural numbers.
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just work with these sets in the way you are probably used to from high-school
or undergraduate mathematics.

Singleton sets In many situations in category theory, it often doesn’t matter
exactly which of the infinitely-many possible one-element sets we are considering,
namely the essential feature that often only matters is the fact that the set has just
one element. However, at the same time, it is often choose a specific, explicitly
specified one-element set, in oder to be able to “operate” with it directly. For this
purpose, we define here a “standard, default” one-element (singleton) set

𝟏 ∶= {∙} (39)

whose sole element is the symbol “∙”. Here does not really matter which symbol
we have chosen as the single element of our default one-element set; we have
chosen the symbol “∙” simply because it is a fairly “neutral-looking" symbol and
one that is not used often to denote things with another mathematical meaning
(however we could have instead considered, for example, the singleton sets {⋆},
or {♡}, etc. ). We will only use this “default" singleton set 𝟏 in situations where all
we care about it is that it contains exactly one element, and the properties derive
from this.

The set of booleans The set of booleans is defined as:

Bool = {⊥, ⊤}, (40)

where ⊥ is “false” and ⊤ is “true”.
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36 3. Sets and functions

3.3. New sets from old
In this section we recall some elementary ways of constructing new sets from old.
The idea of constructing new things from old things is one of the main themes of
the book.

Union and intersection

The union of two sets is the set containing precisely those elements which come
from either of the two.

Definition 3.2 (Union of sets)
Given sets𝐀 and 𝐁, their union is a new set, denoted𝐀∪𝐁, characterized by

𝑥 ∈ (𝐀 ∪ 𝐁)
.

𝑥 ∈ 𝐀 ∨ 𝑥 ∈ 𝐁 (41)

For example, if 𝐀 = { , } and 𝐁 = { }, then

𝐀 ∪ 𝐁 = { , , }. (42)

The intersection of two sets is the set of elements common to both.

Definition 3.3 (Intersection of sets)
The intersection of sets 𝐀 and 𝐁, denoted 𝐀 ∩ 𝐁, is the set characterized by

𝑥 ∈ (𝐀 ∩ 𝐁)
.

𝑥 ∈ 𝐀 ∧ 𝑥 ∈ 𝐁 (43)

For example, if 𝐀 = { , , , } and 𝐁 = { , , }, then

𝐀 ∩ 𝐁 = { , }. (44)

Exercise2. Prove that union and intersection of sets are associative operations.
See solution on page 79.

Exercise3. Prove that union and intersection of sets are commutative operations.
See solution on page 79.

The definitions of union and intersection above are for two sets, 𝐀 and 𝐁. We
can also build the union or intersection of any finite number of sets, or even an
infinite collection of sets. Let’s look at the finite case first.
Given sets 𝐀1,𝐀2,… ,𝐀𝑛, their union

⋃
𝑖∈{1, …, 𝑛}𝐀𝑖 is defined by

𝑥 ∈
⋃

𝑖∈{1, …, 𝑛}
𝐀𝑖

.
∃𝑖 ∈ {1, …, 𝑛}∶ 𝑥 ∈ 𝐀𝑖 (45)

Alternative notations for this union are also
⋃𝑛

𝑖=1𝐀𝑖 and
⋃
{𝐀𝑖 ∣ 𝑖 ∈ {1, …, 𝑛}}.

The latter notation lends itself well for the generalization of the union operation
to any arbitrary collection of sets. If 𝜉 is a collection of sets (it might have two
elements (say, sets 𝐀 and 𝐁), or it might have 108 elements, or it might have
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infinitely many elements) we define
⋃
𝜉 by

𝑥 ∈
⋃

𝜉
.

∃𝐀 ∈ 𝜉 ∶ 𝑥 ∈ 𝐀 (46)

This notation for the union of an arbitrary collection of sets is related to our
previous definition for two sets 𝐀 and 𝐁 via

𝐀 ∪ 𝐁 =
⋃

{𝐀, 𝐁}. (47)

Remark 3.4. A slightly confusing thing might be the following; it has to do
with how we use variables and the fact that for sets, elements can appear at most
once. If we write for example “𝐀1,𝐀2,… ,𝐀𝑛”, then we are a priori syntactically
speaking about 𝑛 distinct sets. However, this notation does exclude the possibility
that perhaps 𝐀1 = 𝐀2 =⋯ = 𝐀𝑛 = 𝐀, for instance. In this special concrete case,
the set of sets {𝐀𝑖 ∣ 𝑖 ∈ {1, …, 𝑛}} will have only one single element, namely 𝐀,
even though, in terms of notation, it might look like there are more elements.

Remark 3.5. When we write “𝐀1,𝐀2,… ,𝐀𝑛”, we are using the numbers 1,… , 𝑛
to index these 𝑛 (no necessarily non-equal) sets. Indexing means giving them
distinct names. We don’t necessarily need to use natural numbers to index a
collection of sets (or any other things, for that matter) – we can use any other
set as an index! The main point is that the index set (let’s call it 𝐈) should have
precisely as many elements as we wish to have distinct “names” for the sets we
are indexing. Let’s look at some examples.
For instance, for a collection of four sets, we might name them 𝐀1, 𝐀2, 𝐀3, 𝐀4
using the index set 𝐈 = {1, 2, 3, 4}, but we also might name them 𝐀𝑛𝑜𝑟𝑡ℎ, 𝐀𝑠𝑜𝑢𝑡ℎ,
𝐀𝑒𝑎𝑠𝑡, 𝐀𝑤𝑒𝑠𝑡 using the index set 𝐈 = {𝑛𝑜𝑟𝑡ℎ, 𝑠𝑜𝑢𝑡ℎ, 𝑒𝑎𝑠𝑡, 𝑤𝑒𝑠𝑡}. With such small
index sets, it is easy list all the sets involved; however in general the notation
{𝐀𝑖}𝑖∈𝐈 is used. For example, if 𝐈 = ℤ or 𝐈 = ℝ, we denote the respective cor-
responding indexed collections of sets by {𝐀𝑘}𝑘∈ℤ or {𝐀𝜆}𝜆∈ℝ, for example. An
indexed collection of sets is also sometimes called a family of sets.

Similar to how the operation of union may be generalized to any arbitrary collec-
tion of sets, so too the operation of intersection. Given a collection 𝜉 of sets, we
define the intersection

⋂
𝜉 by

𝑥 ∈
⋂

𝜉
.

∀𝐀 ∈ 𝜉 ∶ 𝑥 ∈ 𝐀 (48)

This notation for the intersection of an arbitrary collection of sets is related to
our previous definition for two sets 𝐀 and 𝐁 via

𝐀 ∩ 𝐁 =
⋂

{𝐀, 𝐁}. (49)

Powerset
Definition 3.6 (Power set)
Given a set 𝐀, we can form a new set whose elements are precisely all the
subsets of 𝐀. This new set is called the powerset of 𝐀; we denote it by 𝖯𝗈𝗐𝐀.

For example, if 𝐀 = { , , }, then its powerset is

𝖯𝗈𝗐𝐀 = {∅, { }, { }, { }, { , }, { , }, { , }, { , , }}. (50)
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𝐒 𝐓

𝐒 ∪ 𝐓

Figure 2.: Venn diagram for union operation.

𝐒 𝐓

𝐒 ∩ 𝐓

Figure 3.: Venn diagram for intersection opera-
tion.

𝐒 𝐓

(𝐒 ∩ 𝐓)c

Figure 4.: Venn diagram for complement opera-
tion.

Exercise4. Can you count how many elements the powerset 𝖯𝗈𝗐𝐀 has in the
following cases?
1. 𝐀 = { }.
2. 𝐀 = { , }.
3. 𝐀 = { , , }.
4. 𝐀 = ∅.
Can you guess a general formula for the size of the powerset of a finite set?

See solution on page 79.
Now suppose we fix a set𝐀 for a moment. Given 𝐒 ∈ 𝖯𝗈𝗐𝐀, the complement of 𝐒
with respect to 𝐀 is

𝐀 ∖ 𝐒 = {𝑥 ∈ 𝐀 ∣ 𝑥 ̸∈ 𝐒}, (51)

which is again an element of 𝖯𝗈𝗐𝐀. In situations where it is evident which
ambient set 𝐀 we are working with, the notation 𝐒c is sometimes used instead
of 𝐀 ∖ 𝐒.
We also note that the operations of union and intersection, when restricted
to 𝖯𝗈𝗐𝐀, again produce elements of 𝖯𝗈𝗐𝐀. That is, if 𝐒,𝐓 ∈ 𝖯𝗈𝗐𝐀, then 𝐒 ∪ 𝐓
∈ 𝖯𝗈𝗐𝐀, and similarly 𝐒 ∩ 𝐓 ∈ 𝖯𝗈𝗐𝐀.
The operations ∪, ∩, and (−)c on 𝖯𝗈𝗐𝐀 obey various rules which are useful to
be familiar with. For example,

(𝐒 ∩ 𝐓)c = (𝐒c) ∪ (𝐓c). (52)

Can you state more such rules? A useful visual aid for such calculations are
so-called Venn diagrams (Fig. 2, Fig. 3, Fig. 4).

Graded exercise B.1 (DistributingSubsets)
Let 𝐀 be a set, and let 𝐒,𝐓,𝐔 ⊆ 𝐀 be subsets. Prove that

𝐒 ∩ (𝐓 ∪𝐔) = (𝐒 ∩ 𝐓) ∪ (𝐒 ∩𝐔). (53)

Tuples
A “tuple” is a finite sequence or listing of “things” where their order matters
and repetitions are allowed. We use the following notation to denote a tuple of
numbers, for example:

⟨3.5, 92, 7, 68⟩. (54)

Tuples always have a length, which can be any natural number. A tuple of length 𝑛
∈ ℕ is called an 𝑛-tuple. There is only one possible tuple of length zero; we call it
the empty tuple and denote it by ⟨ ⟩.
Tuples of length two are often called ordered pairs or just pairs; tuples of length
three are called triples; tuples of length four are called quadruples, and so on.
We concatenate tuples using the symbol #⟨:

⟨𝑎, 𝑏⟩ #⟨ ⟨𝑐⟩ #⟨ ⟨ ⟩ = ⟨𝑎, 𝑏, 𝑐⟩. (55)

The items inside the brackets that indicate a tuple will be called entries or compo-
nents. If 𝑡 is a tuple of length 𝑛, then 𝑡[𝑖] will refer to the 𝑖th entry of 𝑡, where 1 ≤
𝑖 ≤ 𝑛. So, for example, if

𝑡 = ⟨2, 9, 91, 3, 6⟩, (56)

then 𝑡[1] = 2, 𝑡[2] = 9, 𝑡[3] = 91, etc.
Typically, we use tuples in situations where we also specify, for each entry of the

You are reading a draft compiled on 2024-12-09 11:28:28Z



3.3. New sets from old 39

tuple, a set of which that entry is an element. For example, if 𝐀 = { , , }
and 𝐁 = { , }, then sometimes we will want to specify that ⟨ , ⟩ is a 2-tuple
where ∈ 𝐀 and ∈ 𝐁.

Lists

Our notion of list is similar to that of a tuple, except that we require its entries to
all be elements of a single specified set or to be all things of a specified type.
We will use the notation

[3, 7, 8]ℕ (57)

to denote a list of natural numbers, for example, and

[3, 7, 8]ℝ (58)

to denote a list of real numbers. Often it will be clear which type of things we
are dealing with, in which case we drop the subscript in our notation and simply
write

[3, 7, 8]. (59)

We concatenate lists using the symbol #[:

[1, 3] #[ [ ] #[ [5, 7] = [1, 3, 5, 7]. (60)

Of course, the type of things we consider need not be numbers. For example,
we might work with lists whose entries are from the set 𝐀 = { , , , , }.
Such a list is [ , , , ]𝐀, for instance.
Similar to tuples, lists can have any length 𝑛 ∈ ℕ, including zero. The entries of
a list 𝑙 of length 𝑛 will be denoted 𝑡[𝑖], where 1 ≤ 𝑖 ≤ 𝑛.
In contrast to tuples, we have a different empty list (zero-length list) for every pos-
sible type of list. The empty list of things of a given type 𝑇 will be denoted [ ]𝑇 .
The set of all lists of elements of 𝐀 is written as 𝖫𝗂𝗌𝗍𝐀.

Cartesian product

Definition 3.7 (Cartesian product of two sets)
Given sets 𝐀 and 𝐁, their cartesian product is a new set – denoted 𝐀 × 𝐁 –
whose elements are precisely all possible 2-tuples ⟨𝑥, 𝑦⟩ such that the first
entry 𝑥 is an element of 𝐀 and the second entry 𝑦 is an element of 𝐁.

For example, if 𝐀 = { , , } and 𝐁 = { , }, then

𝐀 × 𝐁 =
{⟨

,
⟩
,
⟨
,

⟩
,
⟨

,
⟩
,
⟨

,
⟩
,
⟨

,
⟩
,
⟨

,
⟩}
. (61)

In the special case where 𝐀 = ∅ or 𝐁 = ∅, then 𝐀 × 𝐁 = ∅.
Another way to represent the cartesian product is the following:

⟨
,

⟩ ⟨
,

⟩

× =
⟨

,
⟩ ⟨

,
⟩

⟨
,

⟩ ⟨
,

⟩

𝐀 𝐁 𝐀 × 𝐁

(62)
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Remark 3.8. For finite sets 𝐀 and 𝐁, the size of 𝐀 × 𝐁 is the product (multipli-
cation) of the sizes of 𝐀 and 𝐁:

𝖼𝖺𝗋𝖽(𝐀 × 𝐁) = 𝖼𝖺𝗋𝖽(𝐀) ⋅ 𝖼𝖺𝗋𝖽(𝐁). (63)

This is one reason why we think of 𝐀 × 𝐁 as a kind of multiplication of sets.

Remark 3.9 (Do you want to be more formal?). In formal set theory, 2-tuples
(ordered pairs) are often defined by setting

⟨𝑥, 𝑦⟩ ∶= {{𝑥}, {𝑥, 𝑦}}. (64)

In this case, the cartesian product is

𝐀 × 𝐁 = {𝑧 ∈ 𝖯𝗈𝗐 𝖯𝗈𝗐(𝐀 ∪ 𝐁) ∣ ∃𝑥 ∈ 𝐀, ∃𝑦 ∈ 𝐁 ∶ 𝑧 = ⟨𝑥, 𝑦⟩}. (65)

We will, however, treat tuples as a primitive construction (i. e., without reference
to formal set theory), and hence for us also the construction of “ cartesian product
of sets” is primitive.

The definition Def. 3.7 is for a binary operation of cartesian product: one where
there are two factors. We can make an analogous “n-ary” definition for any finite
number of factors.

Definition 3.10 (n-ary Cartesian product of sets)
Let 𝑛 ∈ ℕ. Given sets 𝐀1,𝐀2,… ,𝐀𝑛, their cartesian product is the set 𝐀1 ×
𝐀2×…×𝐀𝑛 whose elements are precisely all possible n-tuples ⟨𝑥1, 𝑥2, …, 𝑥𝑛⟩
such that each entry 𝑥𝑖 is an element of 𝐀𝑖 , for each 𝑖 ∈ {1, …, 𝑛}.

Disjoint union

Definition 3.11 (Disjoint union of two sets)
Given sets 𝐀 and 𝐁, their disjoint union, or sum, is the set

𝐀+ 𝐁 ∶= ({1} ×𝐀) ∪ ({2} × 𝐁). (66)

In other words, an element of 𝐀+ 𝐁 is either a tuple ⟨1, 𝑥⟩ for some 𝑥 ∈ 𝐀 or a
tuple ⟨2, 𝑦⟩ for some 𝑦 ∈ 𝐁. The sets {1} and {2} here simply provide labels which
“force” the sets {1} ×𝐀 and {2} × 𝐁 to be disjoint (even if 𝐀 and 𝐁 have elements
in common).
Consider the sets 𝐀 = { , } and 𝐁 = { , }. Their disjoint union can be
represented as:

⟨
1,

⟩ ⟨
2,

⟩

+ =
⟨
1,

⟩ ⟨
2,

⟩

𝐀 𝐁 𝐀+ 𝐁

(67)

We can define the disjoint union of a set with itself; this corresponds to having
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two distinct copies of the set:

⟨
1,

⟩ ⟨
2,

⟩

+ =
⟨
1,

⟩ ⟨
2,

⟩

𝐀 𝐀 𝐀+𝐀

(68)

Let us also think about what happens when the empty set is at play. For example,
if𝐀 = ∅, then ∅+𝐁 = {2}×𝐁, and similarly𝐀+∅ = {⟨1, 𝑥⟩ ∣ 𝑥 ∈ 𝐀}. Also, ∅+∅ =
∅.

Remark 3.12. If𝐀 and 𝐁 are finite, then the size of𝐀+𝐁 is the sum of the sizes
of 𝐀 and 𝐁:

𝖼𝖺𝗋𝖽(𝐀+ 𝐁) = 𝖼𝖺𝗋𝖽(𝐀) + 𝖼𝖺𝗋𝖽(𝐁). (69)

This is a reason why we think of 𝐀+ 𝐁 as a form of addition of sets.

Remark 3.13. Later we will see that the cartesian product of sets is a special
case of a very general construction in category theory, called the categorical
product, and that the disjoint union, or sum, of sets is a special case of a “dual”
construction, called categorical coproduct.

Analogous to the n-ary cartesian product of any finite number of sets, we can
define an n-ary version of disjoint union.

Definition 3.14 (n-ary disjoint union of sets)
Let 𝑛 ∈ ℕ. Given sets 𝐀1,𝐀2,… ,𝐀𝑛, their disjoint union, or sum, is the set

𝐀1 +𝐀2 +⋯ +𝐀𝑛 ∶= ({1} ×𝐀1) ∪ ({2} ×𝐀2) ∪ … ∪ ({𝑛} ×𝐀𝑛) (70)
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𝑥 𝑓(𝑥)
1 1
2 4
3 9
... ...

Figure 5.: A function described via a table.

3.4. Functions
Functions are familiar to all of us – to some degree – from our school days. In this
section we present some basic terminology and our way of defining functions
formally, and we discuss various ways to think about functions.
When speaking about functions, we use the words “map” or “mapping” as syn-
onyms.

Specifying functions

Functions can be specified in a variety of ways.
Sometimes they are indicated with the help of a formula, such as 𝑓(𝑥) = 𝑥2. Or
with the help of a table, as in Fig. 5.
Other times a function might be characterized by equations or properties. For
example, the exponential function

exp∶ ℝ → ℝ,
𝑥 ↦ 𝑒𝑥,

(71)

is known to be characterized by the fact that it satisfies the differential equa-
tion 𝑓′(𝑥) = 𝑓(𝑥) and the initial condition 𝑓(0) = 1.
Still other times one might be able to prove the existence (and perhaps also
uniqueness) of some function satisfying some given properties, but one might
not have any concrete means to “evaluate” or “calculate” that function.
Whatever the route may be by which a function is specified, for us an essential
non-negotiable part of specifying a function is to say which set is its source (or
domain), and which set is its target (or co-domain). That is, a function 𝑓 is always
something that goes from one set 𝐀 (the source of 𝑓) to another set 𝐁 (the target
of 𝑓). We write this as 𝑓∶ 𝐀→ 𝐁.
For example, the formula “𝑓(𝑥) = 𝑥2” does not specify a function yet, because we
did not yet say what source and target set we are considering. If we are thinking
of 𝑥2 as defining a function ℝ → ℝ, then this is one function, and if we are
thinking of 𝑥2 as defining a function ℝ>𝟎 → ℝ, then this is another function.
And if we are thinking of 𝑥2 as a function ℕ→ ℕ, this is yet another.
One way to see why this is important: the function

𝑓∶ ℝ>𝟎 → ℝ,
𝑥 ↦ 𝑥2,

(72)

is monotone (increasing), while

𝑔∶ ℝ → ℝ,
𝑥 ↦ 𝑥2,

(73)

is not. They have different properties.
Or, as another example, the function 𝑔 can be shown to be a continuous function,
while for the function

ℎ∶ ℕ → ℕ,
𝑥 ↦ 𝑥2,

(74)

it is perhaps not immediately clear what the question of continuity even means.
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Functions as deterministic machines
One typical way of thinking about functions is in terms of “input” and “output”.
Given a function 𝑓∶ 𝐀→ 𝐁 we sometimes speak of “plugging in” an element 𝑥
∈ 𝐀 into the function 𝑓, and then it will “output” an element 𝑓(𝑥) ∈ 𝐁.
One reason for this kind of thinking is that sometimes functions describe things
that are like a computational process or a machine: for instance, we might give a
software program an input, it might then perform a series of computations, and
then output an answer, and all of this might be described by a function.
Another reason for thinking of functions in terms of input and output is because
humans often use functions – as mathematical entities – in a deterministic “ma-
chine” kind of way. Starting with some element 𝑥 ∈ 𝐀, we can sometimes use
the function 𝑓 to calculate or otherwise determine what the “output” 𝑓(𝑥) ∈ 𝐁
is. For example, if we consider the function

𝑓∶ ℤ → ℤ,
𝑥 ↦ 𝑥2,

(75)

then, given any input 𝑥 ∈ ℤ, we can compute the output 𝑓(𝑥) ∈ ℤ bymultiplying
the input 𝑥 with itself.
Mathematically speaking, functions are deterministic in the sense that for any
input 𝑥, there is exactly one output 𝑓(𝑥). This is in contrast to the fact that a given
output 𝑓(𝑥)might arise from various possible inputs: for example 4 ∈ ℤ could
be the output of (75) for the input 2 ∈ ℤ or for the input 92 ∈ ℤ.

Functions as relations
Another point of view is that a function 𝑓∶ 𝐀 → 𝐁 defines a certain kind of
relation between the elements of 𝐀 and 𝐁. Given an 𝑥 ∈ 𝐀, the function 𝑓 tells
us that this 𝑥 is related to a certain 𝑦 ∈ 𝐁, which we happen to call 𝑓(𝑥). This
point of view is fully compatible with thinking of functions as “mathematically
deterministic”. However, it is more general than interpreting functions as de-
scribing processes which are “physically deterministic” in any sense or where
“the input precedes the output”.
As an illustration, consider a large phone book (of personal mobile numbers),
which is just a table of names and phone numbers. Let 𝐀 be the set of phone
numbers in the book, and 𝐁 the set of names. There is a function 𝑓∶ 𝐀 → 𝐁
which, given any phone number in 𝐀, will output the name of the person to
whom that number is registered. Normally, every number is assigned to a single
name, so a name as an “output” of the function is completely determined (math-
ematically speaking) by the number one “inputs”. However, there is no “physical
determinism” here: there is no non-mathematical process by which the name
of the person was “computed” or “causally determined” by the phone number.
Rather, the function we described arises simply from a table of information.

A formal definition
The idea is that we can formally define a function 𝑓∶ 𝐀 → 𝐁 by the ordered
pairs ⟨𝑥, 𝑦⟩ ∈ 𝐀 × 𝐁 which are the elements of what might be called the “graph”
of the function. In other words, those ordered pairs of the form “⟨𝑥, 𝑓(𝑥)⟩”.

Definition 3.15 (Function)
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44 3. Sets and functions

Let 𝐀 and 𝐁 be sets. A function 𝑓∶ 𝐀→ 𝐁 is a subset

𝑓 ⊆ 𝐀 × 𝐁, (76)

with the following property:

∀𝑥 ∈ 𝐀 ∃! 𝑦 ∈ 𝐁∶ ⟨𝑥, 𝑦⟩ ∈ 𝑓. (77)

Here 𝐀 is the source (or domain) and 𝐁 is the target (or co-domain) of 𝑓.

We emphasize, once again, that the source and target of a function are “baked
in” as part of the definition of the function.
The property (77) describes the “mathematical determinism” that functions are
supposed to have: for any 𝑥 ∈ 𝐀 there exists exactly one element 𝑦 ∈ 𝐁 that is
“the result” of the function 𝑓 applied to 𝑥.
Another important aspect of (77) is that it says that for every 𝑥 ∈ 𝐀 there exists a 𝑦
∈ 𝐁 that is related to 𝑥 by 𝑓. In other words, we do not allow functions to be “par-
tially defined”. For example, the formula “𝑓(𝑥) = 1∕𝑥” could be used to define a
functionℝ ∖ {0}→ ℝ, but it would not be valid for defining a functionℝ→ ℝ.
Although we take Def. 3.15 as our formal definition of functions, we will continue
to use the standardkinds of notation for functions, for example usuallywriting 𝑦 =
𝑓(𝑥) and not ⟨𝑥, 𝑦⟩ ∈ 𝑓. The formal definition above is useful to keep in the back
of our minds though. For instance, when thinking about situations involving the
empty set.

To and from the empty set
Do there exist functions ∅→ 𝐁 for any set 𝐁? What about 𝐀→ ∅?
Consulting Def. 3.15, we can figure out that there is always a function ∅ → 𝐁
(no matter what set 𝐁 is) because the condition “∀ 𝑥 ∈ 𝐀… ” in (77) is trivially
satisfied, as we are quantifying over 𝐀 = ∅. In this case, 𝑓 ⊆ 𝐀 × 𝐁 corresponds
to ∅ ⊆ ∅ × 𝐁 = ∅.
On the other hand, if 𝐀 ≠ ∅, there are no functions of the type 𝐀→ ∅, because
the part “∃! 𝑦 ∈ 𝐁” of (77) cannot be satisfied, since here 𝐁 = ∅.

Injective, surjective, bijective functions
Even if we don’t know a lot of the specifics of some functions, there is a lot we can
still say about how functions between sets can behave in general. In the following
we review a number of basic observations and properties.
Let 𝑓∶ 𝐀→ 𝐁 be a function.

Definition 3.16 (Injective function)
A 𝑓 is said to be injective if for all 𝑥1, 𝑥2 ∈ 𝐀

𝑓(𝑥1) = 𝑓(𝑥2) ,
𝑥1 = 𝑥2 (78)

Definition 3.17 (Surjective function)
and 𝑓 is called surjective if the condition

∀𝑦 ∈ 𝐁 ∃𝑥 ∈ 𝐀∶ 𝑓(𝑥) = 𝑦 (79)

You are reading a draft compiled on 2024-12-09 11:28:28Z



3.4. Functions 45

𝐀 𝐁
Figure 6.: An injective function.

𝐀 𝐁
Figure 7.: A surjective function.

𝑓 𝑔
𝐀

𝐂

𝐁
Figure 8.

𝑓 # 𝑔
𝐀

𝐂

𝐁
Figure 9.

holds.

Definition 3.18 (Bijective function)
A function which is both injective and surjective is called bijective.

Exercise5. For the following functions, determine whether they are inejctive,
surjective, or bijective, and explain why:
1.

𝑓∶ ℝ → ℝ,
𝑥 ↦ 𝑥 + 10.

2.
𝑔∶ ℝ → ℝ,

𝑥 ↦ 𝑥2.

3.
ℎ∶ ℕ → ℕ,

𝑥 ↦ 𝑥2.

4.
𝑘∶ ℕ → ℕ,

𝑥 ↦ 3𝑥.
See solution on page 79.

Image, preimage, restriction
The image of 𝑓∶ 𝐀→ 𝐁 is the set

𝑓(𝐀) ∶= {𝑦 ∈ 𝐁 ∣ ∃𝑥 ∈ 𝐀∶ 𝑓(𝑥) = 𝑦}. (80)

More generally, given a subset 𝐒 ⊆ 𝐀, its image under 𝑓 is

𝑓(𝐒) ∶= {𝑦 ∈ 𝐁 ∣ ∃𝑥 ∈ 𝐒∶ 𝑓(𝑥) = 𝑦}. (81)

From the data of 𝑓∶ 𝐀 → 𝐁 and 𝐒 ⊆ 𝐀 we can define a new function, the
restriction of 𝑓 to 𝐒,

𝑓|𝐒 ∶ 𝐒→ 𝐁, (82)

defined by 𝑓|𝐒(𝑥) = 𝑓(𝑥) for all 𝑥 ∈ 𝐒.
Given a subset 𝐓 ⊆ 𝐁 of the target of 𝑓∶ 𝐀→ 𝐁, its preimage under 𝑓 is

𝑓−1(𝐓) ∶= {𝑥 ∈ 𝐀 ∣ 𝑓(𝑥) ∈ 𝐓}. (83)

An alternative way of phrasing injectivity of 𝑓 is to say that for every singleton
subset {𝑦} ⊆ 𝐁, its preimage under 𝑓 is either a singleton set or the empty set.
Surjectivity of 𝑓 is equivalent to saying that 𝑓(𝐀) = 𝐁.

Function composition
Importantly, functions can be composed when the target set of one functions is
the same as the source set of another.

Definition 3.19 (Composition of functions)
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id𝐀
𝐀 𝐀

Figure 10.: An identity function

Given functions 𝑓∶ 𝐀→ 𝐁 and 𝑔∶ 𝐁→ 𝐂, we denote their composition by

𝑓 # 𝑔∶ 𝐀 → 𝐂,
𝑥 ↦ 𝑔(𝑓(𝑥)).

(84)

The notation “𝑓 # 𝑔” is different from the more traditional notation “𝑔 ◦ 𝑓”. We
speak pronounce it as “𝑓 then 𝑔”, which aligns with the fact that, to evaluate the
composition 𝑓 # 𝑔 at an element 𝑥 ∈ 𝐀, we first apply 𝑓 to compute 𝑓(𝑥), and
then we apply 𝑔 to compute the result.

Identity functions
For every set𝐁 there is a special function id𝐁 ∶ 𝐁→ 𝐁which “does nothing”.

Definition 3.20 (Identity function on a set)
The identity function on a set 𝐁 is given by

id𝐁 ∶ 𝐁 → 𝐁,
𝑦 ↦ 𝑦.

(85)

Because such a function “does nothing”, it behaves neutrally with respect to the
composition of functions: given 𝑓∶ 𝐀→ 𝐁 and 𝑔∶ 𝐁→ 𝐂, we have 𝑓 # id𝐁 = 𝑓
and id𝐁 # 𝑔 = 𝑔.

Isomorphisms
Identity functions are used, for example, to say when a function is invertible or,
synonymously, that it is an isomorphism.

Definition 3.21 (Isomorphism)
A function 𝑓∶ 𝐀 → 𝐁 is an isomorphism if there exists an inverse to 𝑓: a
function 𝑔∶ 𝐁→ 𝐀 such that

𝑓 # 𝑔 = id𝐀 and 𝑔 # 𝑓 = id𝐁. (86)

Exercise6. Show that an inverse to 𝑓 is necessarily unique (so we can speak of
“the” inverse).

See solution on page 80.

Remark 3.22. Note that if 𝑔 is the inverse to 𝑓, then also 𝑓 is the inverse of 𝑔.

Exercise7. Show that a function is an isomorphism if and only if it is bijective.
See solution on page 80.

Definition 3.23 (Isomorphisms of sets)
Given sets 𝐀 and 𝐁, we say that they are isomorphic, and write 𝐀 ≃ 𝐁, if
there exists an isomorphism 𝐀→ 𝐁 (or 𝐁→ 𝐀).

For a finite set𝐀,we say it has size𝑛 ∈ ℕ if there exists an isomorphism between𝐀
and the set {1, 2, …, 𝑛 − 1, 𝑛}.
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Graded exercise B.2 (CountingIsos)
Let 𝐀 = {⋆, ◦}, 𝐁 = {1, 2, 3}, and 𝐂 = {𝑎, 𝑏, 𝑐}.
1. How many isomorphisms are there 𝐀→ 𝐁?
2. How many isomorphisms are there 𝐁→ 𝐂?

Sets of functions
So far we have mostly been thinking of functions as a way to relate one set to
another. However, in our formal definition, a function 𝑓∶ 𝐀→ 𝐁 is a certain kind
of element in 𝖯𝗈𝗐(𝐀 × 𝐁). Consider all those elements of 𝖯𝗈𝗐(𝐀 × 𝐁) which are
indeed functions: they form a set, the set of all functions from 𝐀 to 𝐁. A notation
we will use for this set is 𝐁𝐀, or sometimes also (𝐀→ 𝐁).
Why the exponent notation?
If 𝐀 and 𝐁 are finite sets, then 𝐁𝐀 is also a finite set and its size is the size of 𝐁 to
the power of the size of 𝐀:

𝖼𝖺𝗋𝖽(𝐁𝐀) = 𝖼𝖺𝗋𝖽(𝐁)𝖼𝖺𝗋𝖽(𝐀). (87)

Product, sum, and exponentiation of functions
The following concepts of product, sum, and exponentiation of functions go hand-
in-hand with notions of product, sum, and exponentiation of sets.

Definition 3.24 (Product of functions)
Given functions 𝑓∶ 𝐀→ 𝐁 and 𝑔∶ 𝐂→ 𝐃, their product is the function

𝑓 × 𝑔∶ 𝐀 × 𝐂 → 𝐁 ×𝐃,
⟨𝑎, 𝑐⟩ ↦ ⟨𝑓(𝑎), 𝑔(𝑐)⟩.

(88)

Example 3.25. Consider 𝑓, 𝑔∶ ℝ → ℝ with 𝑓(𝑎) = 𝑎2 and 𝑔(𝑏) = 𝑏 + 1. We
have (𝑓 × 𝑔)(2, 5) =

⟨
22, 5 + 1

⟩
= ⟨4, 6⟩.

Definition 3.26 (Sum of functions)
Given functions 𝑓∶ 𝐀→ 𝐁 and 𝑔∶ 𝐂→ 𝐃, their sum is the function

𝑓 + 𝑔∶ 𝐀+ 𝐂→ 𝐁+𝐃
⟨1, 𝑎⟩↦ ⟨1, 𝑓(𝑎)⟩,
⟨2, 𝑐⟩↦ ⟨2, 𝑔(𝑐)⟩.

(89)

Example 3.27. Consider 𝑓∶ ℤ→ ℕwith 𝑓(𝑎) = 𝑎2 and 𝑔∶ ℝ→ ℝwith 𝑔(𝑏) =
𝑏3. We have (𝑓 + 𝑔)(⟨1, 2⟩) = ⟨1, 𝑓(2)⟩ =

⟨
1, 22

⟩
= ⟨1, 4⟩, and (𝑓 + 𝑔)(⟨2, 3⟩) =

⟨2, 𝑔(3)⟩ =
⟨
2, 33

⟩
= ⟨2, 27⟩.

Definition 3.28 (Exponentiation of functions)
Given a function 𝑓∶ 𝐀→ 𝐁 and a set 𝐂, the exponentiation of 𝑓, with base
𝐂, is the function

𝐂𝑓 ∶ 𝐂𝐁 → 𝐂𝐀

𝜑 ↦ 𝑓 # 𝜑.
(90)

Remark 3.29. Note that under exponentiation, the order in which 𝐀 and 𝐁
appear becomes “switched”.
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Unordered cartesian products and disjoint unions
Given any finite number of sets𝐀1,… ,𝐀𝑛,we have defined their cartesian product
as

𝐀1 ×𝐀2 × … ×𝐀𝑛 = {⟨𝑥1, 𝑥2, …, 𝑥𝑛⟩ ∣ 𝑥𝑖 ∈ 𝐀𝑖 for each 𝑖 = 1, …, 𝑛}. (91)

This defines an "ordered" cartesian product because tuples arrange elements in
an ordered sequence: the first entry is associated with the index “1”, the second
entry with the index “2”, and so on, all the way up to 𝑛. With this definition, the
cartesian product 𝐀 × 𝐁 × 𝐂 is not, for example, equal to the cartesian product
𝐂 × 𝐁 ×𝐀. The order of the factors matters.
There is, however, an unordered version of the cartesian product. To explain how
it works, we start with the observation that we can think of a tuple

⟨𝑥1, 𝑥2, …, 𝑥𝑛⟩ (92)

(with 𝑥𝑖 ∈ 𝐀𝑖 for each 𝑖 = 1,… , 𝑛) as encoding (and as encoded by) a function

𝑓 ∶ {1, …, 𝑛}→
⋃

𝑖∈𝐈
𝐀𝑖 (93)

such that 𝑓(𝑖) ∈ 𝐀𝑖 for each 𝑖 ∈ {1, …, 𝑛}. Namely, 𝑓(𝑖) = 𝑥𝑖, for each 𝑖 ∈ {1, …,
𝑛}. In this description of the tuple via a function, the “ordering” is encoded via
the fact that the elements of {1, …, 𝑛} are ordinal numbers.
We can however, also consider any family of sets {𝐀𝑖}𝑖∈𝐈 for an arbitrary set 𝐈
which serves as an index set (previously we were only using the index set 𝐈 = {1,
…, 𝑛}). In this case, we define the unordered cartesian product of the family of
sets {𝐀𝑖}𝑖∈𝐈 by

∏

𝑖∈𝐈
𝐀𝑖 ∶= {𝑓∶ 𝐈→

⋃
𝑖∈𝐈
𝐀𝑖 ∣ 𝑓(𝑖) ∈ 𝐀𝑖 ∀𝑖 ∈ 𝐈}. (94)

We use the symbol
∏

instead of the infix notation “×” (which necessarily requires
an ordering). The upper case greek letter pi

∏
is meant to stand for “product”.

Note that this unordered definition does not make any assumptions on the size
of 𝐈; it can also be infinite.
There is also an unordered version of the disjoint union, or sum, of sets. Given a
family {𝐀𝑖}𝑖∈𝐈, with arbitrary index set 𝐈, we define the unordered sum as

∑

𝑖∈𝐈
𝐀𝑖 ∶=

⋃
𝑖∈𝐈
{𝑖} ×𝐀𝑖 . (95)

Also here there is no restriction on the size of 𝐈. Note that for the unordered
version of the sum of sets we have not needed to switch to using functions – the
union of sets is already an “unordered” operation. In the definition of𝐀1+…+𝐀𝑛,
the ordering came solely from the ordinals in the index set {1, …, 𝑛}.
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3.5. The categorical perspective
A central theme in this book is to study how various mathematical structures
compose. For instance, what are general patterns of how functions and sets relate
to one another via composition?
In time, we will see that many features that sets and functions exhibit can be
broadly generalized to other kinds of mathematical entities.

Structuralism

One guiding philosophy for creating and understanding such generalizations
is to formulate properties of functions in a way that only uses their “external
compositional aspects” and does not rely on the fact that we are dealing with sets,
which have elements, and so we can “look inside them”. We call this philosophy
“structuralism" because
This likely sounds very vague at the moment. Let us illustrate with some exam-
ples.

Example 3.30. Consider the property that a function may (or may not) have
of being bijective. According to Exercise 7, a function 𝑓∶ 𝐀 → 𝐁 is bijective
if and only if it is an isomorphism. The latter means, by definition, that there
exists 𝑔∶ 𝐁 → 𝐀 such that 𝑓 # 𝑔 = id𝐀 and 𝑔 # 𝑓 = id𝐁. The point is that the
equations in the definition of “isomorphism” only make use of the operation of
function composition, the notion of quality, and the existence of special identity
functions. There is no mention of elements of sets, as there is in the definition of
“bijective”.

Example 3.31. The notion of “subset” is traditionally defined, as we did above,
by saying that 𝐀 ⊆ 𝐁 if and only if ∀ 𝑥 ∈ 𝐀:

𝑥 ∈ 𝐀
.

𝑥 ∈ 𝐁 (96)

There are, however, alternatives that do not refer to “elements”. To see one way,
consider the set 𝟐 = {0, 1}. Any function 𝑓∶ 𝐁→ 𝟐 defines a subset

𝐀𝑓 = {𝑦 ∈ 𝐁 ∣ 𝑓(𝑦) = 1} ⊆ 𝐁. (97)

Conversely, any subset 𝐀 ⊆ 𝐁 defines a function 𝑓𝐀 ∶ 𝐁→ 𝟐 by setting

𝑓𝐀(𝑦) = {
1 if 𝑦 ∈ 𝐀,
0 elsewhere.

(98)

It can be checked that this defines a 1-to-1 correspondence between functions𝐁→
𝟐 and subsets of 𝐁. In other words, there is a bijection between the set 𝟐𝐁 and
the set 𝖯𝗈𝗐𝐁. So, instead of using a definition of subset that involves elements of
sets, we could work with functions 𝐁→ 𝟐.

Graded exercise B.3 (SubsetsAsFunctions)
Let 𝐁 be any set. Prove that 𝟐𝐁 ≃ 𝖯𝗈𝗐𝐁.

Example 3.32. Even the notions of “element of a set” and “evaluation of a
function at an element" can be described purely in terms of functions and their
composition, without needing to “look inside” of the sets involved.
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50 3. Sets and functions

To show how this works, let us first define 𝟏 ∶= {∙}, a singleton set whose only
element is the symbol “∙” (any singleton set would do; for concreteness we are
fixing one and calling it 𝟏).
Now we are ready to make an interesting observation: functions 𝟏 → 𝐀 are in
1-to-1 correspondence with the elements of 𝐀. A function 𝑓∶ 𝟏→ 𝐀 will have to
map “∙” to some element 𝑓(∙) ∈ 𝐀, and since 𝟏 has no other elements, that is all
that 𝑓 does. So 𝑓 “picks out” an element of𝐀. We can work with functions 𝟏→ 𝐀
in place of elements of 𝐀.
Next, let’s talk about function evaluation. Consider a function 𝑔∶ 𝐀→ 𝐁. Given
an element 𝑥 ∈ 𝐀, this element will be mapped by 𝑔 to an element 𝑔(𝑥) ∈ 𝐁.
If we use, instead of 𝑥 ∈ 𝐀, the function 𝑓∶ 𝟏 → 𝐀 to which it corresponds,
then the element 𝑔(𝑥) ∈ 𝐁 corresponds to the function 𝑓 # 𝑔∶ 𝟏 → 𝐁. In other
words, we can talk about evaluation of a function 𝑔∶ 𝐀→ 𝐁 “at an element of𝐀”
without actually using elements, but rather just using functions and function
composition.

Diagrams
Another typical characteristic of “category theory culture” is to often use various
kinds of diagrams.
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3.6. Arithmetic with sets
In our notation for cartesian product, disjoint union, and function sets we have
used notation inspired by basic operations in arithmetic, motivated in part by the
following formulas for sizes of finite sets:

𝖼𝖺𝗋𝖽(𝐀 × 𝐁) = 𝖼𝖺𝗋𝖽(𝐀) ⋅ 𝖼𝖺𝗋𝖽(𝐁), (99)
𝖼𝖺𝗋𝖽(𝐀+ 𝐁) = 𝖼𝖺𝗋𝖽(𝐀) + 𝖼𝖺𝗋𝖽(𝐁), (100)

𝖼𝖺𝗋𝖽(𝐁𝐀) = 𝖼𝖺𝗋𝖽(𝐁)𝖼𝖺𝗋𝖽(𝐀). (101)

The parallels of these operations to operations in arithmetic go further. For
example, consider the following identities which hold for any natural numbers
𝑥, 𝑦, 𝑧:

𝑥 ⋅ 𝑦 = 𝑦 ⋅ 𝑥, (102)
𝑥 + 𝑦 = 𝑦 + 𝑥, (103)

𝑥 ⋅ (𝑦 ⋅ 𝑧) = (𝑥 ⋅ 𝑦) ⋅ 𝑧, (104)
𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧; (105)

𝑧𝑥⋅𝑦 = (𝑧𝑦)𝑥, 𝑧𝑥⋅𝑦 = (𝑧𝑥)𝑦 , (106)
(𝑥 ⋅ 𝑦)𝑧 = 𝑥𝑧 ⋅ 𝑦𝑧, (107)

𝑥(𝑦+𝑧) = 𝑥𝑦 ⋅ 𝑥𝑧, (108)

(𝑥 + 𝑦)𝑧 =
𝑧∑

𝑘=0

(𝑧
𝑘
)
𝑥𝑘 ⋅ 𝑦𝑧−𝑘; (109)

1 ⋅ 𝑥 = 𝑥, (110)
0 + 𝑥 = 𝑥, (111)
𝑥1 = 𝑥, (112)
𝑥0 = 1, (113)
1𝑥 = 1, (114)
0𝑥 = 0; (115)

(𝑥 ⋅ 𝑦) + (𝑥 ⋅ 𝑧) = 𝑥 ⋅ (𝑦 + 𝑧), (116)
0 ⋅ 𝑥 = 0; (117)

These identities also hold on the level of sets, before computing their size; we
simply need to replace “=” with the symbol “≃” for “isomorphic”:

𝐀 × 𝐁 ≃ 𝐁 ×𝐀, (118)
𝐀+ 𝐁 ≃ 𝐀+ 𝐁, (119)

(𝐀 × 𝐁) × 𝐂 ≃ 𝐀 × (𝐁 × 𝐂), (120)
(𝐀+ 𝐁)+ 𝐂 ≃ 𝐀+ (𝐁+ 𝐂); (121)

𝐂𝐀×𝐁 ≃
(
𝐂𝐁

)𝐀
, 𝐂𝐀×𝐁 ≃

(
𝐂𝐀

)𝐁
, (122)

(𝐀 × 𝐁)𝐂 ≃ 𝐀𝐂 × 𝐁𝐂, (123)

𝐀𝐁+𝐂 ≃ 𝐀𝐁 ×𝐀𝐂, (124)
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(𝐀+ 𝐁)𝐂 ≃
∑

𝐒∈𝖯𝗈𝗐𝐂
𝐀𝐒 × 𝐁𝐂∖𝐒; (125)

𝟏 ×𝐀 ≃ 𝐀, (126)
∅ +𝐀 ≃ 𝐀 (127)

𝐀𝟏 ≃ 𝐀 (128)

𝐀∅ ≃ 𝟏 (129)

𝟏𝐀 ≃ 𝟏 (130)

∅𝐀 = ∅; (131)

(𝐀 × 𝐁)+ (𝐀 × 𝐂) ≃ 𝐀 × (𝐁+ 𝐂), (132)
∅ ×𝐀 = ∅. (133)

We can say even more: not only do we have the above statements about certain
sets being isomorphic, but in fact in each case there exists a particular, special
isomorphism which mathematicians might call "natural" or "canonical". These
terms are often used in an informal way to describe situations where some math-
ematical structure, such as a certain function, exists without the need for any
particular “extra” or “ad hoc” choices to be made. Often this situation involves a
family of cases, and a “canonical choice” is one which is possible to construct
for all cases at once, without reference to the details of any particular case. We’ll
illustrate this idea by describing a canonical isomorphism for each of the “equa-
tions” above. We do this also because we will use many of these isomorphisms
over and over again, and hence it makes sense to get to know them and give them
names.

Commutativity

The equations 𝑥 ⋅ 𝑦 = 𝑦 ⋅𝑥 and 𝑥+ 𝑦 = 𝑦+𝑥 describe the commutativity property
of multiplication and of addition, respectively.
Let us look at the corresponding relationship on the level of sets, for the case of
multiplication:

𝐀 × 𝐁 ≃ 𝐁 ×𝐀. (134)

The canonical isomorphism in this case, which gives proof for this relationship,
is

𝖻𝗋 ∶ 𝐀 × 𝐁 → 𝐁 ×𝐀,
⟨𝑥, 𝑦⟩ ↦ ⟨𝑦, 𝑥⟩.

(135)

The name 𝖻𝗋 is short for "braiding".
This function is "canonical" because, once again, it’s "shape" or "recipe" works for
any two sets 𝐀 and 𝐁. To explicate this in more detail, consider, for example, the
particular sets 𝐀 = {0, 1, 2} and 𝐁 = {⋆, †}. Then, besides the canonical function
𝖻𝗋 ∶ 𝐀×𝐁→ 𝐁×𝐀, there are also other (non-canonical) isomorphisms possible,
such as for instance the function 𝐀 × 𝐁→ 𝐁 ×𝐀 which maps like this:

⟨0, ⋆⟩↦ ⟨⋆, 1⟩ (136)
⟨1, ⋆⟩↦ ⟨⋆, 2⟩ (137)
⟨2, ⋆⟩↦ ⟨⋆, 3⟩ (138)
⟨0, †⟩↦ ⟨†, 1⟩ (139)
⟨1, †⟩↦ ⟨†, 2⟩ (140)
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⟨2, †⟩↦ ⟨†, 3⟩. (141)

It may be written more compactly by the recipe “⟨𝑥, 𝑦⟩ ↦ ⟨𝑦, 𝑥 + 1mod 3⟩".
However, this recipe still depends on specific features of the set 𝐀 and would not
work for any two arbitrary sets (namely, it uses the fact that the elements of 𝐀 in
this example are integers for which the operation “mod 3” makes sense). Thus
this function is not “canonical" (while 𝖻𝗋 is).
The above discussion of commutativity regardsmultiplication. A similar situation
holds for addition, with the statement𝐀+𝐁 ≃ 𝐁+𝐀 as the analogue, on the level
of sets, of the commutativity property for the operation of addition for natural
numbers. For this relationship there is also proof via a canonical isomorphism.
We use the name 𝖻𝗋 for this canonical isomorphism, too.

Exercise8. Can you guess the canonical isomorphism 𝖻𝗋 ∶ 𝐁 + 𝐀 → 𝐀 + 𝐁?
Prove that your guess is indeed an isomorphism.

See solution on page 81.

Associativity

The equations 𝑥 ⋅ (𝑦 ⋅ 𝑧) = (𝑥 ⋅ 𝑦) ⋅ 𝑧 and 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧 describe,
respectively, the associativity property of multiplication and addition of natural
numbers. Correspondingly, there are canonical isomorphisms

𝖺𝗌∶ (𝐀 × 𝐁) × 𝐂→ 𝐀 × (𝐁 × 𝐂) (142)

and
𝖺𝗌∶ (𝐀+ 𝐁)+ 𝐂→ 𝐀+ (𝐁+ 𝐂) (143)

(which we both call by the same name). For the case of the cartesian product, the
isomorphism 𝖺𝗌 is

𝖺𝗌∶ (𝐀 × 𝐁) × 𝐂 → 𝐀 × (𝐁 × 𝐂),
⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↦ ⟨𝑥, ⟨𝑦, 𝑧⟩⟩.

(144)

Exercise9. Guess how 𝖺𝗌 is defined for the sum (disjoint union) of sets, and check
that your guess is indeed an isomorphism.

See solution on page 81.

Singletons are like the number one

In - 2 we defined the singleton set 𝟏 = {∙} in order to have – for practical reasons
of exposition and readability – a “standard, go-to, default one-element set”. This
set (and any other singleton set) behaves like the natural number “1” in the sense
that

𝟏 ×𝐀 ≃ 𝐀 and 𝐀 × 𝟏 ≃ 𝐀 (145)

is true for any set 𝐀. In each case there is also a canonical isomorphism, one
which does not involve any ad hoc choices:

𝗅𝗎∶ 𝟏 ×𝐀 → 𝐀,
⟨∙, 𝑥⟩ ↦ 𝑥,

(146)

and
𝗋𝗎∶ 𝐀 × 𝟏 → 𝐀,

⟨𝑥, ∙⟩ ↦ 𝑥.
(147)

The names 𝗅𝗎 and 𝗋𝗎 stand for left unitor and right unitor, respectively.
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These functions are canonical because their "shape" or "recipe" does not depend
on the particular set 𝐀 involved; the recipe is simply “forget about the element
∙". It is in this sense that it works for "all cases at once" and does not depend on
any extra or ad hoc choices.

The empty set is like the number zero

Analogous to the equations 0 + 𝑥 = 𝑥 and 𝑥 + 0 = 𝑥, we have

∅+𝐀 ≃ 𝐀 and 𝐀+ ∅ ≃ 𝐀. (148)

And here again we have canonical isomorphisms

𝗅𝗎∶ ∅+𝐀 → 𝐀,
⟨2, 𝑥⟩ ↦ 𝑥,

(149)

and
𝗋𝗎∶ 𝐀+ ∅ → 𝐀,

⟨1, 𝑥⟩ ↦ 𝑥.
(150)

which we also call left unitor and right unitor, respectively.

Functions out of products

Next we look at the equations 𝑧𝑥⋅𝑦 = (𝑧𝑦)𝑥 and 𝑧𝑥⋅𝑦 = (𝑧𝑥)𝑦 , and the respective
corresponding relationships

𝐂𝐀×𝐁 ≃
(
𝐂𝐁

)𝐀
(151)

and
𝐂𝐀×𝐁 ≃

(
𝐂𝐀

)𝐁
. (152)

We’ll only treat the first relationship (151) in detail, since the latter is analogous,
except that certain roles are swapped.
What might be a canonical isomorphism proving (151)? The elements of the set
𝐂𝐀×𝐁 are functions of two variables, of the type

𝑓∶ 𝐀 × 𝐁→ 𝐂, (153)

while elements of the set
(
𝐂𝐁

)𝐀
are functions of the type

𝑔∶ 𝐀→ 𝐂𝐁; (154)

in other words, functions of a single variable but which evaluate, for each input,
to a function of the type 𝐁→ 𝐂. A canonical way to turn a function of the type
(153) into a function of the type (154) is by “partial evaluation”: if we think of 𝑓
as having two input slots, we can partially evaluate 𝑓 by inserting an element of
𝐀 into the first slot of 𝑓, while leaving the second slot “open” or “variable”. In
other words, for any element 𝑥 ∈ 𝐀, we can create, from 𝑓, the function

𝑓(𝑥,−)∶ 𝐁 → 𝐂,
𝑦 ↦ 𝑓(𝑥, 𝑦).

(155)
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Figure 11.: Haskell Curry (1900-1982)

But since we can do this for any 𝑥 ∈ 𝐀, we have also just described a function

𝐀 → 𝐂𝐁,
𝑥 ↦ 𝑓(𝑥,−),

(156)

or, in other words, an element of
(
𝐂𝐁

)𝐀
. Since this recipe works for any function

𝑓∶ 𝐀 × 𝐁→ 𝐂, we also now have the following function

𝖼𝗎∶ 𝐂𝐀×𝐁 →
(
𝐂𝐁

)𝐀
,

𝑓 ↦ (𝑥 ↦ 𝑓(𝑥,−)),
(157)

whichwe call 𝖼𝗎. This function has the desired type to be an isomorphism proving

that 𝐂𝐀×𝐁 ≃
(
𝐂𝐁

)𝐀
.

Exercise10. Prove that 𝖼𝗎∶ 𝐂𝐀×𝐁 →
(
𝐂𝐁

)𝐀
is an isomorphism.

See solution on page 81.
The name “𝖼𝗎” stands for “Curry”, which is the last name of the mathematician
and logician Haskell Curry (Fig. 11) who did not discover this operation, but likely
made it well-known. It is after his first name that the functional programming
language Haskell is named.
The operation given by the function (157) is often called “currying”. When needed
for clarity, we call this operation right currying, in order to distinguish it from the
analogous operation of left currying given by the function

𝖼𝗎∶ 𝐂𝐀×𝐁 →
(
𝐂𝐀

)𝐁
,

𝑓 ↦ (𝑦 ↦ 𝑓(−, 𝑦)).
(158)

We denote the functions (157) and (157) both by the same name “𝖼𝗎” because we
trust that it will be clear from context which of the two functions is being used in
any given situation.

Functions into products

Now let’s consider the analogue of the equation

(𝑥 ⋅ 𝑦)𝑧 = 𝑥𝑧 ⋅ 𝑦𝑧 (159)

for natural numbers, namely

(𝐀 × 𝐁)𝐂 ≃ 𝐀𝐂 × 𝐁𝐂. (160)

In oder to describe a canonical isomorphismwhich is a proof of this statement, we
make an important observation about the cartesian product of sets. Namely, for
any sets 𝐀 and 𝐁, we always have two “projection functions” from the cartesian
product 𝐀 × 𝐁 to 𝐀 and 𝐁, respectively. These are defined, respectively, by

𝗉𝗋1 ∶ 𝐀 × 𝐁 → 𝐀,
⟨𝑥, 𝑦⟩ ↦ 𝑥,

(161)

and
𝗉𝗋2 ∶ 𝐀 × 𝐁 → 𝐁,

⟨𝑥, 𝑦⟩ ↦ 𝑦,
(162)
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and are called the canonical projections associated to the cartesian product.
With the help of these projections, we define a canonical isomorphism

𝑓∶ (𝐀 × 𝐁)𝐂 → 𝐀𝐂 × 𝐁𝐂,
𝜙 ↦

⟨
𝜙 # 𝗉𝗋1, 𝜙 # 𝗉𝗋2

⟩
.

(163)

Illustrated diagrammatically, what 𝑓 does is, given a function

𝐂

𝐀 × 𝐁
𝜙 (164)

it maps it to the pair of functions 𝜙 # 𝗉𝗋1 and 𝜙 # 𝗉𝗋2

𝐂

𝐀 𝐀 × 𝐁 𝐁

𝜙 # 𝗉𝗋1 𝜙
𝜙 # 𝗉𝗋2

𝗉𝗋1 𝗉𝗋2

(165)

obtained by post-composing 𝜙 with the projections 𝗉𝗋1 and 𝗉𝗋2, respectively.
The inverse to 𝑓 is the function 𝑔∶ 𝐀𝐂 × 𝐁𝐂 → (𝐀 × 𝐁)𝐂 which takes a pair of
functions ⟨𝜓1, 𝜓2⟩ ∈ 𝐀𝐂 × 𝐁𝐂 and maps it to the element of (𝐀 × 𝐁)𝐂 which is
the function

𝐂 → 𝐀 × 𝐁,
𝑧 ↦ ⟨𝜓1(𝑧), 𝜓2(𝑧)⟩.

(166)

Graded exercise B.4 (CanIsoFunctionsIntoProducts)
Check that f and g are indeed mutually inverse.

Functions out of sums

Here we consider the equation

𝑥(𝑦+𝑧) = 𝑥𝑦 ⋅ 𝑥𝑧 (167)

and it’s analogue on the level of sets,

𝐀𝐁+𝐂 ≃ 𝐀𝐁 ×𝐀𝐂. (168)

Similar to the observation that cartesian products come along with canonical pro-
jection functions, we make the observation here that sums of sets come equipped
with canonical inclusion functions

𝗂𝗇1 ∶ 𝐁 → 𝐁+ 𝐂
𝑦 ↦ ⟨1, 𝑦⟩,

(169)

and
𝗂𝗇2 ∶ 𝐂 → 𝐁+ 𝐂,

𝑧 ↦ ⟨2, 𝑧⟩.
(170)
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Using these, we construct the following canonical isomorphism:

𝑓∶ 𝐀𝐁+𝐂 → 𝐀𝐁 ×𝐀𝐂,
𝜙 ↦ ⟨𝗂𝗇1 # 𝜙, 𝗂𝗇2 # 𝜙⟩.

(171)

Illustrated diagrammatically, 𝑓 takes any function

𝐀

𝐁+ 𝐂
𝜙 (172)

it maps it to the pair of functions 𝗂𝗇1 # 𝜙 and 𝗂𝗇2 # 𝜙

𝐂

𝐁 𝐁+ 𝐂 𝐂

𝗂𝗇1 # 𝜙

𝗂𝗇1

𝜙

𝗂𝗇2

𝗂𝗇2 # 𝜙 (173)

obtained by pre-composing 𝜙 with the inclusions 𝗂𝗇1 and 𝗂𝗇2, respectively.
The inverse to 𝑓 is the function 𝑔∶ 𝐀𝐁 × 𝐀𝐂 → 𝐀𝐁+𝐂 which maps any pair of
functions ⟨𝜓1, 𝜓2⟩ ∈ 𝐀𝐁 ×𝐀𝐂 to the element of 𝐀𝐁+𝐂 given by the function

𝐁+ 𝐂 → 𝐀,

𝑢 ↦ {
𝜓1(𝑦) if 𝑢 = ⟨1, 𝑦⟩ for some 𝑦 ∈ 𝐁,
𝜓2(𝑧) if 𝑢 = ⟨2, 𝑧⟩ for some 𝑧 ∈ 𝐂.

(174)

Graded exercise B.5 (CanIsoFunctionsOutOfSums)
Check that f and g are indeed mutually inverse.

Functions into sums

The equation

(𝑥 + 𝑦)𝑧 =
𝑧∑

𝑘=0

(𝑧
𝑘
)
𝑥𝑘 ⋅ 𝑦𝑧−𝑘 (175)

is known as the binomial theorem, and the numbers
(𝑧
𝑘
)
= 𝑧!
(𝑧 − 𝑘)! 𝑘!

(176)

are called the binomial coefficients. On the level of sets and functions, the bino-
mial theorem is analogous to the statement

(𝐀+ 𝐁)𝐂 ≃
∑

𝐒∈𝖯𝗈𝗐𝐂
𝐀𝐒 × 𝐁𝐂∖𝐒. (177)

The binomial coefficients are related to combinatorics; the number
(𝑧
𝑘
)

(178)

describes the number of different ways that one may choose a 𝑘-element subset
out of a fixed 𝑧-element set. Using this connection as a guide, we can re-write
the right-hand side of our statement about sets and functions into a form that is
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58 3. Sets and functions

closer to the right-hand side of the binomial theorem:

∑

𝐒∈𝖯𝗈𝗐𝐂
𝐀𝐒 × 𝐁𝐂∖𝐒 ≃

|𝐂|∑

𝑘=0

∑

𝐒∈𝖯𝗈𝗐𝐂
|𝐒|=𝑘

𝐀𝐒 × 𝐁𝐂∖𝐒. (179)

Now, on the right-hand side, for each fixed 𝑘, the cardinality of the set
∑

𝐒∈𝖯𝗈𝗐𝐂
|𝐒|=𝑘

𝐀𝐒 × 𝐁𝐂∖𝐒 (180)

is precisely (𝑧
𝑘
)
𝑥𝑘 ⋅ 𝑦𝑧−𝑘, (181)

with 𝑧 = |𝐂|.
Next, let’s show that there is a canonical isomorphism

𝑓∶ (𝐀+ 𝐁)𝐂 →
∑

𝐒∈𝖯𝗈𝗐𝐂
𝐀𝐒 × 𝐁𝐂∖𝐒. (182)

Unpacking the definition of unordered sums of sets, the target set of this function
is ⋃

𝐒∈𝖯𝗈𝗐𝐂
{𝐒} × (𝐀𝐒 × 𝐁𝐂∖𝐒) (183)

To define 𝑓, we begin by choosing an arbitrary 𝜙 ∈ (𝐀+𝐁)𝐂; that is, a function

𝜙∶ 𝐂→ 𝐀+ 𝐁. (184)

Because 𝐀+ 𝐁 is the disjoint union of {1} ×𝐀 and {2} × 𝐁, their respective pre-
images under 𝜙 have empty intersection, and their union is all of 𝐂. In other
words, if we set

𝐓 ∶= 𝜙−1({1} ×𝐀), (185)

then
𝜙−1({2} × 𝐁) = 𝐂∖𝐓. (186)

The image 𝑓(𝜙) should be an element of {𝐒} × (𝐀𝐒 × 𝐁𝐂∖𝐒) for some 𝐒 ∈ 𝖯𝗈𝗐𝐂.
We will choose 𝐒 = 𝐓. What remains for us to do, then, is to define an element
of 𝐀𝐓 and an element of 𝐁𝐂∖𝐓, using 𝜙. To obtain an element of 𝐀𝐓, we use the
composite

𝐓
𝜙|𝐓→ {1} ×𝐀→ 𝐀, (187)

and to obtain an element of 𝐁𝐂∖𝐓, we use

𝐂∖𝐓
𝜙|𝐂∖𝐓
→ {2} × 𝐁→ 𝐁. (188)

The intuition behind this definition of 𝑓 is that any function 𝜙∶ 𝐂 → 𝐀 + 𝐁
essentially amounts to two functions “glued together”: one, 𝜙|𝐓, which accounts
for all the elements of 𝐂 that are mapped by 𝜙 to {1} × 𝐀, and another, 𝜙|𝐂∖𝐓,
which accounts for all the elements of 𝐂 that are mapped by 𝜙 to {2} × 𝐁.
This intuition can also help us define an inverse

𝑔∶
∑

𝐒∈𝖯𝗈𝗐𝐂
𝐀𝐒 × 𝐁𝐂∖𝐒 → (𝐀+ 𝐁)𝐂 (189)
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to 𝑓. For this, fix an 𝐒 ∈ 𝖯𝗈𝗐𝐂. Given an element

⟨𝐒, 𝜓1, 𝜓2⟩ ∈ {𝐒} × (𝐀𝐒 × 𝐁𝐂∖𝐒), (190)

we define 𝑔(⟨𝐒, 𝜓1, 𝜓2⟩) to be the function

𝐂 → 𝐀+ 𝐁

𝑧 ↦ { ⟨
1, 𝜓1(𝑧)⟩ if 𝑧 ∈ 𝐒,
⟨2, 𝜓2(𝑧)⟩ if 𝑧 ∈ 𝐂∖𝐒.

(191)

Roughly speaking, 𝑔(⟨𝐒, 𝜓1, 𝜓2⟩)∶ 𝐂→ 𝐀+ 𝐁 is just the “gluing together" of 𝜓1
and 𝜓2.

Graded exercise B.6 (CanIsoFunctionsIntoSums)
Check that f and g are indeed mutually inverse.

Distributivity
The statement

(𝐀 × 𝐁)+ (𝐀 × 𝐂) ≃ 𝐀 × (𝐁+ 𝐂). (192)

is analogous to the distributivity property of multiplication and addition of num-
bers:

(𝑥 ⋅ 𝑦) + (𝑥 ⋅ 𝑧) = 𝑥 ⋅ (𝑦 + 𝑧). (193)

Exercise11. Guess the canonical isomorphism 𝖽𝗂∶ (𝐀×𝐁)+(𝐀×𝐂)→ 𝐀×(𝐁+𝐂)
and verify that it is indeed an isomorphism.

See solution on page 81.

The empty set is (again) like the number zero
The relationship

∅ ×𝐀 = ∅, (194)

which holds for any set 𝐀, is analogous to the equation

0 ⋅ 𝑥 = 𝑥 (195)

for any natural number 𝑥. (And also 𝐀 × ∅ = ∅, just as 𝑥 ⋅ 0 = 0.)
These equations follows from Def. 3.7 (or from the formulation given in Re-
mark 3.9).
That this relationship is an equality – and not merely an isomorphism like all the
other “arithmetic relationships” between sets that wewill address – has to do with
the fact that there exists only one unique set having the cardinality zero, namely
the empty, while for any non-zero natural number 𝑥, there exist infinitely-many
sets having the cardinality 𝑥.
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62 4. Relations

4.1. Distribution networks
Consider the type of networks that arise for example in the context of electrical
power grids. In a simplified model for a certain region or country, we may have
the following kinds of components: power plants (places where electrical power
is produced), high voltage transmission lines and nodes, transformers stations,
low voltage transmission lines and nodes, and consumers, such as homes and
businesses. The situation is depicted in Fig. 1.
To model the connectivity between the components of the power grid, we now
draw arrows between components that are connected. We set the direction of the
arrows to flow from energy production, via transmission components, to energy
consumption, as depicted in Fig. 2.
A possible question one asks about such a power distribution network is: which
consumers are serviced by which power sources? For example, power sources
such as a solar power plant may fluctuate due to weather conditions, while other
power sources, such as a nuclear power plant, may shut down every once in
a while due to maintenance work. To see which consumers are connected to
which power plants, we can follow “connectivity paths” traced by sequences of
arrows, as in Fig. 3. There, two possible connectivity paths are depicted (in red
and orange, respectively).
We also will want to know the overall connectivity structure of transmission lines.
For example, some lines may go down during a storm, and we want to ensure
enough redundancy in our system. In addition to the connections modeled in
Fig. 2, we can also include, for example, information about the connectivity of
high voltage nodes among themselves, as in Fig. 4.
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Power Plants High Voltage Nodes Low Voltage Nodes Consumers
Plant 1 HVN 1 LVN 1 C1

HVN 2 LVN 2 C2
Plant 2 HVN 3 LVN 3 C3

HVN 4 LVN 4 C4
Plant 3 HVN 5 LVN 5 C5

LVN 6 C6
LVN 7

Figure 1.: Components of electrical power grids.

Power Plants High Voltage Nodes Low Voltage Nodes Consumers
Plant 1 HVN 1 LVN 1 C1

HVN 2 LVN 2 C2
Plant 2 HVN 3 LVN 3 C3

HVN 4 LVN 4 C4
Plant 3 HVN 5 LVN 5 C5

LVN 6 C6
LVN 7

⋮

⋮

Figure 2.: Connectivity between components in electric power grids.

Power Plants High Voltage Nodes Low Voltage Nodes Consumers
Plant 1 HVN 1 LVN 1 C1

HVN 2 LVN 2 C2
Plant 2 HVN 3 LVN 3 C3

HVN 4 LVN 4 C4
Plant 3 HVN 5 LVN 5 C5

LVN 6 C6
LVN 7

⋮

⋮

Figure 3.: Connection between consumers and power plants.

High Voltage Nodes High Voltage Nodes

HVN 1 HVN 1

HVN 2 HVN 2
HVN 3 HVN 3

HVN 4 HVN 4

HVN 5 HVN 5

Figure 4.: Connectivity between high voltage nodes.
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64 4. Relations

Figure 5.: Alternative visualization for connectiv-
ity.

Figure 6.: A schematic view of a power grid.

The information encoded in Fig. 4 and Fig. 2 can also be displayed as a single
graph, see Figs. 4 and 5.
If we ignore the directionality of the arrows, this is analogous to a depiction of
type shown in Fig. 6, which is a schema of a power grid [2]*.

* See https://en.wikipedia.org/wiki/Electrical_grid
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𝑅
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Figure 8.: Relations visualized in “coordinate sys-
tems”.

4.2. Relations
A basic mathematical notion which underlies the above discussion is that of a
binary relation.

Definition 4.1 (Binary relation)
A binary relation 𝑅 from a set 𝐀 to a set 𝐁 is a subset of the cartesian
product 𝐀 × 𝐁:

𝑅 ⊆ 𝐀 × 𝐁. (1)

We will often drop the word “binary” and simply use the name “relation”.
We also write

𝑅∶ 𝐀→ 𝐁 (2)

to indicate a relation from 𝐀 to 𝐁. (𝐀 is the source, and 𝐁 is the target).

Example 4.2. Let 𝐀 = { , , } and 𝐁 = { , , , }. An example of a
relation is the subset

𝑅 = {
⟨

,
⟩
,
⟨

,
⟩
,
⟨

,
⟩
} ⊆ 𝐀 × 𝐁. (3)

If 𝐀 and 𝐁 are finite sets, we can depict a relation 𝑅∶ 𝐀 → 𝐁 graphically as in
Fig. 7. For each element ⟨𝑥, 𝑦⟩ ∈ 𝐀×𝐁, we draw an arrow from 𝑥 to 𝑦 if and only
if ⟨𝑥, 𝑦⟩ ∈ 𝑅.
We can also depict this relation graphically as a subset of 𝐀 × 𝐁 in a “coordinate
system way”, as in Fig. 8.
The shaded area is the subset 𝑅 defining the relation.

Remark 4.3 (Notation for relations). From now on we will also use the following
notation, where we write

𝑥𝑅𝑦 ∶= ⟨𝑥, 𝑦⟩ ∈ 𝑅 (4)

instead of writing ⟨𝑥, 𝑦⟩ ∈ 𝑅.

Exercise12. Given an arbitrary set 𝐁, does there always exist a relation ∅→ 𝐁?
See solution on page 81.

Exercise13. Given an arbitrary set 𝐀, does there always exist a relation 𝐀→ ∅?
See solution on page 81.

Graded exercise B.7 (VisualizeLeqRelation)
Let 𝐀 = 𝐁 = {1, 2, 3, 4} and consider the relation 𝑅∶ 𝐀→ 𝐁 defined by

𝑅 = {⟨𝑥, 𝑦⟩ ∈ 𝐀 × 𝐁 ∣ 𝑥 ≤ 𝑦}. (5)

Visualize the relation 𝑅 via the method in Fig. 7 and Fig. 8 each.
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4.3. Composing relations
The visualization in Fig. 7 hints at the fact that we can compose relations if the
target of the one is the source of the other.
To illustrate composition of relations, consider a simple example, involving sets𝐀,𝐁,
and 𝐂, and relations 𝑅∶ 𝐀→ 𝐁 and 𝑆∶ 𝐁→ 𝐂, as depicted graphically below in
Fig. 9a.

Figure 9.: Illustrations for relations composition.

𝑅 𝑆

(a) Relations compatible for composition.

𝑅 # 𝑆

(b) Composition of relations.

The composite relation 𝑅 # 𝑆∶ 𝐀→ 𝐂 is defined to be such that 𝑥 (𝑅 # 𝑆)𝑧 if and
only if there exists some 𝑦 ∈ 𝐁 such that 𝑥𝑅𝑦 and 𝑦𝑆𝑧. Graphically this means
that for ⟨𝑥, 𝑧⟩ to be an element of the relation 𝑅 # 𝑆, the elements 𝑥 and 𝑧 need to
be connected by at least one sequence of two arrows such that the target of the
first arrow is the source of the second.
For example, in Fig. 9a, there is an arrow from to , and from there on to ,
and therefore, in the composition 𝑅 # 𝑆 depicted in Fig. 9b, there is an arrow
from to .

Definition 4.4 (Relation composition)
Given relations 𝑅∶ 𝐀→ 𝐁, 𝑆∶ 𝐁→ 𝐂, their composition is the relation

𝑅 # 𝑆 ∶= {⟨𝑥, 𝑧⟩ ∈ 𝐀 × 𝐂 ∣ ∃𝑦 ∈ 𝐁∶ (𝑥𝑅𝑦) ∧ (𝑦𝑆𝑧)}. (6)

Graded exercise B.8 (ComposingRelations)

1. Let 𝐀 = ℕ, 𝐁 = ℤ, and 𝐂 = ℝ. Consider the relation 𝑓∶ 𝐀→ 𝐁 with

𝑓 = {⟨𝑥, 𝑦⟩ ∈ ℕ ×ℤ ∣ 𝑥 = 𝑦2}, (7)
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and consider the relation 𝑔∶ 𝐁→ 𝐂 with

𝑔 = {⟨𝑦, 𝑧⟩ ∈ ℤ ×ℝ ∣ 𝑦 = 2𝑧}. (8)

Calculate the relation 𝑓 # 𝑔∶ 𝐀→ 𝐁.
2. Let𝐀 = ℕ, 𝐁 = ℤ×ℤ, and 𝐂 = ℝ. Consider the relation 𝑓∶ 𝐀→ 𝐁with

𝑓 = {⟨𝑥, ⟨𝑦1, 𝑦2⟩⟩ ∈ ℕ × (ℤ ×ℤ) ∣ 𝑥 = 𝑦1 − 𝑦2} (9)

and consider the relation 𝑔∶ 𝐁→ 𝐂 with

𝑔 = {⟨⟨𝑦1, 𝑦2⟩, 𝑧⟩ ∈ (ℤ ×ℤ) ×ℝ ∣ 𝑦2𝑧 = 𝑦1}. (10)

Calculate the relation 𝑓 # 𝑔∶ 𝐀→ 𝐁.
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𝑅

Figure 10.: Visualization of the function (13).
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Figure 11.: The graph of the function (13).

4.4. Relations and functions
Every function between sets can be thought as a relation: this was the basis of
our formal definition of function, Def. 3.15. Let us restate that definition once
again here, using notation that we have developed since.

Definition 4.5 (Function as a special type of relation)
Let 𝐀 and 𝐁 be sets. A relation 𝑅 ⊆ 𝐀 × 𝐁 is a function if it satisfies the
following two conditions:
1. for all 𝑥 ∈ 𝐀 there exists an element 𝑦 ∈ 𝐁 such that 𝑥𝑅𝑦;
2. for all 𝑥, 𝑦1, 𝑦2, this holds:

𝑥𝑅𝑦1 𝑥𝑅𝑦2 .
𝑦1 = 𝑦2 (11)

Although we will mostly continue to think about functions in the “usual” way (as
opposed to the perspective of Def. 4.5), it is illuminating – both for understanding
relations and functions – to study the relationships between the two points of
view.

From functions to relations

Recall how to go from viewing a function in the “usual” way to viewing it as a
relation, as in Def. 4.5.
As an illustration, consider the sets 𝐀 = { , , } and 𝐁 = { , , , }, and
the function 𝑓∶ 𝐀→ 𝐁 defined (in the “usual” way) by

𝑓( ) = , 𝑓( ) = , 𝑓( ) = . (12)

This way of specifying the function 𝑓 may be depicted graphically as in Fig. 10.
The relation that this function defines, in the sense of Def. 4.5, is

{⟨ , ⟩, ⟨ , ⟩, ⟨ , ⟩} ⊆ 𝐀 × 𝐁. (13)

This relation (13) is what is often called the graph of 𝑓. That is, it is the set of
tuples in 𝐀 × 𝐁 which are a pairing of an element of the source set 𝐀 with the
element which is its image under 𝑓. In Fig. 11, the graph of (13) is visualized by
highlighting the elements of the graph among all the elements of 𝐀 × 𝐁.
In general, any function 𝑓∶ 𝐀→ 𝐁 corresponds to the relation

{⟨𝑥, 𝑦⟩ ∈ 𝐀 × 𝐁 ∣ 𝑦 = 𝑓(𝑥)}. (14)

From relations to functions

Let’s start now with a relation 𝑅 ⊆ 𝐀×𝐁 satisfying the conditions of Def. 4.5 and
see how this corresponds to a function 𝑓𝑅 ∶ 𝐀→ 𝐁 in the “usual” sense.
Choose an arbitrary 𝑥 ∈ 𝐀. According to point 1 in Def. 4.5, there exists a 𝑦 ∈
𝐁 such that 𝑥𝑅𝑦. Choose such a 𝑦, and call it 𝑓𝑅(𝑥). This gives us recipe to get
from any 𝑥 to a 𝑦. But given a specific 𝑥 ∈ 𝐀, what if we choose 𝑦 differently
each time we apply the recipe? Point 2 guarantees that this can’t happen: it says
that the element 𝑓𝑅(𝑥) that we associate to a given 𝑥 ∈ 𝐀 is in fact uniquely
determined by that 𝑥. Put another way, the condition 2 says: if 𝑓𝑅(𝑥1) ≠ 𝑓𝑅(𝑥2),
then 𝑥1 ≠ 𝑥2.
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Remark 4.6. Of course, not every relation corresponds to a function – namely
precisely those that do not satisfy the conditions in Def. 4.5. For example, the
relation in Fig. 7 is not a function. In fact, it does not satisfy either of the conditions
in Def. 4.5.

Identity relations
We have already discussed how, for any set 𝐀, there is always an identity func-
tion

id𝐀 ∶ 𝐀 → 𝐀,
𝑦 ↦ 𝑦.

(15)

which “does nothing”. If we turn such functions into relations, we call the result
identity relations.

Definition 4.7
Let 𝐀 be any set. The identity relation on 𝐀 is

id𝐀 = {⟨𝑥, 𝑦⟩ ∈ 𝐀 ×𝐀 ∣ 𝑥 = 𝑦}. (16)

Composing functions
If we define functions as special kinds of relations, how is relation composition
related to the “usual” way of composing of functions? The answer is that these
two apparently different ways of composing functions actually give the same
result.

Lemma 4.8. Let 𝑅 ⊆ 𝐀 × 𝐁 and 𝑆 ⊆ 𝐁 × 𝐂 be relations which are functions.
Then their composition 𝑅 # 𝑆 ⊆ 𝐀 × 𝐂 is again a function, and it corresponds to
the “usual” composition of the functions corresponding to 𝑅 and 𝑆.

Proof. First let us check that when 𝑅 and 𝑆 are composed as relations, the
result is again a function. For this we check that 𝑅 # 𝑆 satisfies the two
conditions stated in Def. 4.5.

1. Choose an arbitrary 𝑥 ∈ 𝐀. We need to show that there exists 𝑧 ∈ 𝐂 such
that 𝑥𝑅 # 𝑆𝑧. Since 𝑅 is a function, there exists 𝑦 ∈ 𝐁 such that 𝑥𝑅𝑦.
Choose such a 𝑦 ∈ 𝐁. Then, because 𝑆 is a function, there exists 𝑧 ∈ 𝐂
such that 𝑦𝑆𝑧. By the definition of composition of relations, we see that 𝑧
is such that 𝑥𝑅 # 𝑆𝑧.

2. Let 𝑥1𝑅 # 𝑆𝑧1, 𝑥2𝑅 # 𝑆𝑧2. We need to show that if 𝑥1 = 𝑥2, then 𝑧1 = 𝑧2.
So suppose 𝑥1 = 𝑥2. Since 𝑥1𝑅 # 𝑆𝑧1, 𝑥2𝑅 # 𝑆𝑧2, there exist 𝑦1, 𝑦2 ∈ 𝐁
such that, respectively,

𝑥1𝑅𝑦1 ∧ 𝑦1 𝑆𝑧1, (17)

𝑥2𝑅𝑦2 ∧ 𝑦2 𝑆𝑧2. (18)

Since 𝑥1 = 𝑥2 and 𝑅 is a function, we conclude that 𝑦1 = 𝑦2 must hold.
Now, since 𝑆 is also a function, this implies that 𝑧1 = 𝑧2, which is what
was to be shown.

Second let us check that relation composition of functions gives the same
result as the “usual” composition of functions. Let 𝑓𝑅 and 𝑔𝑆 denote the
relations 𝑅 and 𝑆 when we are thinking of them in the “usual” way of
thinking about functions. Our goal is to show that 𝑓𝑅 # 𝑔𝑆 corresponds to 𝑅 #
𝑆; in other words, that the latter is the graph of former.
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𝑦1
𝑥1

𝑦2
𝑥2

𝑦3
𝑥3

𝑦4
𝑅

Figure 12.

Suppose first that ⟨𝑥, 𝑧⟩ is in the graph of 𝑓𝑅 # 𝑔𝑆, so 𝑧 = (𝑓𝑅 # 𝑔𝑆)(𝑥). In
particular 𝑧 = 𝑔𝑆(𝑓𝑅(𝑥)), which means there exists 𝑦 = 𝑓𝑅(𝑥) ∈ 𝐁 such
that ⟨𝑥, 𝑦⟩ ∈ 𝑅 and ⟨𝑦, 𝑧⟩ ∈ 𝑆. This implies that ⟨𝑥, 𝑧⟩ ∈ 𝑅 # 𝑆.
Conversely, suppose ⟨𝑥, 𝑧⟩ ∈ 𝑅 # 𝑆. By the definition of relation composition
there must exist 𝑦 ∈ 𝐁 such that ⟨𝑥, 𝑦⟩ ∈ 𝑅 and ⟨𝑦, 𝑧⟩ ∈ 𝑆, whichmeans 𝑦 =
𝑓𝑅(𝑥) and 𝑧 = 𝑔𝑆(𝑦). Thus, 𝑧 = 𝑔𝑆(𝑓𝑅(𝑥)).

Relations via functions
Though not every relation is a function, we can however think about relations in
terms of functions. Here are three ways:
1. We can think of a relation 𝑅∶ 𝐀→ 𝐁 as a function 𝐀 × 𝐁→ Bool.

Given 𝑅 we can define a function 𝜙𝑅 ∶ 𝐀 × 𝐁→ {⊥, ⊤} from it by setting

𝜙𝑅(⟨𝑥, 𝑦⟩) = {
⊤ if 𝑥𝑅𝑦,
⊥ otherwise.

(19)

Conversely, given a function 𝜙∶ 𝐀×𝐁→ {⊥, ⊤}we can define a relation 𝑅𝜙 ⊆
𝐀 × 𝐁 from it by setting

𝑅𝜙 = {⟨𝑥, 𝑦⟩ ∈ 𝐀 × 𝐁 ∣ 𝜙𝑅(⟨𝑥, 𝑦⟩) = ⊤}. (20)

These two constructions are inverse to one-another.
2. We can think of a relation 𝑅∶ 𝐀→ 𝐁 as a function 𝐀→ 𝖯𝗈𝗐(𝐁).

Given 𝑅 we can define a function �̂�𝑅 ∶ 𝐀→ 𝖯𝗈𝗐(𝐁) via

�̂�𝑅(𝑥) = {𝑦 ∈ 𝐁 ∣ 𝑥𝑅𝑦}. (21)

Conversely, given a function �̂�∶ 𝐀→ 𝖯𝗈𝗐(𝐁), we can define

𝑅�̂� = {⟨𝑥, 𝑦⟩ ∈ 𝐀 × 𝐁 ∣ 𝑦 ∈ �̂�𝑅(𝑥)}. (22)

These two constructions are inverse to one another, too.
3. We can think of a relation 𝑅 ⊆ 𝐀 × 𝐁 as a function 𝐁→ 𝖯𝗈𝗐(𝐀).

Given 𝑅 we can define a function �̌�𝑅 ∶ 𝐁→ 𝖯𝗈𝗐(𝐀) via

�̌�𝑅(𝑦) = {𝑥 ∈ 𝐀 ∣ 𝑥𝑅𝑦}. (23)

Conversely, given a function �̌�∶ 𝐁→ 𝖯𝗈𝗐(𝐀), we can define

𝑅�̌� = {⟨𝑥, 𝑦⟩ ∈ 𝐀 × 𝐁 ∣ 𝑥 ∈ �̌�𝑅(𝑦)}. (24)

These two constructions are also inverse to one another.

Graded exercise B.9 (Rel3Functions)
For the relation 𝑅 illustrated in Fig. 12, write out the three functions that
describe it, respectively, in the three ways outlined in Section 4.4.
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4.5. Properties of relations
We have seen that relations generalize functions – every function defines a re-
lation, via its graph, but not every relation comes from a function in this way.
Many notions that we are familiar with for functions also generalize to relations.
Here are a few.

Definition 4.9 (Properties of a relation)
We say that a relation 𝑅∶ 𝐀→ 𝐁 is:
1. Injective if

𝑥𝑅𝑦 𝑧𝑅𝑦
;

𝑥 = 𝑧 (25)

2. Single-valued if
𝑥𝑅𝑦 𝑥𝑅𝑢

;
𝑦 = 𝑢 (26)

3. Surjective if for all 𝑦 ∈ 𝐁 there exists an element 𝑥 ∈ 𝐀 such that 𝑥𝑅𝑦;
4. Everywhere-defined if for all 𝑥 ∈ 𝐀 there exists an element 𝑦 ∈ 𝐁 such

that 𝑥𝑅𝑦.

Example 4.10. The relation depicted in Fig. 7 is injective but not surjective. It
is not single-valued, nor everywhere-defined.
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𝑅

Figure 13.

𝑅⊺

Figure 14.

4.6. Transpose of a relation
One can notice a certain duality in the properties listed in Def. 4.9. This is made
more precise through the following definition.

Definition 4.11 (Transpose of a relation)
Let 𝑅∶ 𝐀 → 𝐁 be a relation. We define its transpose (or opposite, or re-
verse) 𝑅⊺ ∶ 𝐁→ 𝐀 as follows:

𝑥𝑅𝑦
.

𝑦𝑅⊺𝑥 (27)

Remark 4.12. Here are some useful properties of a relation 𝑅∶ 𝐀→ 𝐁 and its
opposite 𝑅⊺ ∶ 𝐁→ 𝐀:
1.

(
𝑅⊺
)⊺ = 𝑅;

2. 𝑅 is everywhere-defined if and only if 𝑅⊺ is surjective;
3. 𝑅 is single-valued if and only if 𝑅⊺ is injective.
4. 𝑅 is everywhere-defined if and only if id𝐀 ⊆ 𝑅 # 𝑅⊺;
5. 𝑅 is single-valued if and only if 𝑅⊺ # 𝑅 ⊆ id𝐁.

Remark 4.13. The aforementioned duality can be seen by “reading the relations
(arrows) backwards” (Figs. 13 and 14).

Graded exercise B.10 (RelProperties)
Provide a proof of each of the properties listed in Remark 4.12.
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4.7. Endorelations
Definition 4.14 (Endorelation)
An endorelation on a set 𝐀 is a relation 𝑅∶ 𝐀→ 𝐀.

Example 4.15. “Equality” on a set 𝐀 is an endorelation =𝐀 of the form

=𝐀 ∶= {⟨𝑥, 𝑦⟩ ∈ 𝐀 ×𝐀 ∣ 𝑥 = 𝑦}. (28)

Example 4.16. Take𝐀 = ℕ. The relation “less than or equal” is an endorelation
of the form

≤ ∶= {⟨𝑥, 𝑦⟩ ∈ ℕ × ℕ ∣ 𝑥 ≤ 𝑦}. (29)

Example 4.17. The relation depicted in Fig. 4 is an endorelation between the
set of high voltage nodes.

Definition 4.18 (Symmetry, asymmetry, and antisymmetry)
An endorelation 𝑅∶ 𝐀→ 𝐀 is symmetric if

𝑥𝑅𝑦
,

𝑦𝑅𝑥 (30)

is asymmetric if
𝑥𝑅𝑦 𝑦𝑅𝑥

,
⊥ (31)

and is antisymmetric if
𝑥𝑅𝑦 𝑦𝑅𝑥

.
𝑥 = 𝑦 (32)

Definition 4.19 (Reflexivity and irreflexivity of endorelations)
An endorelation 𝑅∶ 𝐀→ 𝐀 is reflexive if

⊤
,

𝑥𝑅𝑥 (33)

and is irreflexive if
𝑥𝑅𝑥

.
⊥ (34)

Table 4.1.: Summary of endorelation properties.

Reflexive Total Symmetric Transitive

⊤

𝑥𝑅𝑥

⊤

𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥

𝑥𝑅𝑦

𝑦𝑅𝑥

𝑥𝑅𝑦 𝑦𝑅𝑧

𝑥𝑅𝑧

Irreflexive Asymmetric Antisymmetric

𝑥𝑅𝑥

⊥

𝑥𝑅𝑦 𝑦𝑅𝑥

⊥

𝑥𝑅𝑦 𝑦𝑅𝑥

𝑥 = 𝑦
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Figure 15.: Example of symmetric endorelation.

Definition 4.20 (Total)
An endorelation 𝑅∶ 𝐀→ 𝐀 is total if

⊤
.

(𝑥𝑅𝑦) ∨ (𝑦𝑅𝑥) (35)

Example 4.21. The relation “less than or equal” on ℕ is not symmetric. It is
reflexive since 𝑛 ≤ 𝑛 ∀𝑛 ∈ ℕ, and it is transitive since 𝑙 ≤ 𝑚 and 𝑚 ≤ 𝑛
implies 𝑙 ≤ 𝑚.

Example 4.22. The relation depicted in Fig. 4 is reflexive (eachnode is connected
to itself).

Example 4.23. The endorelation depicted in Fig. 15 is a symmetric relation
on 𝐀 = { , }.

Definition 4.24 (Transitive)
An endorelation 𝑅∶ 𝐀→ 𝐀 is transitive if

𝑥𝑅𝑦 𝑦𝑅𝑧
.

𝑥𝑅𝑧 (36)

Example 4.25. The relation “has the same birthday as” is transitive because
if Anna has the same birthday as Bob, and Bob has the same birthday as Clara,
then Anna has the same birthday as Clara.

Closures

Sometimes an endorelation 𝑅 ⊆ 𝐀 ×𝐀might not satisfy a property we desire it
to have – such as transitivity, for example – but we may be able to find a “best
approximation” to 𝑅 that does have a desired property. In the case of transitiv-
ity, this “best approximation” is called the transitive closure of the relation 𝑅.
A similar definition also exists, for example, for the property of symmetry of
endorelations.

Definition 4.26 (Transitive closure)
Let 𝑅 be an endorelation on a set 𝐀, and consider the set

{𝑆 ⊆ 𝐀 ×𝐀 ∣ 𝑅 ⊆ 𝑆 and 𝑆 is transitive } (37)

of transitive relations on𝐀 containing 𝑅. (Note that it is non-empty, because
the relation 𝑆 = 𝐀 ×𝐀 contains 𝑅 and is transitive.) The transitive closure
𝑅+ of 𝑅 is

𝑅+ =
⋂

{𝑆 ⊆ 𝐀 ×𝐀 ∣ 𝑅 ⊆ 𝑆 and 𝑆 is transitive }. (38)

Remark4.27. It is straightforward to check that the intersection of any number of
transitive relations on a set 𝐀 is again a transitive relation; in particular therefore
𝑅+ is transitive. This is at the core of why the above definition is useful. An
analogous definition using inclusion in place of containment would not work
well, because in general the union of transitive relations is not necessarily again
transitive.
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Remark 4.28. The transitive closure of an endorelation 𝑅 on a set𝐀 is the unique
relation 𝑅+ on 𝐀 satisfying the following conditions:
1. 𝑅 ⊆ 𝑅+;
2. 𝑅+ is transitive;
3. if 𝑆 is a relation on 𝐀 that satisfies the previous two points, then 𝑅+ ⊆ 𝑆.
We might translate these conditions as follows: the first one is saying that 𝑅+
approximates 𝑅 (via containment); the second one states that 𝑅+ has the property
of interest to us here; the third one says that 𝑅+ is the “best” approximation
among such relations.

Example 4.29. Consider a relation 𝑅 on a set of people

𝐀 = {Gioele, Andrea, Jonathan, Emilio, Raff}, (39)

which describes who invites which friend to a party:

Gioele Andrea

Emilio

Raff Jonathan

𝑅

(40)

In other words, Gioele invites Andrea and Emilio, Andrea invites Jonathan,
and Emilio invites Raff. The transitive closure 𝑅+ of 𝑅 describes all invitations
resulting from transitivity.

Gioele Andrea

Emilio

Raff Jonathan

𝑅+

(41)

In particular, Gioele invites Jonathan and Raff as well, due to the fact that Andrea
invites Jonathan, and Emilio invites Raff.
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𝑏

𝑎 𝑐

𝑒 𝑑

Figure 16.

4.8. Equivalence relations
Equivalence relations are a way to group together elements of a set which wish
to think of as “the same” in some respect. They appear all over mathematics.

Definition 4.30 (Equivalence relation)
An endorelation 𝑅∶ 𝐀 → 𝐀 is an equivalence relation if it is symmetric,
reflexive, and transitive.
If 𝑅 is an equivalence relation, we often write 𝑥∼𝑅𝑦, or simply 𝑥∼𝑦, instead
of 𝑥𝑅𝑦.

Example 4.31. The relation “equals” on ℕ is an equivalence relation. The
relation “less than or equal” on ℕ is not.

Example 4.32. The relation on ℕ “differing by a multiple of 3”

𝑥𝑅𝑦
.

(𝑥 − 𝑦) mod 3 = 0 (42)

is an equivalence relation. Indeed, the relation is reflexive, and symmetric.
Furthermore, if 𝑥 differs by a multiple of 3 from 𝑦 and 𝑦 differs by a multiple of 3
from 𝑧, then 𝑥 differs by a multiple of 3 from 𝑧 (transitivity).

Example 4.33. The relation “has the same birthday as” on the set of all people is
an equivalence relation. It is symmetric, because if Anna has the same birthday
as Bob, then Bob has the same birthday as Anna. It is reflexive because every
person has the same birthday as themselves.

Example 4.34. Let 𝑓∶ 𝐀→ 𝐁 be a function between sets. The following defines
an equivalence relation ∼𝑓 on the set 𝐀:

𝑥∼𝑓𝑦
.

𝑓(𝑥) = 𝑓(𝑦) (43)

Definition 4.35 (Partition)
A partition of a set 𝐀 is a collection {𝐀𝑖}𝑖∈𝐈 of subsets 𝐀𝑖 ⊆ 𝐀 such that
1. 𝐀𝑖 ∩𝐀𝑗 = ∅ ∀𝑖 ≠ 𝑗;
2.

⋃
𝑖∈𝐈𝐀𝑖 = 𝐀.

Remark 4.36. There is a one-to-one correspondence between equivalence rela-
tions on a set 𝐀 and partitions on 𝐀.

Example 4.37. An example of partitions can be shown through information
networks. An exemplary network is depicted in Fig. 16. Here,nodes represent data
centers, and the arrows represent information flows. We say that data centers 𝑎
and 𝑏 are equivalent (𝑥∼𝑦) if and only if there is a path from 𝑥 to 𝑦 and a path
from 𝑦 to 𝑥. In Fig. 16, we have that 𝑎∼𝑏, 𝑒∼𝑑, and also every center is equivalent
with itself.

Graded exercise B.11 (CountingEquivalenceRelations)
Let 𝐀 = {1, 2, 3, 4}. How many different equivalence relations are there on
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𝐀? Explain how you found your answer.
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Solutions to selected exercises
Solution of Exercise 2. We start by the union operation ∪. We need to prove

𝐀 ∪ (𝐁 ∪ 𝐂) = (𝐀 ∪ 𝐁) ∪ 𝐂.

We have:

𝑥 ∈ 𝐀 ∪ (𝐁 ∪ 𝐂)
⇔ 𝑥 ∈ 𝐀 ∨ (𝑥 ∈ 𝐁 ∨ 𝑥 ∈ 𝐂)
⇔ (𝑥 ∈ 𝐀 ∨ 𝑥 ∈ 𝐁) ∨ 𝑥 ∈ 𝐂
⇔ 𝑥 ∈ (𝐀 ∪ 𝐁) ∪ 𝐂.

We now continue with the intersection operation ∩. We need to prove

𝐀 ∩ (𝐁 ∩ 𝐂) = (𝐀 ∩ 𝐁) ∩ 𝐂.

We have:

𝑥 ∈ 𝐀 ∩ (𝐁 ∩ 𝐂)
⇔ 𝑥 ∈ 𝐀 ∧ (𝑥 ∈ 𝐁 ∧ 𝑥 ∈ 𝐂)
⇔ (𝑥 ∈ 𝐀 ∧ 𝑥 ∈ 𝐁) ∧ 𝑥 ∈ 𝐂
⇔ 𝑥 ∈ (𝐀 ∩ 𝐁) ∩ 𝐂.

Essentially, we have used the associativity of the ∧ and ∨ connectives.

Solution of Exercise 3. We start by the union operation ∪. We need to prove
that 𝐀 ∪ 𝐁 = 𝐁 ∪𝐀. We have:

𝑥 ∈ 𝐀 ∪ 𝐁
⇔ 𝑥 ∈ 𝐀 ∨ 𝑥 ∈ 𝐁
⇔ 𝑥 ∈ 𝐁 ∨ 𝑥 ∈ 𝐀
⇔ 𝑥 ∈ 𝐁 ∪𝐀.

We continue with the intersection operation ∩. We need to prove that 𝐀 ∩ 𝐁 =
𝐁 ∩𝐀. We have:

𝑥 ∈ 𝐀 ∩ 𝐁
⇔ 𝑥 ∈ 𝐀 ∧ 𝑥 ∈ 𝐁
⇔ 𝑥 ∈ 𝐁 ∧ 𝑥 ∈ 𝐀
⇔ 𝑥 ∈ 𝐁 ∩𝐀.

Essentially, we have used the commutativity of the ∧ and ∨ connectives.

Solution of Exercise 4. We have:
1. 2.
2. 4.
3. 8.
4. 1.
In general, the size of 𝖯𝗈𝗐𝐀 is 2 to the power of the size of 𝐀.

Solution of Exercise 5. We analyze the functions one by one.
1. 𝑥 + 10 = 𝑦 + 10 implies 𝑥 = 𝑦, therefore the function is injective. Clearly, for

any real number 𝑦 there is an 𝑥 such that 𝑓(𝑥) = 𝑦. Therefore the 𝑚𝑎𝑝𝑎 is
surjective. It follows that 𝑓 is bijective.
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2. 𝑔 is not injective, since 𝑔(𝑥) = 𝑔(−𝑥) = 𝑥2. Also, it clearly is not surjective,
since for any negative real 𝑦 there is no 𝑥 such that 𝑔(𝑥) = 𝑦.

3. When 𝑥, 𝑦 ∈ ℕ, 𝑥2 = 𝑦2 implies 𝑥 = 𝑦, meaning that ℎ is injective. ℎ is not
surjective, since, e.g., there is no 𝑥 ∈ ℕ such that ℎ(𝑥) = 3.

4. Clearly, 𝑘 is injective. It is not surjective, since, e.g., there is no 𝑥 ∈ ℕ such
that 𝑘(𝑥) = 2.

Solution of Exercise 6. Per absurdum, assume that a map 𝑓∶ 𝐀→ 𝐁 possesses
two different inverses 𝑔, ℎ∶ 𝐁→ 𝐀. Following the definition of inverse, we have

𝑓 # 𝑔 = 𝑓 # ℎ = id𝐀, (44)

and
𝑔 # 𝑓 = ℎ # 𝑓 = id𝐁. (45)

Now, we can write
ℎ = id𝐁 # ℎ
= (𝑔 # 𝑓) # ℎ
= 𝑔 # (𝑓 # ℎ)
= 𝑔 # id𝐀
= 𝑔,

(46)

which contradicts the initial assumption.

Solution of Exercise 7. We show the two directions in turn:

𝑓 isomorphism
and

𝑓 bijective

𝑓 bijective
.

𝑓 isomorphism (47)

Consider an isomorphism 𝑓∶ 𝐀 → 𝐁 and its inverse 𝑔∶ 𝐁 → 𝐀. Take a 𝑦 ∈ 𝐁
and let 𝑥 = 𝑔(𝑦). We know that 𝑓(𝑥) = 𝑓(𝑔(𝑦)) = (𝑔 # 𝑓)(𝑦) = 𝑦. Therefore, 𝑓
must be surjective. To show injectivity, consider 𝑥, 𝑥′ ∈ 𝐀 such that 𝑓(𝑥) = 𝑓(𝑥′).
Let 𝑦 = 𝑓(𝑥) and 𝑥′′ = 𝑔(𝑦). Then, we have

𝑥′ = id𝐀(𝑥′)
= (𝑓 # 𝑔)(𝑥′)
= 𝑔(𝑓(𝑥′))
= 𝑔(𝑦)
= 𝑥′′.

(48)

However, we also know
𝑥 = id𝐀(𝑥)
= (𝑓 # 𝑔)(𝑥)
= 𝑔(𝑓(𝑥))
= 𝑔(𝑦)
= 𝑥′′.

(49)

Therefore, 𝑥 = 𝑥′ and 𝑓 is injective (and therefore bijective).
Now, consider a map 𝑓∶ 𝐀→ 𝐁which is bijective. One can define 𝑔∶ 𝐁→ 𝐀 in
the following way. Take a 𝑦 ∈ 𝐁, and since 𝑓 is surjective (it is bijective), there
exists a 𝑥 ∈ 𝐀 such that 𝑓(𝑥) = 𝑦. Let 𝑔(𝑦) = 𝑥. Since 𝑓 is injective, 𝑥 must
be unique, meaning that 𝑔 is well-defined. Now we check that indeed 𝑔 must
be the inverse of 𝑓. Consider 𝑥 ∈ 𝐀 and 𝑦 = 𝑓(𝑥). By definition, 𝑔(𝑦) = 𝑥, and
hence (𝑓 # 𝑔)(𝑥) = 𝑔(𝑓(𝑥)) = 𝑔(𝑦) = 𝑥, implying 𝑓 # 𝑔 = id𝐀. Similarly, take 𝑦 ∈
𝐁 and 𝑥 = 𝑔(𝑦). Then, by definition we have 𝑓(𝑥) = 𝑦, and hence (𝑔 # 𝑓)(𝑦) =
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𝑓(𝑔(𝑦)) = 𝑓(𝑥) = 𝑦, implying 𝑔 # 𝑓 = id𝐁. Therefore, 𝑓 is an isomorphism.

Solution of Exercise 8.

Solution of Exercise 9.

𝖺𝗌∶ (𝐀+ 𝐁)+ 𝐂 → 𝐀+ (𝐁+ 𝐂),

⎧

⎨
⎩

⟨1, ⟨1, 𝑥⟩⟩ ↦ ⟨1, 𝑥⟩
⟨1, ⟨2, 𝑦⟩⟩ ↦ ⟨2, ⟨1, 𝑦⟩⟩
⟨2, 𝑧⟩ ↦ ⟨2, ⟨2, 𝑧⟩⟩.

(50)

Solution of Exercise 10.

Solution of Exercise 11.

Solution of Exercise 12. Yes. Such a relationwould be of the form𝑅 ⊆ ∅×𝐁 = ∅,
where 𝐁 here is an arbitrary set. In this situation, 𝑅 = ∅ is a relation ∅→ 𝐁.

Solution ofExercise 13. Yes. Such a relationwould be of the form𝑅 ⊆ 𝐀×∅ = ∅,
where 𝐀 is an arbitrary set. In this situation, 𝑅 = ∅ is a relation 𝐀→ ∅.
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Life is about trade-offs: there is seldom a uniformly best outcome;
rather we need to reason with incomparable attributes. Partially or-
dered sets (posets) are the mathematical structure used to reason
about trade-offs. They are also important as one of the simplest ex-
amples of categories.

Switzerland is famous for high quality chocolate. In particular, Switzerland is renowned for its milk chocolate, invented in Vevey. The per capita yearly
chocolate consumption in Switzerland is about 10 kg, and the industry counts over 4,400 employees.
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Good

Fast Cheap

X

Figure 1.

5.1. Trade-offs
Trade-offs characterize all engineering disciplines.
Do you want to build something?
⊳ If you want it to be done well and quickly, it won’t be cheap.
⊳ If you want it to be done well and cheaply, it won’t be quick.
⊳ If you want it cheaply and quickly, it won’t be done well.
To characterize engineering trade-offs, we will use the mathematical structure
of partial orders. In the next section, we will explore some examples, to better
contextualize trade-offs.

Functionality and resources
In this section, we introduce concepts which will be important throughout the
book,when talking about theories of design.We distinguish semantically between
functionalities and requirements/costs. In general, you prefer functionalities to
be “large” (Fig. 2b) and requirements/costs to be “small” (Fig. 2a).

It is free Expensive

(a) Requirements/costs.

Does nothing Does it well

(b) Functionality.

Figure 2.

We think of three achievable accuracy plots (Fig. 3).

⊳ In Fig. 3a we plot trade-offs in costs and add a “feasibility” curve. Everything
above this curve is feasible and will cost more than what is on the curve.

⊳ In Fig. 3b we plot trade-offs in functionalities and add a “feasibility” curve.
Everything below the curve is feasible, but is below the “standards” required
by the curve.

⊳ In Fig. 3c we plot functionality and resource together, representing the trade-
offs between “how good a product is” and “how much one needs to pay for it”.
Feasible pairs are represented via the feasibility curve. Everything above the
curve will be feasible (by paying more).

It is a good exercise to open any engineering book, find the graphs talking about
“achievable” performance and “resources” needed, and classify into one of the
ones reported in Fig. 3.

cost 2

cost 1

feasible

(a) Costs.

functionality 2

functionality 1

feasible

(b) Functionalities.

how good the thing is

how much you pay

feasible

(c) Functionality vs. costs.

Figure 3.
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strength

speed

feasible

Figure 4.

strength

training
Usain Bolt Oleksii Novikov

Figure 5.

Trade-offs for the human body
The human body is a great example of trade-offs and adaptability. Consider sports:
when looking at different disciplines, various physical abilities are desired and
trade-offs between them characterize athletes.
For instance, we can think about trade-offs between speed and strength for hu-
mans (Fig. 4). These are functionalities, which different athletes might want to
maximize. ConsiderUsain Bolt, who owns the 100meters, 200meters, and 4×100
meters relay world records. Without doubts, in the human speed-strength trade-
off curve he positions himself close to the highest achievable speeds. At the same
time, however, Usain Bolt is not among the strongest men in the world. To see
the other end of the curve, we need to introduce Oleksii Novikov, who won the
2020 World’s Strongest Man competition. Similarly to Bolt, he is among the best
in his discipline, reaching very high strength. Again, the speed-strength trade-off
implies that Oleksii cannot be among the fastest men in the world, if he wants to
be among the strongest ones.
In this case, the resource needed to obtain speed or strength is the amount of
training (Fig. 5). If we want to relate the invested training and the resulting
strength reached by the athletes, we will notice that with a lot of training, Novikov
will improve his results, approaching perfection. On the other hand, the kind of
training Bolt undergoes is not optimizing strength, and therefore his results will
be less effective towards maximizing strength.
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Surgical Mask

Fashion masks

Figure 6.: Ordering masks by protection levels

Masks
Orders give us a rich way to describe products under various lenses. Recently, we
all needed to become experts of protective masks. In this section, we will show
various ways in which we can order the latter by functionality.
By first thinking about the effectiveness of the mask in protecting the wearer
from a virus, we can order masks as in Fig. 6. In general masks are classified
following their filter abilities and inward leakages. The FFP1 class filters at least
80% of airborne particles and allows less than 22% inward leakage. The FFP2
class filters at least 96% of airborne particles and allows less than 8% inward
leakage, and the FFP3 class filters at least 99% of airborne particles and allows
less than 2% inward leakage.
Obviously, based on the protection level, the most performant in Fig. 6 is FFP3,
and the worst is the fashion one. However, this is not the only way in which we
can classify masks. If, for instance, we want to consider a functionality “how
much does the mask say about the wearer”, we can order the masks differently.
Arguably, the ordering could look like the one in Fig. 7a.
Indeed, choosing a fashion mask might say that the wearer cares more about
aesthetics than safety, and choosing a FFP3 highlights responsible behaviors,
care, and research in masks models.
Similarly, we could order masks based on different performance criteria, adding
the functionality “how much does it protect others?” (Fig. 7b).
On the other hand, we could think about the trade-offs between the mask perfor-
mance and its cost, presenting a functionality-resource plot (Fig. 7c).
More performant masks are typically more expensive, and the fashion mask will
be probably the least performance and most expensive.
This example once again highlights the flexibility and richness of the “orders
approach”. This will be much more evident in the next example.

pr
ot
ec
ts
w
ea
re
r

fr
om

vi
ru
s

says something about the wearer

(a)

pr
ot
ec
ts
w
ea
re
r

fr
om

vi
ru
s

protects others

(b)

pr
ot
ec
ts
w
ea
re
r

fr
om

vi
ru
s

price

(c)

Figure 7.: Ordering masks by other considerations
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Hats and headphones
Another good example of ordering of multiple functionalities and costs is the
one of headphones. Consider a set of headphones and order them based on their
abilities to “keep warm” and to “reproduce music” (Fig. 8a).
Clearly, these two functionalities represent different objectives and diverse prod-
uct ranges will satisfy them in different ways. For instance, winter hats clearly
cannot reproduce music, but keep very warm. On the other hand, large head-
phones are the best in reproducingmusic, but cannot keep as warm as winter hats.
Functionalities come at a cost. For instance, we could plot the trade-off between
“keep warm” and price (Fig. 8b). Other interesting costs could be expressed via
the frequency of charging (Fig. 8d) or the hassle of dealing with wires (Fig. 8c).
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Figure 8.: Ordering hats and headphones

The law of successful products
By considering all the aforementioned characteristics together

(keeps warm × reproduction quality) × (price × frequency of charging ×wires hassle), (1)

no product dominates another.
This is the law of successful products. At equilibrium, in an efficient and free
market, no product completely dominates another by both functionality and
costs. Otherwise, the dominated product would not sell. Once we specify the
design purpose and the related constraints, we can (partially) order products.
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∙

∙ ∙

Figure 9.: A pre-order represented as a graph.

∙

∙ ∙

Figure 10.: A partial order represented as a graph.

5.2. Ordered sets
So far, the discussion has been purely qualitative. In this section, we introduce
pre-orders, partial orders, and total orders. Davey andPriestley [3] andRoman [24]
are possible reference texts.

Pre-orders
A pre-order is a set togetherwith a binary relation that is both reflexive (Def. 4.19)
and transitive (Def. 4.24).

Definition 5.1 (Pre-ordered set)
A pre-ordered set is a tuple 𝐏 = ⟨𝐏, ⪯𝐏⟩, where 𝐏 is a set, called the carrier set
or underlying set, together with a relation ⪯𝐏 that is reflexive and transitive.

An example of a pre-ordered set represented as a graph is shown in Fig. 9. In
the graph representation of a pre-order 𝐏, we draw an arrow between 𝑥 and 𝑦
if 𝑥 ⪯𝐏 𝑦.

Example 5.2. The reachability relationship in any directed graph (potentially
including cycles) is a pre-order. The pre-order 𝐏 is defined as follows. The set 𝐏
is the set of nodes of the graph. Take any two nodes 𝑥, 𝑦 ∈ 𝐏. One has 𝑥 ⪯𝐏 𝑦
if and only if there is a path from 𝑥 to 𝑦 in the directed graph. There is always
a path from a node to itself (reflexivity), and given a path from 𝑥 to 𝑦, and one
from 𝑦 to 𝑧, we know that there is a path from 𝑥 to 𝑧 (transitivity).

Exercise14. Consider the set𝐏 = {𝑥, 𝑦, 𝑧}. Which of the following are pre-orders?
Why?
1. 𝐏 = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩, ⟨𝑦, 𝑥⟩, ⟨𝑦, 𝑦⟩}.
2. 𝐐 = {⟨𝑥, 𝑦⟩, ⟨𝑦, 𝑧⟩, ⟨𝑧, 𝑥⟩}.

See solution on page 131.
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∙

∙

∙

Figure 11.: A total order.

Partial orders
By adding the condition of antisymmetry (Def. 4.18) to a pre-order, we obtain a
partially-ordered set.

Definition 5.3 (Partially ordered set)
A pre-ordered set 𝐏 = ⟨𝐏, ⪯𝐏⟩ is a partially-ordered set (poset) if the rela-
tion ⪯𝐏 is antisymmetric.

An example of a partially ordered set represented as a graph is shown in Fig. 10.
By comparing this with Fig. 9, we notice that the double-headed arrow is not
allowed anymore (indeed, its existence would imply that source and target of the
arrow are the same element in the poset).

Exercise15. Does the reachability relationship in any directed graph define a
poset? Why? If not, can you modify the initial statement to make it work?

See solution on page 131.

Example 5.4. The following defines a partial order ⪯ on the set of natural
numbers ℕ. Define, for all 𝑥, 𝑦 ∈ ℕ,

𝑥 ⪯ 𝑦 if, and only if 𝑥 divides 𝑦. (2)

By definition, a natural number 𝑥 divides another natural number 𝑦 if there exists
some other natural number 𝑧 such that 𝑥𝑧 = 𝑦. The notation for “𝑥 divides 𝑦” is
𝑥|𝑦.

Graded exercise C.1
Consider the set 𝐀 of natural numbers which divide the number 60, and
equipped with the partial order defined by

𝑥 ⪯ 𝑦 if, and only if 𝑥 divides 𝑦 (3)

for all 𝑥, 𝑦 ∈ 𝐀. Draw the Hasse diagram of this partially ordered set.

Graded exercise C.2 (PolynomialDivisibility)
Let 𝐀 be the set of all polynomials with coefficients in ℝ. Recall that a
polynomial 𝑝 divides a polynomial 𝑞 if there exists a polynomial 𝑚 such
that 𝑝 ⋅ 𝑚 = 𝑞. If 𝑝 divides 𝑞 we denote this by 𝑝|𝑞. Divisibility defines
an endorelation on 𝐀 by saying 𝑝 is related to 𝑞 iff 𝑝|𝑞. Does this define a
pre-order structure on 𝐀? Does this define a poset structure on 𝐀? Justify
your answer.

Total orders
By imposing totality (Def. 4.20), we obtain a total order.

Definition 5.5 (Totally ordered set)
A partially ordered set 𝐏 = ⟨𝐏, ⪯𝐏⟩ is a totally ordered set if the relation ⪯𝐏
is total.

An example of a totally ordered set represented as a graph is reported in Fig. 11.

Example 5.6 (Reals). The real numbers ℝ form a totally ordered poset ⟨ℝ, ≤⟩
with order relation given by the usual ordering.
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Hasse diagrams
We can represent partial orders in various ways. We now take a proxy partially
ordered set and represent it using different conventions. Consider 𝐏 = ⟨𝐏, ⪯𝐏⟩,
where 𝐏 = {𝑥, 𝑦, 𝑧} and 𝑥 ⪯𝐏 𝑦, 𝑦 ⪯𝐏 𝑧. First, we could represent this using the
same visualization we had for relations (Fig. 12a).
However, this is quite heavy, and does not exploit the fact that partial orders are
endorelations. Therefore, we could think to only draw the carrier set once, and
to drop the order relations arising from reflexivity (Fig. 12b).
However, the arrow from 𝑥 to 𝑦 is implicit in partial orders, because of transitiv-
ity.
A Hasse diagram is an economical (in terms of arrows) way to visualize a poset.
In a Hasse diagram elements are points, and if 𝑝 ⪯𝐏 𝑞 then 𝑝 is drawn lower
than 𝑞 and with an edge connected to it, if no other point is in between (Fig. 12c).
Hasse diagrams are directed graphs.

𝑥 𝑥

𝑦 𝑦

𝑧 𝑧
⪯𝐏

(a) 𝐏 as a relation

𝑧

𝑦

𝑥
𝐏

(b) 𝐏 as a graph

∙ 𝑧

∙ 𝑦

∙ 𝑥
𝐏

(c) 𝐏 as a Hasse diagram

Figure 12.: Three different representations for a poset
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∙ ∙ ∙
𝑎 𝑏 𝑐

Figure 13.

Example 5.7 (Discrete partially ordered sets). Every set 𝐏 can be considered as a
discrete poset 𝐏 = ⟨𝐏, =⟩ using equality as the partial order. (Notice that equality is
symmetric, transitive, and antisymmetric.) When visualized as a Hasse diagram,
discrete posets are a collection of points (Fig. 13).

∙ ⊤

∙ ⊥

Figure 14.

Definition 5.8 (Boolean poset Bool)
The set of booleans Bool = {⊥, ⊤} can be made into a poset by choosing the
order ⊥ ⪯ Bool ⊤. This is equivalent to using “⇒” as a relation. We obtain
the poset

Bool ∶= ⟨Bool,⇒⟩. (4)

∙ expensive

∙ midrange

∙ cheap

Figure 15.: Possible costs of a battery, epresented
as a poset.

Example 5.9 (Qualitative information). In the example of the battery choice,both
mass andmoney can be thought of as partially ordered sets. Imagine that you have
batteries which are “cheap”, “midrange”, and “expensive”. Clearly, if the partially
ordered set represents cost, we can say that cheap ⪯ midrange ⪯ expensive.
While this is a quantitative judgement (indeed, if I care about cost, I will prefer a
cheap battery over amidrange one), it is not a numeric one (cheap could represent
a number, but also a range of numbers or just a price category). This can be
represented as in Fig. 15.

∙

∙ ∙
∙ ∙

𝐏

Figure 16.: Example of Hasse diagram of 𝐏.

Example 5.10. Consider a poset 𝐏 representing a person’s food preference over
the set 𝐏 = { , , , , } with ⪯𝐏 , ⪯𝐏 , ⪯𝐏 , and ⪯𝐏 .
This can be represented with a Hasse diagram as in Fig. 16.
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𝑥1

𝑥2

�⃗�⊺𝐀�⃗� = 1

�⃗�⊺𝐁�⃗� = 1

�⃗�⊺𝐂�⃗� = 1

(a) Example of ellipses representing positive
definite matrices.

𝐁
∙

∙ ∙
𝐀 𝐂𝐏

(b) Example of order between positive semi-
definite matrices.

Figure 17.

Example: positive definite matrices as ellipsoids

Definition 5.11 (Positive definite matrix)
A symmetric matrix𝐌 ∈ ℝ𝑛×𝑛 is positive definite if �⃗�⊺𝐌�⃗� > 0 for all non-
zero �⃗� ∈ ℝ𝑛. We call the set of all such matrices 𝖯𝖣𝖬(𝑛).

Positive definitematrices have real, positive eigenvalues,which can be interpreted
as axes lengths of ellipsoids. Anymatrix𝐀 ∈ 𝖯𝖣𝖬(𝑛) describes an ellipsoid,which
can be written as a quadratic equation:

�⃗�⊺𝐀�⃗� = 1, �⃗� ∈ ℝ𝑛. (5)

We can define a partial order on 𝑛 as

𝐀 ⪯𝖯𝖣𝖬(𝑛) 𝐁
.

�⃗�⊺𝐀�⃗� ≤ �⃗�⊺𝐁�⃗� ∀�⃗� ∈ ℝ𝑛 (6)

The order can be interpreted as an inclusion of ellipsoids. Take for instance the
matrices

𝐀 = [1 0
0 1] , 𝐁 = [ 3∕4 −1∕8

−1∕8 3∕4 ] , 𝐂 = [1∕2 0
0 2] . (7)

The order 𝐏 on the set {𝐀, 𝐁, 𝐂} is reported in Fig. 17b, and it is easily explained
via Fig. 17a. The ellipse representing 𝐀 (in red) is included by the one repre-
senting matrix 𝐁 (in blue), but not by the one representing matrix 𝐂 (in green).
Furthermore, the one representing 𝐁 includes the one representing 𝐂.
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5.3. Counting orders
Let’s count the number of posets.
If there is only one element, there is only one way to order it (Fig. 18a).
With a 2-elements set, there are 2 posets (panel b), “up to isomorphism”, that is,
if we do not care about the labels of points.
On 3-elements sets, we have 5 posets (panel c).
On 4-elements sets, we have 16 posets (panel d).

∙

(a) The singleton poset.

∙ ∙
∙

∙

(b) All posets on 2-elements sets, up to isomorphism.

∙ ∙ ∙
∙

∙ ∙

∙

∙ ∙

∙ ∙

∙

∙
∙
∙

(c) All posets on 3-elements sets, up to isomorphisms.

∙ ∙ ∙ ∙ ∙

∙ ∙ ∙

∙ ∙

∙ ∙

∙

∙ ∙ ∙

∙ ∙

∙ ∙

∙

∙ ∙

∙

∙ ∙

∙ ∙

∙ ∙

∙ ∙

∙

∙ ∙ ∙

∙ ∙ ∙

∙

∙

∙ ∙

∙

∙

∙ ∙

∙

∙

∙ ∙

∙

∙ ∙

∙

∙

∙

∙

∙ ∙

∙
∙
∙
∙

(d) All posets on a 4-element set, up to isomorphism. Figure 18.
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5.4. Power poset
We have introduced the concept of power set in Section 3.3. There is a natural
order on subsets, given by set inclusion. We can thus define the power poset.

Definition 5.12 (Power poset)
Given a set 𝐀, define the power poset 𝖯𝗈𝗐𝐀 = ⟨𝖯𝗈𝗐𝐀, ⊆⟩ by ordering the
subsets in its power set 𝖯𝗈𝗐𝐀 by inclusion.
A subset 𝐒 precedes 𝐓 if 𝐒 ⊆ 𝐓:

𝐒 ⪯𝖯𝗈𝗐𝐀 𝐓
.

𝐒 ⊆ 𝐓
(8)

This is illustrated in Fig. 19 for sets of 0, 1, 2, 3 elements.

Exercise16. Check formally that ⪯𝖯𝗈𝗐𝐀 defined in (8) is a partial order.
See solution on page 131.

∅

𝖯𝗈𝗐 ∅

(a) 𝖯𝗈𝗐 ∅

{𝑥}

∅

𝖯𝗈𝗐 {𝑥}

(b) 𝖯𝗈𝗐 {𝑥}

{𝑥, 𝑦}

{𝑥} {𝑦}

∅

𝖯𝗈𝗐 {𝑥, 𝑦}

(c) 𝖯𝗈𝗐 {𝑥, 𝑦}

{𝑥, 𝑦, 𝑧}

{𝑥, 𝑦} {𝑥, 𝑧} {𝑦, 𝑧}

{𝑥} {𝑦} {𝑧}

∅

𝖯𝗈𝗐 {𝑥, 𝑦, 𝑧}

(d) 𝖯𝗈𝗐 {𝑥, 𝑦, 𝑧}

Figure 19.: Power set as a poset.
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{𝑥, 𝑦, 𝑧}

{𝑥, 𝑦} {𝑥, 𝑧} {𝑦, 𝑧}

{𝑥} {𝑦} {𝑧}

∅

𝖯𝗈𝗐 {𝑥, 𝑦, 𝑧}

(a) A chain.

{𝑥, 𝑦, 𝑧}

{𝑥, 𝑦} {𝑥, 𝑧} {𝑦, 𝑧}

{𝑥} {𝑦} {𝑧}

∅

𝖯𝗈𝗐 {𝑥, 𝑦, 𝑧}

(b) A chain.

{𝑥, 𝑦, 𝑧}

{𝑥, 𝑦} {𝑥, 𝑧} {𝑦, 𝑧}

{𝑥} {𝑦} {𝑧}

∅

𝖯𝗈𝗐 {𝑥, 𝑦, 𝑧}

(c) An antichain.

{𝑥, 𝑦, 𝑧}

{𝑥, 𝑦} {𝑥, 𝑧} {𝑦, 𝑧}

{𝑥} {𝑦} {𝑧}

∅

𝖯𝗈𝗐 {𝑥, 𝑦, 𝑧}

(d) An antichain.

Figure 20.: Examples of chains (a-b) and an-
tichains (c-d) in the poset 𝖯𝗈𝗐 {𝑥, 𝑦, 𝑧}.

5.5. Chains and Antichains
There are two special types of subsets of a poset: chains and antichains. Their
definitions are dual.

Definition 5.13 (Chain in a poset)
Given a poset 𝐏 = ⟨𝐏, ⪯𝐏⟩, a chain is a subset 𝐒 ⊆ 𝐏 such that any two
elements of 𝐒 are comparable:

𝑥, 𝑦 ∈ 𝐒
.

(𝑥 ⪯𝐏 𝑦) ∨ (𝑦 ⪯𝐏 𝑥) (9)

Definition 5.14 (Antichain in a poset)
An antichain is a subset 𝐒 of a poset where no two distinct elements are
comparable:

𝑥, 𝑦 ∈ 𝐒 𝑥 ⪯𝐏 𝑦 .
𝑥 = 𝑦 (10)

Remark 5.15. Note that the empty set ∅ is both a chain and an antichain.

We denote the set of antichains of a poset 𝐏 by 𝖠𝗇𝗍𝗂𝐏.

Example 5.16 (Chains and antichains in a power poset). Consider the poset in
Fig. 19d. Examples of chains are

{∅, {𝑥}} and {∅, {𝑦}, {𝑦, 𝑧}, {𝑥, 𝑦, 𝑧}}, (11)

depicted in Fig. 20a and Fig. 20b, respectively.
Examples of antichains are

{{𝑥}, {𝑦}} and {{𝑥, 𝑦}, {𝑥, 𝑧}, {𝑦, 𝑧}}, (12)

depicted in Fig. 20c and Fig. 20d, respectively.
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heavy

light

cheap expensive cost

m
as
s

Figure 21.: Example of discrete antichains.

500

250

10 20 cost [CHF]

m
as
s[
g]

Figure 22.: Example of continuous antichains.

10 15

5 11 13

1

𝐏

Figure 23.

10 15

5 11 13

1

𝐏

Figure 24.

Example 5.17. In the context of battery choices, consider the diagram in Fig. 21.
The black markers represent an antichain of choices

{⟨cheap, heavy⟩, ⟨expensive, light⟩}. (13)

It is a set of pairs because they do not dominate each other: one is cheaper, but is
heavier, and the other is more expensive, but lighter, making them incomparable.
If a battery with the properties as the red marker existed (very expensive, between
light and heavy), that would be an element that cannot be part of the antichain,
since it would be dominated by ⟨expensive, light⟩.
Similarly, we could think of a continuous law which relates battery cost and mass.
Assume that cheap means 10CHF, expensive means 20CHF, light means 250 g,
and heavy means 500 g. For instance, consider the antichain given by mass =
500 − 25 ⋅ cost, with maximum possible cost 20CHF (Fig. 22).

Example 5.18. Consider the poset 𝐏 = ⟨𝐏, ⪯𝐏⟩ where (𝑝 ⪯𝐏 𝑞) if 𝑝 is a divisor
of 𝑞 and 𝐏 = {1, 5, 10, 11, 13, 15}. A chain of 𝐏 is {1, 5, 10} (Fig. 23). An antichain
of 𝐏 is {10, 11, 13, 15} (Fig. 24).
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5.6. Measuring posets
We can define two measurements for a poset: the height and the width. These
measurements allow to quantify the performance of several algorithms we will
see in the latter parts of the book.

Definition 5.19 (Width of a poset)
The width of a poset, denoted 𝗐𝗂𝖽𝗍𝗁(𝐏), is the maximum cardinality of an
antichain in 𝐏.

Definition 5.20 (Height of a poset)
The height of a poset, denoted 𝗁𝖾𝗂𝗀𝗁𝗍(𝐏), is the maximum cardinality of a
chain in 𝐏.

Note that an empty poset has exactly one chain and one antichain: the empty
set. Therefore, the height and width are zero.

Example 5.21. Consider the poset 𝐏 in Fig. 25a. The longest antichains of 𝐏
are { , , }, { , , }, { , , }, { , , }, { , , }, and { , , }.
Therefore,

𝗐𝗂𝖽𝗍𝗁(𝐏) = 3. (14)

The longest chain in the poset is given by { , , , }, and therefore

𝗁𝖾𝗂𝗀𝗁𝗍(𝐏) = 4. (15)

𝐏
(a) (b) The longest chain (c) One of the largest antichains

Figure 25.: Example for height and width of a poset.

Graded exercise C.3 (MeasurePowerPoset)
Let 𝐀 be a finite set with 𝑛 elements. Obtain an expression (without proof)
for
1. 𝗐𝗂𝖽𝗍𝗁(𝖯𝗈𝗐𝐀);
2. 𝗁𝖾𝗂𝗀𝗁𝗍(𝖯𝗈𝗐𝐀).
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In this chapterwe look at a few standard recipes howwe can construct
posets from sets or other posets.

Bern is the capital of Switzerland, often referred to as the “federal city”. It is sorrounded by the river Aare.
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6.1. Product of posets
Just like the product of sets, we can construct the product of posets. That is a
poset with the underlying set being the product of the underlying sets.

Definition 6.1 (Product of posets)
Given posets 𝐏 = ⟨𝐏, ⪯𝐏⟩ and 𝐐 = ⟨𝐐, ⪯𝐐⟩, the product poset

𝐏 ×𝐐 =
⟨
𝐏 ×𝐐, ⪯𝐏×𝐐

⟩
, (1)

is the set 𝐏 ×𝐐 equipped with the order ⪯𝐏×𝐐 given by

⟨𝑝1, 𝑞1⟩ ⪯𝐏×𝐐 ⟨𝑝2, 𝑞2⟩
.

(𝑝1 ⪯𝐏 𝑝2) ∧ (𝑞1 ⪯𝐐 𝑞2) (2)

Recalling the battery choice example, we have the two posets representing cost
and weight. Given that we want to minimize both cost and weight, by considering
the cost poset containing elements “cheap”, “midrange”, and “expensive”, and
the weight poset containing elements “light”, and “heavy”, we can represent the
product as in Fig. 1.

⟨expensive, heavy⟩

⟨
midrange, heavy

⟩ ⟨
expensive, light

⟩

⟨cheap, heavy⟩
⟨
midrange, light

⟩

⟨
cheap, light

⟩

Figure 1.: Product poset of cost and weight for battery choices.

Example 6.2. Consider now two posets and their product, given in Fig. 2.

𝑦 𝑧

𝑥

𝛽

𝛼
× =

⟨𝑧, 𝛽⟩ ⟨𝑦, 𝛽⟩

⟨𝑧, 𝛼⟩ ⟨𝑥, 𝛽⟩ ⟨𝑦, 𝛼⟩

⟨𝑥, 𝛼⟩

Figure 2.: Product of two posets.
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Measuring the product
The following lemma gives expressions for the width and height of the product
of two posets.

Lemma 6.3. If 𝐏,𝐐 are non-empty finite posets, then we know the height of their product:

𝗁𝖾𝗂𝗀𝗁𝗍(𝐏 ×𝐐) = 𝗁𝖾𝗂𝗀𝗁𝗍(𝐏) + 𝗁𝖾𝗂𝗀𝗁𝗍(𝐐) − 1 (3)

We can derive this bound for the width of the product:

𝗐𝗂𝖽𝗍𝗁(𝐏) ⋅ 𝗐𝗂𝖽𝗍𝗁(𝐐) ≤ 𝗐𝗂𝖽𝗍𝗁(𝐏 ×𝐐) ≤ min {𝖼𝖺𝗋𝖽(𝐏) ⋅ 𝗐𝗂𝖽𝗍𝗁(𝐐), 𝖼𝖺𝗋𝖽(𝐐) ⋅ 𝗐𝗂𝖽𝗍𝗁(𝐏)}. (4)

This bound is tight, in the sense that there exist posets that reach this bound.
Proof. The bound (4) can be found in [1]. As for (3), we have the following
proof. First, we can construct the longest chain in 𝐏:

𝐀 = {𝑝1, …, 𝑝𝗁𝖾𝗂𝗀𝗁𝗍(𝐏)}. (5)

Furthermore, we can construct the longest chain in 𝐐:

𝐁 = {𝑞1, …, 𝑞𝗁𝖾𝗂𝗀𝗁𝗍(𝐐)}. (6)

Out of them, we can construct the chain

𝐂 = {⟨𝑝1, 𝑞1⟩, ⟨𝑝2, 𝑞1⟩, …,
⟨
𝑝𝗁𝖾𝗂𝗀𝗁𝗍(𝐏), 𝑞1

⟩
,
⟨
𝑝𝗁𝖾𝗂𝗀𝗁𝗍(𝐏), 𝑞2

⟩
, …}, (7)

which has height 𝗁𝖾𝗂𝗀𝗁𝗍(𝐏) + 𝗁𝖾𝗂𝗀𝗁𝗍(𝐐) − 1. So we know a lower bound for
the height:

𝗁𝖾𝗂𝗀𝗁𝗍(𝐏 ×𝐐) ≥ 𝗁𝖾𝗂𝗀𝗁𝗍(𝐏) + 𝗁𝖾𝗂𝗀𝗁𝗍(𝐐) − 1. (8)

Now, consider a chain {⟨𝑝1, 𝑞1⟩, …, ⟨𝑝𝑛, 𝑞𝑛⟩} in 𝐏×𝐐. In general, this means
that at least a coordinate of ⟨𝑝𝑖 , 𝑞𝑖⟩must increase in

⟨
𝑝𝑖+1, 𝑞𝑖+1

⟩
. The first

coordinate can only increase by 𝗁𝖾𝗂𝗀𝗁𝗍(𝐏) − 1 times, and the second one by
𝗁𝖾𝗂𝗀𝗁𝗍(𝐐)−1 times. Summing up, the total number of elements in the chain
is at most 𝗁𝖾𝗂𝗀𝗁𝗍(𝐏) + 𝗁𝖾𝗂𝗀𝗁𝗍(𝐐) − 1:

𝗁𝖾𝗂𝗀𝗁𝗍(𝐏 ×𝐐) ≤ 𝗁𝖾𝗂𝗀𝗁𝗍(𝐏) + 𝗁𝖾𝗂𝗀𝗁𝗍(𝐐) − 1. (9)

Because upper and lower bounds are the same, we have an exact expression
for the height. Note that this result holds only assuming that 𝐏 and 𝐐 are
not empty (for that case, 𝗁𝖾𝗂𝗀𝗁𝗍(𝐏 ×𝐐) = 0).

Something incorrect or unclear or missing? Report issues on GitHub by clicking here.

https://github.com/ACT4E/ACT4E/issues/new?labels=chap:poset-build;body=Chapter:%20Constructing posets%0ASection:%20 Product of posets%0AVersion:%202024-12-09%0A%0ACheck%20all%20that%20apply:%0A-%20(%20)%20Something%20incorrect%0A-%20(%20)%20Something%20not%20clear%0A-%20(%20)%20Something%20missing%0A%0APlease%20describe%20more%20in%20detail%20below.%20Feel%20free%20to%20change%20the%20title%20to%20something%20more%20informative.%0A;title=Constructing posets%20/%20 Product of posets%20/%202024-12-09
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6.2. Disjoint union of posets
Following the pattern, we can define the disjoint union of poset as a poset with
the underlying set being the disjoint union of the underlying sets.

Definition 6.4 (Sum of posets)
Given posets 𝐏 = ⟨𝐏, ⪯𝐏⟩ and 𝐐 = ⟨𝐐, ⪯𝐐⟩, their sum 𝐏 + 𝐐 = ⟨𝐏+𝐐,
⪯𝐏+𝐐⟩, is the set 𝐏+𝐐 equipped with the order ⪯𝐏+𝐐 defined by

⟨𝑖, 𝑥⟩ ⪯𝐏+𝐐 ⟨𝑗, 𝑦⟩⇔
⎧

⎨
⎩

𝑖 = 𝑗, and
𝑥 ≤𝐏 𝑦 if 𝑖 = 1,
𝑥 ≤𝐐 𝑦 if 𝑖 = 2.

(10)

The expression (10) can be intimidating at first, but all it is saying is that the order
relation of the disjoint union is obtained by stitching together the two order
relations. No element of 𝐏 is related to an element of 𝐐, and vice versa.

Example 6.5. Consider the posets𝐏,𝐐, over the sets𝐏 =
⟨

,
⟩
with ⪯𝐏 ,

and 𝐐 =
⟨

,
⟩
, with ⪯𝐐 . Their disjoint union can be represented as in

Fig. 3.

Figure 3.: Disjoint union of posets.

∙ ∙

+

∙ ∙

=

⟨
1,

⟩ ⟨
2,

⟩
∙ ∙

∙ ∙⟨
1,

⟩ ⟨
2,

⟩

𝐏 𝐐 𝐏+𝐐

Graded exercise C.4 (MeasurePosetSum)
Prove the following properties:
1. The width of the sum is the sum of the widths:

𝗐𝗂𝖽𝗍𝗁(𝐏+𝐐) = 𝗐𝗂𝖽𝗍𝗁(𝐏) + 𝗐𝗂𝖽𝗍𝗁(𝐐). (11)

2. The height of the sum is the maximum of the heights:

𝗁𝖾𝗂𝗀𝗁𝗍(𝐏+𝐐) = max(𝗁𝖾𝗂𝗀𝗁𝗍(𝐏), 𝗁𝖾𝗂𝗀𝗁𝗍(𝐐)). (12)
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𝑎 𝑐∙ ∙

∙
𝑏𝐏

𝑏∗∙

∙ ∙
𝑎∗ 𝑐∗𝐏op

Figure 4.: Opposite of a poset.

6.3. Opposite of a poset
Definition 6.6 (Opposite of a poset)
The opposite of a poset 𝐏 = ⟨𝐏, ⪯𝐏⟩ is the poset denoted 𝐏 op = ⟨𝐏, ⪯ op

𝐏 ⟩. It
has the same elements as 𝐏, but is equipped with the reverse ordering, in
the sense that, for all 𝑥, 𝑦 ∈ 𝐏,

𝑥 ⪯𝐏 𝑦
.

𝑦 ⪯ op
𝐏 𝑥 (13)

For a given 𝑥 ∈ 𝐏, we will sometimes write 𝑥∗ do denote its corresponding copy
in 𝐏 op, in order to emphasize that 𝑥 and 𝑥∗ belong to distinct posets. However,
often we will not be so pedantic with our notation.

Example 6.7 (Credit and debt). Let us define the set

𝐏 = {0.00, 0.01, 0.02, …} ⊆ ℝ (14)

of all CHF monetary quantities approximated to the cent. From this set we can
define two posets, 𝐏+ = ⟨𝐏, ≤⟩ and 𝐏− = ⟨𝐏, ≥⟩, that are the opposite of each
other. If the context is that, given two quantities 1CHF and 2CHF, we prefer
1CHF to 2CHF (for example because it is a cost to pay to acquire a component),
then we are working in 𝐏+, otherwise we are working in 𝐏− (for example because
it represents the price at which we are selling our product). Traditionally, in
double-entry ledger systems, the numbers were not written with negative signs,
but rather in color: red and black. From this convention we get the idioms “being
in the black” and “being in the red”.

Something incorrect or unclear or missing? Report issues on GitHub by clicking here.

https://github.com/ACT4E/ACT4E/issues/new?labels=chap:poset-build;body=Chapter:%20Constructing posets%0ASection:%20 Opposite of a poset%0AVersion:%202024-12-09%0A%0ACheck%20all%20that%20apply:%0A-%20(%20)%20Something%20incorrect%0A-%20(%20)%20Something%20not%20clear%0A-%20(%20)%20Something%20missing%0A%0APlease%20describe%20more%20in%20detail%20below.%20Feel%20free%20to%20change%20the%20title%20to%20something%20more%20informative.%0A;title=Constructing posets%20/%20 Opposite of a poset%20/%202024-12-09
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ℝ
ℝ

𝑥∙

∙𝑦

Figure 5.: Poset interval on ℝ2.

ℝ
ℝ

𝑧∙

∙

∙
∙

𝑢

𝑥

𝑦

Figure 6.: [𝑥, 𝑦] ⪯𝐓𝐰 𝐏 [𝑧, 𝑢]

6.4. “Twisted” poset of intervals
An interval of time is defined by two numbers: a lower and upper bound. The
notation [𝑎, 𝑏] usually defines an interval on the real line. We can generalize the
notion to an interval of a poset.

Poset intervals
Definition 6.8 (Interval)
An interval of a poset 𝐏 is a pair of elements 𝑥, 𝑦 such that 𝑥 ⪯𝐏 𝑦. We also
write [𝑥, 𝑦], and we identify it with the subset of elements of 𝐏 that are a
bounded above and below by the two elements:

[𝑥, 𝑦] ∶= {𝑧 ∈ 𝐏∶ 𝑥 ⪯𝐏 𝑧 ⪯𝐏 𝑦}. (15)

Note that, following this definition, the empty set is not an interval.

A “twisted” poset of intervals
There are two canonical ways to order poset intervals: a “twisted” version and an
“arrow” version. The names are not intuitive at this point: later on, we will see
that there exists an “arrow construction” and a “twisted arrow construction” for
categories, and they correspond to these constructions when a poset is considered
as a category.

Definition 6.9 (“Twisted” poset of intervals 𝐓𝐰 𝐏)
Given a poset 𝐏, we define a “twisted” poset of intervals 𝐓𝐰 𝐏 by ordering
the intervals by inclusion:

[𝑥, 𝑦] ⪯𝐓𝐰 𝐏 [𝑧, 𝑢]
.

[𝑥, 𝑦] ⊆ [𝑧, 𝑢] (16)

Equivalently we only need to check the bounds:

[𝑥, 𝑦] ⪯𝐓𝐰 𝐏 [𝑧, 𝑢]
.

(𝑧 ⪯𝐏 𝑥) ∧ (𝑦 ⪯𝐏 𝑢) (17)

Exercise17. Check that the relation defined in Def. 6.9 is indeed a poset.
See solution on page 131.

In general, 𝐓𝐰 𝐏 does not have a top or a bottom.
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[0, 100]

[0, 4]

[0, 2] [1, 4]

[1, 3]

[1, 1] [3, 3] [100, 100]
𝐓𝐰ℝ2

Figure 7.

Set-based filtering
We now look at an example of set-based filtering, where filtering refers to
online inference (recursive estimation). Suppose that we want to track the value
of a quantity 𝑥 ∈ [0, 100], without having a priori information about 𝑥. We are
equipped with sensors, which periodically measure the quantity 𝑥 with some
variable precision. At time 𝑡 ∈ ℝ≥0 they produce an observation 𝑦𝑡 ∶ 𝑥𝑡 ∈ [𝑙𝑡, 𝑢𝑡].
Also, note that the quantity fluctuates randomly, and we bound its “velocity”
to be �̇�𝑡 ∈ [91, +1] (except at boundaries). At the beginning, our information
state 𝑖0 could be that 𝑥 ∈ [0, 100]. At time 0, we get an observation 𝑦0, that says 𝑥
∈ [21, 24]. The new information state can be obtained by “fusing” the two inputs
we have received about 𝑥. This corresponds to the intersection

𝑥 ∈ ([0, 100] ∩ [21, 24])
.

𝑥 ∈ [21, 24] (18)

Say we get an observation 𝑦1 which says 𝑥 ∈ [19, 22]. We now need to take into
account the evolution/dynamics of the quantity we are tracking. From the inter-
val [21, 24] we know that the variable could have evolved in [20, 25] (dynamics
are bounded with a unit increase/decrease). Therefore, the new information state
is given by

𝑥 ∈ ([20, 25] ∩ [19, 22])
.

𝑥 ∈ [20, 22] (19)

One of the structures which could sustain this kind of inference, is the poset of
twisted intervals (Def. 6.9).
The Hasse diagram representing a situation related to this example could be as
reported in Fig. 7.

Something incorrect or unclear or missing? Report issues on GitHub by clicking here.
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ℝ
ℝ

𝑧∙

∙

∙

∙

𝑢

𝑥

𝑦

Figure 8.: [𝑥, 𝑦] ⪯𝐀𝐫𝐫 𝐏 [𝑧, 𝑢]

6.5. Arrow poset of intervals
We can order intervals in a second way, which we call “arrow construction”.

Definition 6.10 (“Arrow” poset of intervals 𝐀𝐫𝐫 𝐏)
We define an “Arrow” poset of intervals on the poset 𝐏 by setting the order:

[𝑥, 𝑦] ⪯𝐀𝐫𝐫 𝐏 [𝑧, 𝑢]
.

(𝑥 ⪯𝐏 𝑧) ∧ (𝑦 ⪯𝐏 𝑢) (20)

This is similar to taking the product of 𝐏 with itself; however, we are only con-
sidering intervals, so we obtain a subposet of 𝐏 × 𝐏.

Exercise18. Check that the relation defined in Def. 6.10 is indeed a poset.
See solution on page 131.
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Life is hard: to obtain more, you need to work more. Monotonicity is
the mathematical concept that captures this principle.

Thermal waters are typical in Switzerland. Fun fact: one can actually eat fondue while enjoying a relaxing bath. Only for the brave!
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7.1. Monotone maps
A monotone map is the generalization to posets of a “non-decreasing” function
on real numbers. The function 𝑥 ↦ max(0, 42𝑥) is non-decreasing on the real
numbers because

𝑥 ≤ 𝑦
.

max(0, 42𝑥) ≤ max(0, 42𝑦) (1)

Note that we use “≤” and not “<”. “Non-decreasing” is a weaker condition than
“increasing”.
The definition of monotone function on a poset is the direct generalization of
this concept; the only change is that we use the partial orders at hand, rather
than the total order on the reals.

Definition 7.1 (Monotone map)
A monotone map between two posets 𝐏 = ⟨𝐏, ⪯𝐏⟩ and 𝐐 = ⟨𝐐, ⪯𝐐⟩ is a
function 𝑓∶ 𝐏 → 𝐐 that is compatible with the partial-orderings on its
source and target in the sense that

𝑥 ⪯𝐏 𝑦 .
𝑓(𝑥) ⪯𝐐 𝑓(𝑦) (2)

Example 7.2 (The identity is monotone). Given a poset 𝐏, the identity func-
tion id𝐏 ∶ 𝐏 → 𝐏 is a monotone map, since if 𝑥 ⪯𝐏 𝑦, then id𝐏(𝑥) = 𝑥 ⪯𝐏 𝑦 =
id𝐏(𝑦).

Example 7.3 (Constant functions). Every constant function is a monotone map.

Example 7.4 (Cardinality map). Consider the power poset (Def. 5.12) 𝖯𝗈𝗐𝐀 of
a finite set 𝐀. The cardinality map

𝖼𝖺𝗋𝖽 ∶ 𝖯𝗈𝗐𝐀→ ℕ (3)

is monotone when considered as a map from the poset 𝖯𝗈𝗐𝐀 to the poset ⟨ℕ, ≤⟩.
Figure 1 shows a visualization of this map for the set 𝐀 = {𝑥, 𝑦, 𝑧}. To prove this,
recall that in the power poset subsets are ordered by inclusion. Therefore, we
need to show that

𝐒 ⊆ 𝐓
.

𝖼𝖺𝗋𝖽(𝐒) ≤ 𝖼𝖺𝗋𝖽(𝐓) (4)

This is easy to see that, because all elements of 𝐒 are also in 𝐓, the cardinality of 𝐒
cannot be more than the cardinality of 𝐓. Monotonicity depends on the partial

{𝑥, 𝑦, 𝑧} 3

{𝑥, 𝑦} {𝑥, 𝑧} {𝑦, 𝑧} 2

{𝑥} {𝑦} {𝑧} 1

∅ 0
𝖯𝗈𝗐 {𝑥, 𝑦, 𝑧} ⟨ℕ, ≤⟩𝖼𝖺𝗋𝖽

Figure 1.: The cardinality map is a monotone map.
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order used on the domain and the codomain. To indicate that a map is monotone,
we write it indicating the two posets as the domain/codomain:

𝖼𝖺𝗋𝖽∶ ⟨𝖯𝗈𝗐𝐀, ⊆⟩→ ⟨ℕ, ≤⟩. (5)

Graded exercise C.5 (WhichMapsMonotone)
[4 points]
Consider the posets 𝐏 = ⟨𝐏, ⪯𝐏⟩ and 𝐐 =

⟨
𝐐, ⪯𝐐

⟩
described respectively by

the following Hasse diagrams.

∙ ∙

∙ ∙

∙ ∙

∙ ∙

(6)

The following diagrams show functions 𝐏→ 𝐐. We will call them 𝑓1, 𝑓2, 𝑓3
and 𝑓4, respectively.

𝑓1

∙ ∙

∙ ∙

∙ ∙

∙ ∙

𝑓2

∙ ∙

∙ ∙

∙ ∙

∙ ∙

𝑓3

∙ ∙

∙ ∙

∙ ∙

∙ ∙

𝑓4

∙ ∙

∙ ∙

∙ ∙

∙ ∙

Which of the functions 𝑓1, 𝑓2, 𝑓3 and 𝑓4 are monotone maps?

Lemma 7.5. Consider a discrete poset 𝐏 and a poset 𝐐. Any map 𝑓∶ 𝐏→ 𝐐 is
monotone.

Something incorrect or unclear or missing? Report issues on GitHub by clicking here.
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Graded exercise C.6 (FromDiscretePosets)
Prove Lemma 7.5
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Graded exercise C.7 (MonotoneMapCheck)
Prove your answers to the following questions.
1. Is the function

𝑓∶ ⟨ℤ, ≤⟩ → ⟨ℤ, ≤⟩
𝑥 ↦ 𝑥2

monotone?
2. Let 𝐀 = {𝑎, 𝑏, 𝑐} and consider the posets ⟨𝖯𝗈𝗐𝐀, ⊆⟩ and ⟨ℕ, ≤⟩. Let

𝑓∶ 𝖯𝗈𝗐𝐀 → ℕ
𝐒 ↦ 𝖼𝖺𝗋𝖽(𝐒)

be the function which calculates the cardinality of any subset of 𝐀. Is 𝑓
monotone?

3. Consider the set of natural numberswhichdivide the number36,equipped
with the partial order “≼” such that 𝑥 ≼ 𝑦 if and only if 𝑥 divides 𝑦. Call
this poset 𝐏 = ⟨𝐏, ≼⟩, and let 𝑓∶ 𝐏→ {⊥, ⊤} be defined by

𝑓(𝑥) = {
⊤ if 𝑥 is an even number,
⊥ if 𝑥 is an odd number.

(7)

Is𝑓monotone ifwe equip {⊥, ⊤}with the usual partial order such that⊥ ⪯
⊤?

Definition 7.6 (Order isomorphism)
A monotone map is an order isomorphism if

𝑝 ⪯𝐏 𝑞
.

𝑓(𝑝) ⪯𝐐 𝑓(𝑞) (8)

Monotonicity is compositional
Monotonicity is a compositional property: the series composition of two mono-
tone maps is monotone.

Lemma 7.7. Given posets 𝐏,𝐐,𝐑 and two monotone maps. 𝑓∶ 𝐏 → 𝐐 and
𝑔∶ 𝐐→ 𝐑, the composite map 𝑓 # 𝑔∶ 𝐏→ 𝐑 is monotone as well.

Proof. Consider 𝑝1, 𝑝2 ∈ 𝐏, 𝑞1, 𝑞2 ∈ 𝐐. By assuming that 𝑓 and 𝑔 are
monotone, we have

𝑝1 ⪯𝐏 𝑝2
𝑓(𝑝1) ⪯𝐐 𝑓(𝑝2) (9)

and
𝑞1 ⪯𝐐 𝑞2 .

𝑔(𝑞1) ⪯𝐑 𝑔(𝑞2) (10)

By substituting the above in the map composition formula, we have

𝑝1 ⪯𝐏 𝑝2 ,
(𝑓 # 𝑔)(𝑝1) ⪯𝐑 (𝑓 # 𝑔)(𝑝2) (11)
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number of widgets

unit cost

(a)Unit cost vs number of wid-
gets.

number of widgets

total cost

(b) Total cost vs number of
widgets.

Figure 2.: Unit and total costs vs. number of wid-
gets.

which is the monotonicity condition for the composite map (𝑓 # 𝑔).

Antitone maps
Dually to monotone functions, we can define antitone maps as order reversing
functions.

Definition 7.8 (Antitone map)
An antitone map between two posets 𝐏 = ⟨𝐏, ⪯𝐏⟩ and 𝐐 = ⟨𝐐, ⪯𝐐⟩ is a
map 𝑓 that reverses the ordering, in the sense that

𝑥 ⪯𝐏 𝑦 .
𝑓(𝑥) ⪰𝐐 𝑓(𝑦) (12)

Example 7.9 (Unit cost, total cost). Assume that you want to produce some
widgets, and that the manufacturing cost depends on the number of widgets. The
function describing the total cost 𝑡∶ ℕ→ ℝ≥0 is amap between the ordered setsℕ
andℝ≥0, andmaps each quantity ofwidgets to a totalmanufacturing cost (Fig. 2b).
Clearly, 𝑡 is a monotone function. Conversely, the unit cost function 𝑢∶ ℕ→ ℝ≥0
is antitone (Fig. 2a).

It is easy to see that an antitone map 𝑓 ∶ 𝐏→ 𝐐 is the same thing as a monotone
map 𝑓 ∶ 𝐏 op → 𝐐.

Lemma 7.10. An antitone map 𝑓 ∶ 𝐏→ 𝐐 is a monotone map 𝑓 ∶ 𝐏 op → 𝐐
and a monotone map 𝑓 ∶ 𝐏→ 𝐐 op.
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7.2. Monotone relations and design problems
Definition 7.11 (monotone relation)
Let 𝐏 = ⟨𝐏, ⪯𝐏⟩ and 𝐐 = ⟨𝐐, ⪯𝐐⟩ be posets. A monotone relation 𝑅∶ 𝐏 →
𝐐 is a relation 𝑅∶ 𝐏→ 𝐐 such that for all 𝑥, 𝑥′ ∈ 𝐏 and all 𝑦, 𝑦′ ∈ 𝐐,
1. ⟨𝑥, 𝑦⟩ ∈ 𝑅, 𝑥′ ≤𝐏 𝑥 ⟹

⟨
𝑥′, 𝑦

⟩
∈ 𝑅;

2. ⟨𝑥, 𝑦⟩ ∈ 𝑅, 𝑦 ≤𝐐 𝑦′ ⟹
⟨
𝑥, 𝑦′

⟩
∈ 𝑅.

Monotone relations and co-design
Amonotone relation

𝐝∶ 𝐅→ 𝐑 (13)

can be used tomodel a relationship of “feasability” between a poset𝐅 of “function-
alities” and a poset 𝐑 of “requirements", in the sense that the relation describes
whether a resource 𝑓 ∈ 𝐅, seen as a functionality or service or product, is feasible
to obtain given a certain resource 𝑟 ∈ 𝐑, with 𝑟 interpreted as a requirement or a
cost.
The condition

⟨𝑓, 𝑟⟩ ∈ 𝐝, 𝑟 ≤𝐑 𝑟′ ⟹
⟨
𝑓, 𝑟′

⟩
∈ 𝐝 (14)

says that if 𝑓 is feasible to obtain using 𝑟, then it is also feasible to obtain 𝑓 if we
use more resources, 𝑟′.
The condition

⟨𝑓, 𝑟⟩ ∈ 𝐝, 𝑓′ ≤𝐅 𝑓 ⟹
⟨
𝑓′, 𝑟

⟩
∈ 𝐝, (15)

on the other hand, says that if 𝑓 is feasible to obtain using 𝑟 amount of resources,
then it is also feasible to obtain less, 𝑓′, using the same resources 𝑟.

Design problems
Here is an alternative way to think about relations of feasibility. Given a particular
functionality 𝑓 ∈ 𝐅 and requirement 𝑟 ∈ 𝐑, we would like to know a “true” or
“false” answer to the question of whether they form a feasible pair of resources.
This situation is described by a function

𝑔∶ 𝐅 ×𝐑→ Bool. (16)

The value 𝑔(𝑓, 𝑟) is the answer to the question “is the functionality 𝑓 feasible
with resources 𝑟?”.
The conditions (14) and (15) can now be translated into this formulation: they say,
respectively, that 𝑔∶ 𝐅 ×𝐑→ Bool is monotone in the variable 𝑟 and antitone
in the variable 𝑓. Or, equivalently, we can say that we have a monotone map of
two variables of the type

𝐅op ×𝐑→ Bool. (17)

Definition 7.12 (Design Problem)
Given posets 𝐅 and 𝐑, a design problem (DP) from 𝐅 to 𝐑 is a monotone
map of the form

𝐝∶ 𝐅op ×𝐑→ Pos Bool. (18)

Definition 7.13 (Feasible set of a design problem)
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𝑎3 𝑏2

𝑎2

𝑎1 𝑏1
𝐏 𝐐𝐝

Figure 3.

⟨𝑎1, 𝑏1⟩ ⟨𝑎1, 𝑏2⟩

⟨𝑎2, 𝑏2⟩ ⟨𝑎3, 𝑏2⟩

𝐊𝐝

Figure 4.

We define the feasible set 𝐊𝐝 of a design problem

𝐝∶ 𝐅op ×𝐑→ Pos Bool (19)

as the subset of 𝐅op ×𝐑 for which 𝐝 is the indicator function, that is

𝐊𝐝 = {⟨𝑓∗, 𝑟⟩ ∈ 𝐅op ×𝐑 ∣ 𝐝(𝑓∗, 𝑟) = ⊤}. (20)

Note that the feasibility set𝐊𝐝 of a design problem 𝐝∶ 𝐅op ×𝐑→ Pos Bool is a
binary relation𝐊𝐝 ⊆ 𝐅op×𝐑. We saw in Section 4.4 that there is a one-to-one cor-
respondence between functions 𝑔∶ 𝐀 × 𝐁→ Bool and binary relations 𝑅∶ 𝐀→
𝐁.

Graded exercise C.8 (DPsAsUpperSets)
In this exercise, your task is to prove that there is a one-to-one correspon-
dence between design problems 𝐝∶ 𝐅op × 𝐑 → Pos Bool and upper
sets𝐊 ⊆ 𝐅op ×𝐑.
In more detail:
Let 𝐀 denote the set of all design problems 𝐝∶ 𝐅op ×𝐑→ Pos Bool and let
𝐁 denote that set of all upper sets𝐊 ⊆ 𝐅op ×𝐑.
1. Define a function

𝑓∶ 𝐀→ 𝐁

which to any design problem in 𝐀 assigns a corresponding upper set in 𝐁.
2. Define a function

𝑔∶ 𝐁→ 𝐀

which maps any upper set in 𝐁 to a corresponding design problem in 𝐀.
3. Prove that 𝑓 and 𝑔 are inverses to one another.

Graded exercise C.9 (DPsFromMonotoneMaps)
Given anymonotonemap 𝑔∶ 𝐅→ Pos 𝐑,we can turn it into a design problem

𝐝𝑔 ∶ 𝐅op ×𝐑→ Pos Bool

via the following recipe. Set

𝐝𝑔(𝑓∗, 𝑟) = ⊤ if and only if 𝑔(𝑓) ⪯ 𝑟.

Prove that 𝐝𝑔, as defined above, is indeed a design problem when 𝑔 is a
monotone map.

Recall that when working with a relation 𝑅∶ 𝐀 → 𝐁 between sets, if the sets
in question were finite, then we could conveniently draw the relation 𝑅 using
arrows to connect elements of 𝐀 to those elements of 𝐁 to which they are related
via 𝑅. Given a design problem 𝐝∶ 𝐅op ×𝐑→ Pos Bool involving finite posets,
we can visualize it in a similar fashion. We use Hasse diagrams to visualize the
posets involved, and we use dashed arrows to connect those elements which are
related via the feasibility set𝐊𝐝.

Example 7.14. In Fig. 3 we have illustrated this kind of visualization in the case
of a design problem of the type

𝐝∶ 𝐏 op ×𝐐→ Pos Bool, (21)
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engine fuelthrust

Figure 6.: Diagram of the engine design problem.

where 𝐏 = ⟨𝐏, ⪯⟩ and 𝐐 = ⟨𝐐, ⪯⟩ are finite posets, with

𝐏 = {𝑎1, 𝑎2, 𝑎3} and 𝐐 = {𝑏1, 𝑏2}, (22)

and ordered as shown in the figure.
The relation described by the design problem is marked with the dashed arrows;
The feasibility set

𝐊𝐝 = {⟨𝑎1, 𝑏1⟩, ⟨𝑎1, 𝑏2⟩, ⟨𝑎2, 𝑏2⟩, ⟨𝑎3, 𝑏2⟩}, (23)

is reported in Fig. 4.

The Boolean-valued design problems we are considering in this section do not
distinguish between particular implementations: they only tell us if any imple-
mentation or solution exists for given functionality and resources.

Diagrammatic notation We represent design problems using a diagram-
matic notation. One design problem 𝐝∶ 𝐅 ,↦ 𝐑 is represented as a box with
functionality 𝐅 on the left and resources 𝐑 on the right (Fig. 5).

𝐝 resources 𝐑functionality 𝐅 Figure 5.: Diagrammatic representation of a de-
sign problem.

As we did for DPIs, we will connect these diagrams.

Example 7.15. An aerospace company, Jeb’s Spaceship Parts, is designing a new
rocket engine, the Bucket of Boom X100. The engine requires fuel and provides
thrust, and so it can be modeled as a design problem where fuel and thrust are
two totally-ordered sets representing their respective resources.
The corresponding diagram is reported in Fig. 6.
Concretely, “engine” is represented as a monotone map

engine∶ thrust op × fuel→ Pos Bool. (24)

Assuming that the posets fuel, thrustop are finite,we can think of the “engine” de-
sign problem as a matrix, where each (𝑖, 𝑗)-th entry is the answer to the question,
“is the amount of thrust 𝑓𝑖 feasible with the amount of fuel 𝑟𝑗?”:

Fuel
𝑟1 = 0 𝑟2 𝑟3 … 𝑟𝑚
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

𝑓𝑛
∗ = 0 0 0 0 0
𝑓∗𝑛−1 0 0 0 1

thrustop 𝑓∗𝑛−2 0 1 1 1
⋮ ⋱
𝑓∗1 1 1 1 1

(25)

Suppose we have tested or are given the performance data of a few different
engines, as possible solutions to the “engine” design problem, each with a fixed
optimal fuel-thrust value. To illustrate the monotonicity assumption, we can
render the data of “engine” as a graph, as depicted in Fig. 7.
Note that the shaded regions cover the feasible solution set. This feasible solution
set is always an upper set (Def. 8.10) in thrust op × fuel, which is another way of
characterizing the monotonicity of the design problem. The optimal solutions,
indicated by dots, form an antichain of solutions. Wewill come back to antichains
when discussing how to compute optimal solutions of design problems.
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Figure 7.:Graphical representation of the possible
solutions of the engine design problem.

𝖥𝗎𝖾𝗅

𝖳𝗁𝗋𝗎𝗌𝗍op

𝑓∗𝑛 = 0
𝑓∗𝑛−1

⋮

𝑟1 = 0 𝑟2 …
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Querying

Sometimes we are not focused on whether a specific pair of resources, ⟨𝑓, 𝑟⟩ is a
feasible pair for a given design problem (or monotone relation), but rather, we
would like to know, for a fixed functionality 𝑓, what are all the requirements 𝑟
that render ⟨𝑓, 𝑟⟩ feasible. Or, analogously, we might want to know, for a fixed
requirement 𝑟, what are all possible functionalities 𝑓 such that ⟨𝑓, 𝑟⟩ is feasible.
We call this type of a question a query.
Equation (1) on the one hand, and (2) on the other hand, give two perspectives
on the mathematical definition of what we are calling a design problem. These
two perspectives are analogous to something we already discussed in Section 4.4,
when talking about binary relations. There, we said that a binary relation from
a set 𝐀 to a set 𝐁 is a subset 𝑅 ⊆ 𝐀 × 𝐁, but that such a relation 𝑅 can also,
equivalently, be viewed as a function 𝜙𝑅 ∶ 𝐀×𝐁→ {⊥, ⊤}. The subset 𝑅 ⊆ 𝐀×𝐁
corresponded to the set

{⟨𝑥, 𝑦⟩ ∈ 𝐀 × 𝐁 ∣ 𝜙𝑅(𝑥, 𝑦) = ⊤}. (26)

To make the analogy with (20) more precise, note that 𝐀, 𝐁, {⊥, ⊤}, and 𝜙𝑅 ∶ 𝐀 ×
𝐁→ {⊥, ⊤} live in the category of sets, and that 𝐅,𝐑, Bool and 𝐝∶ 𝐅op×𝐑→ Pos
Bool live in the category of posets.
In Section 4.4, we also discussed two further ways to describe a relation 𝑅 ⊆
𝐀×𝐁: namely, we can transform the function 𝜙𝑅 ∶ 𝐀×𝐁→ {⊥, ⊤} either into a
function

�̂�𝑅 ∶ 𝐀 → 𝖯𝗈𝗐(𝐁),
𝑥 ↦ {𝑦 ∈ 𝐁 ∣ 𝑥𝑅𝑦}.

(27)

or a function
�̌�𝑅 ∶ 𝐁 → 𝖯𝗈𝗐(𝐀),

𝑦 ↦ {𝑥 ∈ 𝐀 ∣ 𝑥𝑅𝑦}.
(28)

There are analogous transformations for a design problem 𝐝∶ 𝐅op × 𝐑 → Pos
Bool. Can you guess what they would be?
In order to use our “sets to posets” analogy and find an answer, it is useful to
express the constructions we used in the setting of sets and relations entirely in
terms of constructions from the category of sets, if possible. Then the strategy is
to identify what are the analogous constructions in the category of posets, and
this will allow us to make analogous definitions for design problems.
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The functions �̂�𝑅 and �̌�𝑅 above have powersets as their target objects. What is
the analogue of the powerset operation in the category of posets?
The answer that we will use goes like this. Given a set 𝐀, there is a 1-to-1 corre-
spondence between subsets of 𝐀 and functions 𝐀→ {⊥, ⊤} (similar to above, a
set corresponds here to its indicator function). Thus, 𝖯𝗈𝗐(𝐀) can be seen to corre-
spond to Hom Set(𝐀; {⊥, ⊤}). The latter is definitely an expression we can transfer,
by analogy, to the category of posets, namely we can consider Hom Pos(𝐏; Bool).
And from Graded Exercise F.8 we know that monotone maps. 𝐏→ Bool corre-
spond to upper subsets of 𝐏. So Hom Pos(𝐏; Bool) corresponds to set 𝖴𝖲𝖾𝗍𝗌 (𝐏) of
upper subsets of 𝐏 (c.f. Section 8.3 for the definitions of upper and lower sets).
We now can write down the “poset” analogues of the functions �̂�𝑅 and �̌�𝑅.
Namely, given a design problem (19), we have associated functions

�̂�∶ 𝐅op → 𝖴𝖲𝖾𝗍𝗌 (𝐑) (29)

and
�𝐝∶ 𝐑→ 𝖴𝖲𝖾𝗍𝗌 (𝐅op). (30)

However, we are not quite finished: are these monotone functions? Which poset
structure can we cho3ose on 𝖴𝖲𝖾𝗍𝗌 (𝐑) and 𝖴𝖲𝖾𝗍𝗌 (𝐅op), respectively, so that �̂�
and �𝐝 are monotone?

Graded exercise C.10 (CurryingDesignProblems)
Let 𝐝∶ 𝐅op × 𝐑 → Pos Bool be a design problem. In this exercise we will
show that (29) corresponds to a monotone function

𝐅→ ⟨𝖴𝖲𝖾𝗍𝗌 (𝐑), ⊇⟩, (31)

and that (30) corresponds to a monotone function

𝐑→ ⟨𝖫𝖲𝖾𝗍𝗌 (𝐅), ⊆⟩. (32)

Here 𝖴𝖲𝖾𝗍𝗌 (𝐑) denotes the set of upper sets of 𝐑 and 𝖫𝖲𝖾𝗍𝗌 (𝐅) denotes the
set of lower sets of 𝐅.
1. Show that �̂�∶ 𝐅op → 𝖴𝖲𝖾𝗍𝗌 (𝐑) and �𝐝∶ 𝐑→ 𝖴𝖲𝖾𝗍𝗌 (𝐅op) are monotone

maps when we consider 𝖴𝖲𝖾𝗍𝗌 (𝐑) and 𝖴𝖲𝖾𝗍𝗌 (𝐅op) to have the partial
order corresponding to the inclusion of subsets.

2. Show that the poset ⟨𝖴𝖲𝖾𝗍𝗌𝐅op, ⊆⟩ and the poset ⟨𝖫𝖲𝖾𝗍𝗌𝐅, ⊆⟩ are iso-
morphic.

3. Show that there is a 1-to-1 correspondence between monotone functions

𝐅op → ⟨𝖴𝖲𝖾𝗍𝗌𝐑, ⊆⟩ (33)

and monotone functions

𝐅→ ⟨𝖴𝖲𝖾𝗍𝗌𝐑, ⊇⟩, (34)

where in the latter poset, the order is given by the relation of “contain-
ment” (as opposed to “inclusion”).

4. Explain, in a few words, why the above steps prove the stated goal of this
exercise.

A note on pre-orders
The theory of design problems can be easily generalized to pre-orders. This
means that there could be two elements 𝑝 and 𝑞 such that 𝑝 ⪯𝐏 𝑞 and 𝑝 ⪰𝐏 𝑞
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but 𝑝 ≠ 𝑞.
This is actually common in practice. For example, if the order relation comes
from human judgement, such as customer preference, all bets are off regarding
the consistency of the relation. We will only refer to posets for two reasons:
1. The exposition is smoother.
2. Given a pre-order, computation will always involve passing to the poset

representation.
This means that, given a pre-order, we can consider the poset of its isomorphism
classes, by means of the following equivalence relation:

𝑝 ≃ 𝑞 ≡ (𝑝 ⪯𝐏 𝑞) ∧ (𝑞 ⪯𝐏 𝑝). (35)
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𝖼𝖾𝗂𝗅

id 𝗋𝗍𝗇𝗍𝗍𝖾

𝖿 𝗅𝗈𝗈𝗋

Figure 8.

7.3. Order on monotone maps
Fixed two posets 𝐏 and 𝐐, the set of monotone maps 𝐏 → 𝐐 form a poset
themselves. We can order them point wise.

Definition 7.16 (Order on monotone maps)
Consider two monotone maps 𝑓, 𝑔∶ 𝐏 → 𝐐. We say that 𝑓 precedes 𝑔 if,
point wise, the output of 𝑓 precedes the output of 𝑔 when presented with
the same input:

𝑓 ⪯𝐏→𝐐 𝑔
.

∀𝑥 ∈ 𝐏∶ 𝑓(𝑥) ⪯𝐐 𝑔(𝑥) (36)

Example 7.17 (Rounding functions). In this example we look at “rounding
functions”: these are functions that truncate a real number to an integer. You
might already know the ceiling function 𝖼𝖾𝗂𝗅 (Fig. 9a) and the floor function
𝖿 𝗅𝗈𝗈𝗋 (Fig. 9b), which are formally defined as

𝖼𝖾𝗂𝗅∶ ⟨ℝ, ≤⟩ → ⟨ℕ, ≤⟩,
𝑥 ↦ min {𝑦 ∈ ℕ∶ 𝑦 ≥ 𝑥},

(37)

and
𝖿 𝗅𝗈𝗈𝗋 ∶ ⟨ℝ, ≤⟩ → ⟨ℕ, ≤⟩,

𝑥 ↦ max {𝑦 ∈ ℕ∶ 𝑦 ≤ 𝑥}.
(38)

The functions 𝖼𝖾𝗂𝗅 and 𝖿 𝗅𝗈𝗈𝗋 are monotone, since 𝑥 ≤ 𝑧 implies both 𝖼𝖾𝗂𝗅(𝑥) ≤
𝖼𝖾𝗂𝗅(𝑧) and 𝖿 𝗅𝗈𝗈𝗋(𝑥) ≤ 𝖿 𝗅𝗈𝗈𝗋(𝑧).
There exist many other rounding functions, commonly used by computers. For
example, the map “round to nearest, ties to even” [11] rounds a number to the
closest integer, and in case of ties it rounds to the even one (Fig. 9c). For example,
3.2 is mapped to 3, 1.5 is mapped to 2, and 4.5 is mapped to 4. This is the formal
definition:

𝗋𝗍𝗇𝗍𝗍𝖾∶ ⟨ℝ, ≤⟩ → ⟨ℕ, ≤⟩,

𝑥 ↦

⎧
⎪
⎨
⎪
⎩

𝖿 𝗅𝗈𝗈𝗋(𝑥), 𝑥 < (𝖿 𝗅𝗈𝗈𝗋(𝑥) + 𝖼𝖾𝗂𝗅(𝑥))∕2
𝖼𝖾𝗂𝗅(𝑥), 𝑥 > (𝖿 𝗅𝗈𝗈𝗋(𝑥) + 𝖼𝖾𝗂𝗅(𝑥))∕2
𝖼𝖾𝗂𝗅(𝑥), (𝑥 = (𝖿 𝗅𝗈𝗈𝗋(𝑥) + 𝖼𝖾𝗂𝗅(𝑥))∕2) ∧ (𝖼𝖾𝗂𝗅(𝑥) is even )
𝖿 𝗅𝗈𝗈𝗋(𝑥), (𝑥 = (𝖿 𝗅𝗈𝗈𝗋(𝑥) + 𝖼𝖾𝗂𝗅(𝑥))∕2) ∧ (𝖿 𝗅𝗈𝗈𝗋(𝑥) is even )

.
(39)

In this example, note that
𝖿 𝗅𝗈𝗈𝗋 ⪯ id ⪯ 𝖼𝖾𝗂𝗅 (40)

and
𝖿 𝗅𝗈𝗈𝗋 ⪯ 𝗋𝗍𝗇𝗍𝗍𝖾 ⪯ 𝖼𝖾𝗂𝗅, (41)

and id and 𝗋𝗍𝗇𝗍𝗍𝖾 are not comparable (see Fig. 8).

Something incorrect or unclear or missing? Report issues on GitHub by clicking here.
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(c) 𝗋𝗍𝗇𝗍𝗍𝖾.

Figure 9.: Comparison of three rounding methods.
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This chapter describes some concepts related to posets: upper and
lower sets, minimal/maximal elements, etc.

A gondola lift is a type of cable transport which is supported and propelled by cabled from above. This is typical in Swiss alps, where it is used in every
season to bring people from one peak to the other.



124 8. Poset bounds

8.1. Minimal and maximal elements
You know already the operators min/max that give the minimum/maximum
values of a set of real numbers. If the set is finite, the minimum and maximum
always exist. But for infinite sets, theminimum andmaximummight not exist. For
example, consider the set of real numbers contained between 0 and 1, excluding
the boundaries:

𝐀 = {𝑥 ∈ ℝ∶ 0 < 𝑥 < 1}. (1)

This set does not have a minimum or a maximum.
For a total order, if the minimum and maximum exist, then they are unique. In a
partial order, this is not the case. We introduce the operatorsMin andMax that
are the generalization to partial orders ofmin ∕max.

Definition 8.1 (Minimal elements)
Min∶ 𝖯𝗈𝗐𝐏 → 𝖠𝗇𝗍𝗂𝐏 is the map that sends a subset 𝐒 of a poset to the
minimal elements of that subset (those elements 𝑎 ∈ 𝐒 such that 𝑎 ⪯𝐏 𝑏 for
all 𝑏 ∈ 𝐒). In formulas:

Min∶ 𝖯𝗈𝗐𝐏 →𝖠𝗇𝗍𝗂𝐏,

𝐒 ↦
⎧

⎨
⎩

𝑐 ∈ 𝐒∶ 𝑑 ∈ 𝐒 𝑑 ⪯𝐏 𝑐

𝑐 = 𝑑

⎫

⎬
⎭

.
(2)

Note thatMin(𝐒) could be empty.

Definition 8.2 (Maximal elements)
Max∶ 𝖯𝗈𝗐𝐏 → 𝖠𝗇𝗍𝗂𝐏 is the map that sends a subset 𝐒 of a poset to the
maximal elements of that subset (those elements 𝑎 ∈ 𝐒 such that 𝑎 ⪰𝐏 𝑏 for
all 𝑏 ∈ 𝐒). In formulas:

Max∶ 𝖯𝗈𝗐𝐏 →𝖠𝗇𝗍𝗂𝐏,

𝐒 ↦
⎧

⎨
⎩

𝑐 ∈ 𝐒∶ 𝑑 ∈ 𝐒 𝑑 ⪰𝐏 𝑐

𝑐 = 𝑑

⎫

⎬
⎭

.
(3)

Note thatMax(𝐒) could be empty.
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8.2. Upper/lower bounds
Definition 8.3 (Upper bounds in a poset)
The upper bounds of a subset 𝐒 of a poset 𝐏 are, if they exist, the elements
of 𝐏 which dominate all elements in 𝐒. In other words, the upper bounds
of 𝐒 are the elements of the set

𝖴𝗉𝗉𝖡 𝐒 ∶= {𝑦 ∈ 𝐏 ∣ ∀𝑥 ∈ 𝐒∶ 𝑥 ⪯𝐏 𝑦}. (4)

Definition 8.4 (Least upper bound / join / supremum)
A least upper bound of 𝐒 ⊆ 𝐏, if it exists, is the least element among the upper
bounds of 𝐒. It is denoted ∨𝐒 or 𝖲𝗎𝗉 𝐒, and also called the join or supremum
of 𝐒.

So, given 𝐒 ⊆ 𝐏 and 𝑦 ∈ 𝐏, 𝑦 = ∨𝐒 if and only if
1. 𝑥 ⪯𝐏 𝑦, ∀𝑥 ∈ 𝐒, and
2. 𝑥 ⪯𝐏 𝑧, ∀𝑥 ∈ 𝐒 ⇒ 𝑦 ⪯𝐏 𝑧.
If a least upper bound of a subset 𝐒 ⊆ 𝐏 exists, it is unique (can you prove this?),
so we speak of “the” least upper bound.

Exercise19. Let 𝐏 be a poset and 𝐒 ⊆ 𝐏 a subset of the underlying set of 𝐏. Show
that if ∨𝐒 exists, then it is unique. For this, assume that 𝑦 and 𝑧 are both least
upper bounds of 𝐒, and then show that this assumption implies that in fact 𝑦 = 𝑧.

See solution on page 131.

Example 8.5. Consider the poset 𝐏 and its subset 𝐒 depicted in Fig. 1. The red
markers ∙ represent the upper bound of 𝐒. For this specific case, there is a single
least upper bound.

∙ ∙

∙

∙ ∙

∙ ∙ ∙
𝐒

𝖲𝗎𝗉 𝐒

Figure 1.: Example of upper bounds and least up-
per bound for 𝐒.

Example 8.6. Least upper bounds need not necessarily exist even in total orders.
For instance, the subset

ℝ>𝟎 = {𝑥 ∈ ℝ∶ 𝑥 > 0} (5)

of the poset ℝ (with the usual ordering) does not have a least upper bound.

Analogously to the case of (least) upper bounds, we can define lower bounds and
greatest lower bounds.

Definition 8.7 (Lower bounds in a poset)
The lower bounds of a subset 𝐒 of a poset 𝐏 are, if they exist, the elements
which are dominated by all elements in 𝐒. In other words, the lower bounds
of 𝐒 are the elements of the set

𝖫𝗈𝗐𝖡 𝐒 ∶= {𝑦 ∈ 𝐏 ∣ ∀𝑥 ∈ 𝐒∶ 𝑦 ⪯𝐏 𝑥}. (6)

Something incorrect or unclear or missing? Report issues on GitHub by clicking here.
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Definition 8.8 (Greatest lower bound / meet / infimum)
The greatest lower bound, if it exists, is the greatest among the lower bounds
of 𝐒. This is denoted ∧𝐒 or 𝖨𝗇𝖿 𝐒 and also called themeet or infimum of 𝐒.

Exercise20. Come up with an example of a subset 𝐒 of a poset 𝐏which has lower
bounds but no greatest lower bound. Then, modify it to have a greatest lower
bound.

See solution on page 131.

Definition 8.9 (Top and bottom)
If there is a least upper bound for the entire lattice 𝐏, it is called the top (⊤).
If a greatest lower bound exists, it is called the bottom (⊥).
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Figure 2.

8.3. Upper and lower sets
Definition 8.10 (Upper set)
An upper set 𝐔 is a subset of a poset 𝐏 such that, if 𝑥 ∈ 𝐔, then all elements
of 𝐏 that are above 𝑥 are also in𝐔. In other words:

𝑥 ∈ 𝐔 𝑥 ⪯𝐏 𝑦 .
𝑦 ∈ 𝐔 (7)

We call 𝖴𝖲𝖾𝗍𝗌𝐏 the set of upper sets of 𝐏.

Definition 8.11 (Lower set)
A lower set 𝐋 is a subset of a poset 𝐏 such that, if 𝑥 ∈ 𝐋, then all elements
of 𝐏 that are below 𝑥 are also in 𝐋. In other words:

𝑥 ∈ 𝐋 𝑦 ⪯𝐏 𝑥 .
𝑦 ∈ 𝐋 (8)

We call 𝖫𝖲𝖾𝗍𝗌𝐏 the set of lower sets of 𝐏.
Given the battery choices {⟨10CHF, 500 g⟩, ⟨20CHF, 250 g⟩}, we can represent
an upper set as in Fig. 2a. The upper set can be interpreted as all the potential
battery choices which are dominated by at least one of the two choices we have
(in case we want to minimize mass and cost). Similarly, the lower set in Fig. 2b
can be interpreted as all the potential battery choices which dominate at least
one of the choices we have. Here when considering “the choices we have” in
Fig. 2b, we not only consider the two choices directly presented to us, but also
any convex combination of them.

Graded exercise C.11 (UpperSetsOfPreferences)
Consider the poset 𝐏 described by the following Hasse diagram:

fast and cheap

normal service

slow and cheap fast and expensive

Your task in this exercise is to compute all upper sets of 𝐏.

Something incorrect or unclear or missing? Report issues on GitHub by clicking here.
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8.4. Upper and lower closure
Definition 8.12 (Upper closure operator)
The upper closure operator ↑↑maps a subset to the smallest upper set that
includes it:

↑↑∶ 𝖯𝗈𝗐𝐏 →𝖴𝖲𝖾𝗍𝗌𝐏,
𝐀 ↦ {𝑦 ∈ 𝐏 ∣ ∃𝑥 ∈ 𝐀∶ 𝑥 ⪯𝐏 𝑦}.

(9)

Remark 8.13. Note that, by definition, an upper set is closed to upper closure.

Lemma 8.14. For any 𝐀 ∈ 𝖯𝗈𝗐𝐏, ↑↑𝐀 is in fact an upper set.

Proof. Suppose 𝑦 ∈ ↑↑𝐀 and 𝑧 ∈ 𝐏, and suppose 𝑦 ⪯𝐏 𝑧. By definition there
exists a 𝑥 such that 𝑥 ⪯𝐏 𝑦, meaning that 𝑥 ⪯𝐏 𝑧. Thus, 𝑧 ∈ ↑↑𝐀, as was to
be shown.

Lemma 8.15. The upper closure operator ↑↑ is an antitone map.

Proof. Consider the posets ⟨𝖯𝗈𝗐𝐏, ⊆⟩ and ⟨𝖴𝖲𝖾𝗍𝗌𝐏, ⊇⟩, and two sets of sets
𝐀,𝐁 ∈ 𝖯𝗈𝗐𝐏. It is clear that given 𝐀 ⊆ 𝐁, we have

{𝑦 ∈ 𝐀 ∣ ∃𝑥 ∈ 𝐀∶ 𝑥 ⪯𝐏 𝑦} ⊆ {𝑦 ∈ 𝐏 ∣ ∃𝑥 ∈ 𝐁∶ 𝑥 ⪯𝐏 𝑦}. (10)

Therefore, ↑↑𝐀 ⊆ ↑↑𝐁. Note that the poset𝖴𝖲𝖾𝗍𝗌𝐏 is ordered by the relation⊇,
therefore ↑↑𝐀 ⪰𝖴𝖲𝖾𝗍𝗌𝐏 ↑↑𝐁, satisfying the antitone map property for ↑↑.

In the example of battery choices (in the numerical case), first, consider the
upper closure of a single element of the poset, for instance 𝑝1 = ⟨10CHF,
500 g⟩ (Fig. 3, left). Second, we can look at the upper closure when we add the
choice 𝑝2 = ⟨20CHF, 250 g⟩ (Fig. 3, center).
Note that the upper set of the subset formed by the two elements is the union of
the upper sets of the single elements. Finally, we can also define the set

𝐒 = {⟨cost,mass⟩ ∣ mass = 750 − 25 ⋅ cost, ∀ cost ∈ [0, 20]}, (11)

and find its upper closure (Fig. 3, right).

↑↑𝑝1𝑝1500
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Figure 3.: Example of upper closure for different sets of battery choices.

Definition 8.16 (Lower closure operator)
The lower closure operator ↓↓ maps a subset to the smallest lower set that
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includes it:
↓↓∶ 𝖯𝗈𝗐𝐏 → 𝖫𝖲𝖾𝗍𝗌𝐏,

𝐒 ↦ {𝑦 ∈ 𝐏 ∣ ∃𝑥 ∈ 𝐒∶ 𝑦 ⪯𝐏 𝑥}.
(12)

Lemma 8.17. The lower closure operator ↓↓ is a monotone map.

Exercise21. Prove Lemma 8.17.
See solution on page 131.

Consider the battery example, and the antichain given by the batterymodels 𝑝1 =
⟨10CHF, 1000 g⟩, 𝑝2 = ⟨20CHF, 500 g⟩, and 𝑝3 = ⟨30CHF, 250 g⟩ (Fig. 4, left).
The lower closure operator ↓↓ {𝑝1, 𝑝2, 𝑝3} represents all the battery models which,
if existing, would dominate {𝑝1, 𝑝2, 𝑝3}. We could instead consider linear maps
between the points getting a poset 𝐏, and obtain the lower closure depicted in
Fig. 4 on the right.
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Figure 4.: Example of lower closures.

Antichains and upper sets
Lemma 8.18. Let 𝐀 and 𝐁 be subsets of 𝐏 that are antichains. Then

↑↑𝐀 = ↑↑𝐁
.

𝐀 = 𝐁 (13)

Proof. Fix an element 𝑎 ∈ 𝐀. From ↑↑𝐀 = ↑↑𝐁 we know that in particu-
lar 𝐀 ⊆ ↑↑𝐁. This means that for our fixed 𝑎 ∈ 𝐀 there exists 𝑏 ∈ 𝐁 such
that 𝑏 ⪯ 𝑎. From ↑↑𝐀 = ↑↑𝐁 it also follows that𝐁 ⊆ ↑↑𝐀, so to the 𝑏 ∈ 𝐁 given
above, there exists 𝑎′ ∈ 𝐀 such that 𝑎′ ⪯ 𝑏. In total, we have 𝑎′ ⪯ 𝑏 ⪯ 𝑎, and
since 𝐀 is an antichain, we must have 𝑎′ = 𝑎. This implies that 𝑎′ = 𝑏 = 𝑎.
In particular, we have 𝑎 ∈ 𝐁.
The above shows that𝐀 ⊆ 𝐁. To show𝐁 ⊆ 𝐀,we canfix any 𝑏 ∈ 𝐁 and repeat
the above argumentation, now with the roles of 𝐀 and 𝐁 exchanged.

Definition 8.19 (Downward closed set)
An upper set 𝐒 is downward-closed in a poset 𝐏 if

𝐒 = ↑↑Min 𝐒. (14)

The set of downward-closed upper sets of 𝐏 is denoted 𝖴𝗉𝖲𝖾𝗍𝗌𝐏.

Something incorrect or unclear or missing? Report issues on GitHub by clicking here.
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Definition 8.20 (Upward closed set)
A lower set 𝐒 is upward-closed in a poset 𝐏 if

𝐒 = ↓↓Max 𝐒. (15)

The set of upward-closed lower sets of 𝐏 is denoted 𝖫𝗈𝗐𝖲𝖾𝗍𝗌𝐏.
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Figure 5.: Example of lower bounds of 𝐒.

∙ ∙

∙ ∙ ∙

∙
𝐒

Figure 6.: Example of lower bounds and greatest
lower bounds of 𝐒.

Solutions to selected exercises
Solution of Exercise 14. 𝐏 is a pre-order, because it satisfies reflexivity and
transitivity. 𝐐 violates both reflexivity (e.g., ⟨𝑥, 𝑥⟩ is missing), and transitivity
(e.g., ⟨𝑥, 𝑧⟩ is missing).

Solution of Exercise 15. The reachability relationship in any directed graph
does not define a poset. As a simple counterexample, take a graph with nodes
{𝑥, 𝑦, 𝑧} and paths 𝑥 to 𝑦, 𝑦 to 𝑧, and 𝑧 to 𝑥. From transitivity, one has 𝑥 ⪯ 𝑧, but
from reachability we also have 𝑧 ⪯ 𝑥. Therefore, per antisymmetry one should
have 𝑥 = 𝑧, but these are actually distinct nodes. To make things work, one needs
to consider only acyclic graphs.

Solution of Exercise 16. Consider a set𝐀. Clearly, given 𝐒 ∈ 𝖯𝗈𝗐𝐀, we have 𝐒 ⊆
𝐒. Furthermore, given also 𝐓 ∈ 𝖯𝗈𝗐𝐀, we have

𝐒 ⊆ 𝐓 𝐓 ⊆ 𝐒
.

𝐒 = 𝐓 (16)

Finally, given also𝐔 ∈ 𝖯𝗈𝗐𝐀, we have

𝐒 ⊆ 𝐓 𝐓 ⊆ 𝐔
.

𝐒 ⊆ 𝐔 (17)

Solution of Exercise 17. We check the three conditions.
⊳ First, we know that [𝑝1, 𝑞1] ⪯𝐓𝐰 𝐏 [𝑝1, 𝑞1], since 𝑝1 ⪯𝐏 𝑝1 and 𝑞1 ⪯𝐏 𝑞1.
⊳ Second, [𝑝1, 𝑞1] ⪯𝐓𝐰 𝐏 [𝑝2, 𝑞2] and [𝑝2, 𝑞2] ⪯𝐓𝐰 𝐏 [𝑝3, 𝑞3] imply

[𝑝1, 𝑞1] ⪯𝐓𝐰 𝐏 [𝑝3, 𝑞3]. (18)

⊳ Third, if [𝑝1, 𝑞1] ⪯𝐓𝐰 𝐏 [𝑝2, 𝑞2] and [𝑝2, 𝑞2] ⪯𝐓𝐰 𝐏 [𝑝1, 𝑞1], then 𝑝1 = 𝑝2
and 𝑞1 = 𝑞2.

Solution of Exercise 18. We check the three conditions.
⊳ First, we know that [𝑝1, 𝑞1] ⪯𝐀𝐫𝐫 𝐏 [𝑝1, 𝑞1], since 𝑝1 ⪯𝐏 𝑝1 and 𝑞1 ⪯𝐏 𝑞1.
⊳ Second, [𝑝1, 𝑞1] ⪯𝐀𝐫𝐫 𝐏 [𝑝2, 𝑞2] and [𝑝2, 𝑞2] ⪯𝐀𝐫𝐫 𝐏 [𝑝3, 𝑞3] imply

[𝑝1, 𝑞1] ⪯𝐀𝐫𝐫 𝐏 [𝑝3, 𝑞3]. (19)

⊳ Third, if [𝑝1, 𝑞1] ⪯𝐀𝐫𝐫 𝐏 [𝑝2, 𝑞2] and [𝑝2, 𝑞2] ⪯𝐀𝐫𝐫 𝐏 [𝑝1, 𝑞1], then 𝑝1 = 𝑝2
and 𝑞1 = 𝑞2.

Solution of Exercise 19. Assume that 𝑦 and 𝑧 are both least upper bounds
of 𝐒 ⊆ 𝐏. In other words, one knows 𝑥 ⪯𝐏 𝑦 and 𝑥 ⪯𝐏 𝑧 for all 𝑥 ∈ 𝐒. However,
one also has 𝑦 ⪯𝐏 𝑧 and 𝑧 ⪯𝐏 𝑦 (from 𝑦, 𝑧 assumed to be both least upper bounds).
Because of antisymmetry, this implies 𝑦 = 𝑧 and proves the uniqueness of least
upper bounds in a poset.

Solution of Exercise 20. In Fig. 5 you find an example of a subset 𝐒 of a poset 𝐏
which has incomparable lower bounds. In Fig. 6 instead, there is a greatest lower
bound.

Solution of Exercise 21. Consider the posets ⟨𝖯𝗈𝗐𝐏, ⊆⟩ and ⟨𝖫𝖲𝖾𝗍𝗌𝐏, ⊆⟩, and
let 𝐒𝟏, 𝐒𝟐 ∈ 𝖯𝗈𝗐𝐏. It is clear that given 𝐒𝟏 ⊆ 𝐒𝟐, we have

{𝑦 ∈ 𝐏 ∣ ∃𝑥 ∈ 𝐒𝟏 ∶ 𝑦 ⪯𝐏 𝑥} ⊆ {𝑦 ∈ 𝐏 ∣ ∃𝑥 ∈ 𝐒𝟐 ∶ 𝑦 ⪯𝐏 𝑥}. (20)
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132 8. Poset bounds

Therefore, ↓↓ 𝐒𝟏 ⊆ ↓↓ 𝐒𝟐, satisfying the monotonicity property for ↓↓.
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This chapter introduces three of the most basic algebra structures:
semigroups, monoids, and groups. These are sets with one compo-
sition operation. Additional properties of the operation distinguish
among the structures.

“Unus pro omnibus, omnes pro uno” is a Latin phrase that means “One for all, all for one”. Interestingly, this is the unofficial motto of Switzerland. A
French version, “Un pour tous, tous pour un”, was made famous by Alexandre Dumas in the 1844 novel “The Three Musketeers”.



136 9. Sets with operations

Table 9.1.: Composition table.

#

𝐒 × 𝐒 𝐒 × 𝐒

𝐒

𝖻𝗋

#
#

Figure 1.: The commutativity property

9.1. Magmas
Oftentimes we are going to study certain structures and then their refinements.
By refinement, we mean another type of structure that has additional properties
or constraints.
The simplest algebraic structure that has to do with composition is that of a
magma: it just assumes that there is a set with a binary operation defined on it.

Definition 9.1 (Magma)
Amagma S is a set 𝐒, together with a binary operation

#∶ 𝐒 × 𝐒→ 𝐒, (1)

which we refer to as “composition”.

Given a finite set 𝐀, one way to specify a composition operation # on 𝐀 is simply
by writing out what it does with each pair of elements of 𝐀. Since # is a function
of two variables, this can be conveniently displayed as a table, sometimes called a
multiplication table or a Cayley table. We will use the name composition table.

Example 9.2. Consider the set

𝐀 =
{

,
}
, (2)

representing painting colors. A composition operation # is specified in Table 9.1.
The rule describes the process of “painting over” another color, meaning that the
last color that has been used to paint is the dominant one. We read it as saying

# = # =
# = # =

Definition 9.3
A magma S = ⟨𝐒, #⟩ is called commutative (or: Abelian) if

𝑥 # 𝑦 = 𝑦 # 𝑥, (3)

for all 𝑥, 𝑦 ∈ 𝐒.

Exercise22. Is the magma specified in Table 9.1 commutative?
See solution on page 175.

Magmas are quite general and simplistic. There is not all much to say about
them.
We can build more interesting structures by considering, for example, properties
that the composition operation might have.
In the next sections we will study:

⊳ semigroups, magmas in which the operation is associative;
⊳ monoids, semigroups with an identity;
⊳ groups, monoids with an inverse operation.

You are reading a draft compiled on 2024-12-09 11:28:28Z



9.2. Semigroups 137

(𝐒 × 𝐒) × 𝐒 𝐒 × (𝐒 × 𝐒)

𝐒 × 𝐒 𝐒 × 𝐒

𝐒

𝖺𝗌

# × id𝐒 id𝐒 × #

# #

Figure 2.: Semigroup Commutative Diagram

Table 9.2.: Composition table for booleans.

∧ ⊥ ⊤
⊥ ⊥ ⊥
⊤ ⊥ ⊤

9.2. Semigroups
A semigroup is a magma for which composition is associative.

Definition 9.4 (Semigroup)
A semigroup S is defined by:
Constituents
1. A set 𝐒;
2. A binary operation #∶ 𝐒 × 𝐒→ 𝐒 called composition.
Conditions
1. Associative law

(𝑥 # 𝑦) # 𝑧 = 𝑥 # (𝑦 # 𝑧), (4)

for all 𝑥, 𝑦, 𝑧 ∈ 𝐒.

Remark 9.5. Given a fixed set 𝐒, there will in general be many choices of com-
position operation which make 𝐒 into a semigroup. Therefore, technically, a
semigroup S is a pair ⟨𝐒, #⟩ consisting of a set 𝐒 and a choice of composition #.
The set 𝐒 is the underlying set of the semigroup.
Often we will be slightly imprecise and refer to a semigroup simply by the
name of its underlying set; this is practical when it is clear from context which
composition operation we are considering, or when it is not necessary to refer to
the composition operation explicitly.
Also note that any semigroup is in particular a magma S = ⟨𝐒, #⟩, and so it also
has an “underlying magma”.

Definition 9.6 (Commutative semigroup)
A semigroup S = ⟨𝐒, #⟩ is called commutative (or: Abelian) if its underlying
magma is commutative.

Some examples
Example 9.7. Consider the semigroup ⟨ℕ, +⟩, which defines composition as

𝑥 # 𝑦 ∶= 𝑥 + 𝑦. (5)

This is a semigroup, since, for all 𝑙, 𝑚, 𝑛 ∈ ℕ, we have

(𝑙 +𝑚) + 𝑛 = 𝑙 + (𝑚 + 𝑛). (6)

It is also a commutative semigroup because addition is commutative.

Example 9.8. Pair-wise average on ℝ,

𝑥 # 𝑦 ∶=
𝑥 + 𝑦
2 , (7)

does not define semigroup composition, because it is not associative.
For example:

(4 # 8) # 16 = 11 ≠ 8 = 4 # (8 # 16). (8)

Example 9.9 (Booleans). Consider the set Bool = {⊥, ⊤}, and ⟨Bool, ∧⟩, where
the operation ∧ (“and”) is defined via Table 9.2.
This forms a semigroup, given the associativity of ∧.
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Graded exercise D.1 (CompositionTable)
Consider the composition presented in Table 9.1. Does this composition
operation define a semigroup?

Exercise23. [Cross-product] Consider 𝐒 = ℝ3 and the operation usually referred
to as the “cross-product”:

⎡
⎢
⎣

𝑎
𝑏
𝑐

⎤
⎥
⎦

#
⎡
⎢
⎣

𝑥
𝑦
𝑧

⎤
⎥
⎦
∶=

⎡
⎢
⎣

𝑏𝑧 − 𝑐𝑦
𝑐𝑥 − 𝑎𝑧
𝑎𝑦 − 𝑏𝑥

⎤
⎥
⎦
. (9)

This is a binary operation and therefore ⟨ℝ3, #⟩ forms a magma. Show that this
does not form a semigroup.

See solution on page 175.

Example 9.10. Consider a finite set 𝐀, which we think of as an alphabet. For
instance, consider

𝐀 = {∙, ∙}. (10)

Let S = 𝖫𝗂𝗌𝗍𝐀 be the set of non-empty lists of elements of 𝐀. For example,

[∙, ∙, ∙, ∙, ∙, ∙, ∙, ∙] (11)

is a non-empty list of elements of 𝐀.
We may define a composition operation on S simply by concatenating lists. Given
the lists

[∙, ∙, ∙, ∙, ∙, ∙, ∙, ∙] and [∙, ∙, ∙, ∙], (12)

their concatenation
[∙, ∙, ∙, ∙, ∙, ∙, ∙, ∙] # [∙, ∙, ∙, ∙] (13)

is the list
[∙, ∙, ∙, ∙, ∙, ∙, ∙, ∙, ∙, ∙, ∙, ∙]. (14)

It is readily seen that concatenation satisfies the associative law, so S, together
with this multiplication, forms a semigroup. It is often called free semigroup on
the set 𝐀, a terminology which we will explain later.

Graded exercise D.2 (VariationsOnConcatenation)
Consider the set S of finite non-empty lists of symbols from the alphabet 𝐀,
as in Example 9.10.
Can you think of other candidates for multiplication operations on S, be-
sides the straightforward concatenation of lists considered above? Do your
candidates define semigroup multiplications—that is, do they obey the
associative law?
For example, one might consider the operation where, given an ordered pair
of lists, one first doubles the last symbol of the first list and then concatenates.
Is this operation associative? Justify your answers.

Example 9.11. The functionmax∶ ℕ×ℕ→ ℕ defines amultiplication operation
which equipsℕwith the structure of a semigroup. It is easy to show that it satisfies
associativity. Given 𝑥, 𝑦, 𝑧 ∈ ℕ, we have:

max(max(𝑥, 𝑦), 𝑧) = max(𝑥,max(𝑦, 𝑧)). (15)
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sprout

young

mature

old

dead

𝑓

𝑓

𝑓

𝑓

𝑓

Figure 3.: Graphical representation of plant tran-
sitions.

Exercise24. Verify the statement made in Example 9.11; that is, check that the
associative law holds.
Doesmin∶ ℕ × ℕ→ ℕ also define a semigroup structure on ℕ?

See solution on page 175.

Example 9.12. Consider the set 𝐀 = {sprout, young,mature, old, dead} which
describes five possible states of a plant. Let 𝑓∶ 𝐀 → 𝐀 be the function that
describes “development” (Fig. 3):

𝑓(sprout) = young, (16)
𝑓(young) = mature, (17)
𝑓(mature) = old, (18)

𝑓(old) = dead, (19)
𝑓(dead) = dead. (20)

In otherwords,we think of𝑓 as the change of state of the plant during a given time
interval (say, three months). Composing the function 𝑓 with itself corresponds to
considering multiples of the given time interval. For example, the function

(𝑓 # 𝑓 # 𝑓)∶ 𝐀→ 𝐀 (21)

models the change over the course of nine months. In general, for the n-fold
composition of 𝑓 with itself we write 𝑓𝑛. The set 𝐓 = {𝑓𝑛 ∣ 𝑛 ∈ ℕ}, together with
the multiplication given by the composition operation, forms a semigroup.

Opposite semigroup
Any semigroup has an opposite: it is obtained by “flipping” the order of compo-
sition.

Definition 9.13 (Opposite semigroup)
S = ⟨𝐒, #⟩ be a semigroup. Its opposite Sop is the semigroup Sop =

⟨
𝐒, #op

⟩

whose composition operation #op is the composite

𝐒 × 𝐒
𝖻𝗋
→ 𝐒 × 𝐒

#
→ 𝐒 (22)

where 𝖻𝗋 is the braiding function

𝖻𝗋 ∶ 𝐒 × 𝐒 → 𝐒 × 𝐒,
⟨𝑥, 𝑦⟩ ↦ ⟨𝑦, 𝑥⟩.

(23)

In other words,
𝑥 #op 𝑦 = 𝑦 # 𝑥 ∀𝑥, 𝑦 ∈ 𝐒. (24)

Subsemigroups

Definition 9.14 (Subsemigroup)
Let S = ⟨𝐒, #⟩ be a semigroup. A subsemigroup of S is:
Constituents

1. A subset 𝐓 ⊆ 𝐒.
Conditions
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140 9. Sets with operations

1. The set 𝐓 is closed under the composition operation # from S:

𝑥 ∈ 𝐓 𝑦 ∈ 𝐓
.

(𝑥 # 𝑦) ∈ 𝐓 (25)

Example 9.15. Consider the semigroup ⟨ℕ, +⟩ introduced in Example 9.7. We
can take the subset of even natural numbers 𝐓 ⊂ ℕ. One can show that the
sum of two even numbers is always even, satisfying the closure of 𝐓 under the
composition operation +.

Induced 𝑛-ary multiplication
Given a semigroup ⟨𝐀, #⟩, for each integer 𝑛 ≥ 1, we can define an induced 𝑛-ary
multiplication operation

#𝑛 ∶ 𝐀𝑛 → 𝐀,
⟨𝑥1, 𝑥2, …, 𝑥𝑛⟩ ↦ 𝑥1 # 𝑥2… # 𝑥𝑛.

(26)

Thanks to the associative law, this is well-defined — that is, we do not need to
use parentheses. We will say that an element 𝑥 ∈ 𝐀 is an n-fold multiplication
if it is in the image of this 𝑛-ary multiplication operation. At times, we may not
wish to specify the arity of the multiplication, in which case we just speak of a
multiplication.
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{∙} 𝐌
idM

Figure 4.: The neutral element, expressed as a
function.

𝟏 ×𝐌 𝐌 ×𝐌

𝐌

idM × id𝐌

𝗅𝗎
#

Figure 5.:Monoid Commutative Diagram

9.3. Monoids
Algebraic structures are often defined in layers.
For example, in the definition of semigroup, we start with a set 𝐒 as a basic
building block, and we add a layer of structure to it, namely a multiplication
operation #∶ 𝐒 × 𝐒 → 𝐒. The multiplication operation for semigroups was not
only a new structure which we added, but we also required this structure to obey
a condition, namely that it satisfies the associative law. One might also say that
the multiplication operation was a new constituent or a new datum, and that
satisfying the associative law is a property.
Mathematicians often use such words in an intuitive, non-rigorous way as a tool
for structuring their thinking. We will do the same. For clarity, we will aim to
stick with the words constituents and conditions. Roughly speaking, we think of
constituents as building blocks, and we think of conditions as rules for how those
blocks fit together and behave.
Using the constituent vs condition distinction we will, in particular, present some
definitions in the following succinct, list-like fashion:

Definition 9.16 (Monoid)
AmonoidM is given by:
Constituents
1. A set𝐌;
2. A binary operation #∶ 𝐌 ×𝐌→𝐌;
3. A specified element idM ∈𝐌, called neutral element.
Conditions
1. Associative law:

(𝑥 # 𝑦) # 𝑧 = 𝑥 # (𝑦 # 𝑧) ∀ 𝑥, 𝑦, 𝑧 ∈𝐌; (27)

2. Neutrality Laws: idM # 𝑥 = 𝑥 = 𝑥 # idM ∀ 𝑥 ∈𝐌.

Remark 9.17. The way that we presented the definition of a monoid is certainly
not unique. For example, we could have done the following.

AmonoidM is:
Constituents
1. a semigroup ⟨𝐌, #⟩;
2. a specified element idM ∈𝐌, called neutral element.
Conditions
1. Neutrality laws: idM # 𝑥 = 𝑥 = 𝑥 # idM.

In this version, two constituents and one condition from Def. 9.16 are “com-
pressed” into the information that we are using here a semigroup as a constituent.
This kind of “compression” has its pros and cons; depending on the context will
use it to varying degrees.
There is a similar dilemma when considering the software interfaces to describe
these structures. In terms of software engineering, the two strategies are compo-
sition (a monoid has a semigroup as a constituent) and inheritance (a monoid is
a semigroup with additional data).

Remark 9.18. A monoid is called commutative (or: Abelian) if its underlying
semigroup is commutative.
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Some examples
Example 9.19. Consider ⟨ℝ, +, 0⟩. This is a monoid, since, for all 𝑥, 𝑦, 𝑧 ∈ ℝ,
we have

(𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧), (28)

and
𝑥 + 0 = 𝑥 = 0 + 𝑥. (29)

Similarly, ⟨ℕ, +, 0⟩, ⟨ℤ, +, 0⟩, and ⟨ℚ, +, 0⟩ are monoids.

Example 9.20. The setℤ, together with the operation of multiplication of whole
numbers, forms a monoid. The neutral element is the number 1.

Example 9.21. Given a set 𝐀, the set 𝐄𝐧𝐝(𝐀) of functions from 𝐀 to 𝐀 comes
“naturally equipped” with a monoid structure: take monoid composition to
be function composition, and let the identity element be given by the identity
function on 𝐀.

Example 9.22. Consider ⟨Bool, ∧⟩ as in Example 9.9, and consider ⊤ as neutral
element. This forms a monoid, since 𝑏 ∧ ⊤ = 𝑏 = ⊤ ∧ 𝑏, for all 𝑏 ∈ 𝐁.

Lemma 9.23. Let ⟨𝐒, #⟩ be a semigroup. If there exist elements 1 ∈ 𝐒 and 1′ ∈
𝐒 such that ⟨𝐒, #, 1⟩ and

⟨
𝐒, #, 1′

⟩
are each monoids, then 1 = 1′ must hold. In

other words, the neutral element of a monoid is uniquely determined by the
underlying semigroup structure.

Graded exercise D.3 (UniqueNeutralMonoid)
Prove Lemma 9.23.

Example 9.24. Consider
⟨
ℝ≥0,max, 0

⟩
. This is a monoid, since, for all 𝑥, 𝑦 ∈

ℝ≥0, we have:
max(max(𝑥, 𝑦), 𝑧) = max(𝑥,max(𝑦, 𝑧)), (30)

and
max(𝑥, 0) = 𝑥 = max(0, 𝑥). (31)

Remark 9.25. Note that in the above example, we could have just as well instead
considered the set ℝ≥7.5 of real numbers greater than 7.5, together with “max”
as composition and 7.5 as neutral element. In other words, we can choose any
real number 𝑎 ∈ ℝ and obtain a monoid

⟨
ℝ≥𝑎,max, 𝑎

⟩
.

Example 9.26. ⟨ℕ,max, 0⟩ forms a monoid.

Definition 9.27
Let 𝐀 be a set. We denote by 𝖫𝗂𝗌𝗍𝐀 the set of all lists of elements of 𝐀.

Example 9.28. For any set𝐀, the set 𝖫𝗂𝗌𝗍𝐀 of lists of elements of𝐀 can naturally
be equipped with a monoid structure: composition is concatenation (just like
in Example 9.10), and the neutral element is the empty list []𝐀. This monoid is
known as the free monoid on the set 𝐀.

Remark 9.29. Just like for semigroups, any monoid has an opposite. It is defined
similarly: given a monoidM =

⟨
𝐌, #M, idM

⟩
, its opposite isMop =

⟨
𝐌, #op, id

⟩

where #op is define by setting

𝑥 #op 𝑦 = 𝑦 #M 𝑥 ∀𝑥, 𝑦 ∈𝐌. (32)
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Monoids and dynamical systems
Suppose that we are dealing with dynamical systems such that for any point 𝑥0,
there is exactly one trajectory beginning at 𝑥0. (For this we need to put suitable
constraints on the function 𝑓.)
We can then ask the following: given a point 𝑥, where would its trajectory be
after 𝛿? This question induces a family of functions 𝑇𝛿, called transition functions.
For each particular 𝛿, we have a function

𝑇𝛿 ∶ ℝ
𝑛 → ℝ𝑛 (33)

that maps a point to its position 𝛿 in the future.
We can spot here a semigroup structure. Suppose we want to know the position
of a point 𝛿1 + 𝛿2 in the future. We can take 𝑇𝛿1 and compose it with 𝑇𝛿2 ; or take
directly 𝑇𝛿1+𝛿2 . By construction, we will have that

𝑇𝛿1+𝛿2 = 𝑇𝛿1 # 𝑇𝛿2 . (34)

We can also easily prove associativity:

𝑇𝛿1 # (𝑇𝛿2 # 𝑇𝛿3) = 𝑇𝛿1 # 𝑇𝛿2+𝛿3
= 𝑇𝛿1+𝛿2+𝛿3
= 𝑇𝛿1+𝛿2 # 𝑇𝛿3
= (𝑇𝛿1 # 𝑇𝛿2) # 𝑇𝛿3 .

(35)

This shows that the set of transition functions for a particular system with the
operation of function composition form a semigroup.
This semigroup is a monoid because there is an identity. The identity is 𝑇0, the
map that tells us what happens after 0 seconds. That is idℝ𝑛 , the identity on ℝ

𝑛.
To show that 𝑇0 = idℝ𝑛 is an identity, we can fix any 𝛿 and substituting in (34)
we have

𝑇𝛿+0 = 𝑇𝛿 # 𝑇0
=𝑇𝛿.

(36)

Submonoids
Definition 9.30 (Submonoids)
LetM =

⟨
𝐌, #M, idM

⟩
be a monoid. A submonoid ofM is:

Constituents

1. A subset𝐍 ⊆𝐌.

Conditions

1. The set𝐍 is closed under the composition operation # fromM:

𝑥 ∈ 𝐍 𝑦 ∈ 𝐍
;

𝑥 # 𝑦 ∈ 𝐍 (37)

2. The neutral element id ∈𝐌 is an element of𝐍.

Example 9.31. ⟨ℕ, +, 0⟩, ⟨ℤ, +, 0⟩, and ⟨ℚ, +, 0⟩ are all submonoids of ⟨ℝ, +, 0⟩.

Example 9.32. ⟨ℕ, ⋅, 1⟩ is a submonoid of ⟨ℤ, ⋅, 1⟩.

Example 9.33. {𝑥 ∈ ℕ ∣ 𝑥 is even } is a submonoid of ⟨ℕ, +, 0⟩, provided that 0
is considered an even natural number.
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𝐆 𝟏

𝐆 × 𝐆

𝐆 × 𝐆 𝐆

!

∆
idG

id𝐆 × 𝗂𝗇𝗏

#

Figure 6.: Group Diagram

9.4. Groups
Groups appear in many areas of mathematics, both pure and applied.
One important use of groups is to describe symmetries. Roughly speaking, a
symmetry is an invertible transformation or reconfiguration of a figure (or object)
that leaves the essential features of that figure invariant.
For example, consider a perfectly square sheet of monochrome paper lying on a
table-top. If we rotate the piece of paper by 90 degrees around its center, how it
appears to us after this rotation will be essentially indistinguishable from before
it was rotated. Thus, this rotation is a symmetry.
Groups of symmetries play an important role in physics and chemistry, for ex-
ample when studying the repeating patterns of lattices of atoms or molecules
in materials, or when studying the geometric patterns of atoms and molecules
themselves.
For engineering, a particularly important class of groups are matrix groups,
in particular those that describe various types of motion in space. These are
discussed in Section 9.4.

Definition 9.34 (Group)
A group is a monoid together with an “inverse” operation. In more detail, a
group G is
Constituents
1. a set 𝐆;
2. a binary operation #∶ 𝐆 × 𝐆→ 𝐆, called composition;
3. a specified element idG ∈ 𝐆, called neutral element;
4. a map 𝗂𝗇𝗏∶ 𝐆→ 𝐆, called inverse.
Conditions
1. Associative law: (𝑥 # 𝑦) # 𝑧 = 𝑥 # (𝑦 # 𝑧), ∀𝑥, 𝑦, 𝑧 ∈ 𝐆;
2. Neutrality laws: idG # 𝑥 = 𝑥 = 𝑥 # idG, ∀𝑥 ∈ 𝐆;
3. Inverse laws:

𝗂𝗇𝗏(𝑥) # 𝑥 = idG = 𝑥 # 𝗂𝗇𝗏(𝑥), ∀𝑥 ∈ 𝐆. (38)

Definition 9.35 (Commutative group)
A group is called commutative (or: Abelian) if its underlying semigroup is
commutative.

Remark 9.36. The size of the underlying set of a group is often called the order
or cardinality of the group. We’ll sometimes use this terminology, or just call it
the size of the group.

Some examples

Example 9.37. The following is a group: the set ℤ, together with addition as
the composition operation, the element 0 as neutral element, and “taking the
negative” as the inverse operation:

𝗂𝗇𝗏(𝑥) ∶= −𝑥, ∀ 𝑥 ∈ ℤ. (39)

Example 9.38. The monoid
⟨
ℝ∖{0}, ⋅, 1

⟩
becomes a group when equipped with

You are reading a draft compiled on 2024-12-09 11:28:28Z



9.4. Groups 145

Table 9.3.: Addition modulo 2 on the set {0, 1}.

+ 0 1
0 0 1
1 1 0

Table 9.4.: Cyclic group of order 4.

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Table 9.5.: The Klein four group

+ 𝐼 𝑉 𝐻 𝑅
𝐼 𝐼 𝑉 𝐻 𝑅
𝑉 𝑉 𝐼 𝑅 𝐻
𝐻 𝐻 𝑅 𝐼 𝑉
𝑅 𝑅 𝐻 𝑉 𝐼

the inverse operation defined by

𝗂𝗇𝗏(𝑥) ∶= 1
𝑥 , ∀𝑥 ∈ ℝ. (40)

Example 9.39. For the monoids ⟨ℕ, +, 0⟩ and ⟨ℕ, ⋅, 1⟩we cannot find an inverse
operation that would turn these monoids into groups.

Exercise25. Can one find an inverse operation for the monoid ⟨ℕ,max, 0⟩?
See solution on page 175.

Example 9.40. The monoid ⟨Bool, ∧, ⊤⟩ from Example 9.22 cannot become a
group, because there cannot be an inverse for ⊥: there is no possible choice for
𝗂𝗇𝗏(⊥) such that 𝗂𝗇𝗏(⊥) ∧ ⊥ = ⊤.

Example 9.41. Given a set 𝐀, an invertible function 𝐀 → 𝐀 is called an auto-
morphism of 𝐀. There is a “naturally given” group structure on the set 𝐀𝐮𝐭(𝐀) of
automorphisms of 𝐀: we can take the composition operation to be the composi-
tion of functions, the neutral element is the identity function on 𝐀, and inverses
are given by the inverses of functions.
As a sub-example, consider the set

𝐀 = {1, 2, 3, …, 𝑛 − 1, 𝑛}, (41)

where 𝑛 ∈ ℕ. Then 𝐀𝐮𝐭(𝐀) is the group of permutations of 𝑛 elements. The
usual notation for this group is 𝐏𝐞𝐫𝐦𝐬𝑛. Its size is 𝑛! = 𝑛 ⋅ (𝑛 − 1) ⋅ ⋯ ⋅ 3 ⋅ 2 ⋅ 1.

Example 9.42. Consider the set {0, 1}, equippedwith the composition operation #
defined to be “addition modulo 2”. The composition table for this is Table 9.3
Choose 0 as the neutral element, and let 𝗂𝗇𝗏(0) = 0 and 𝗂𝗇𝗏(1) = 1. Then ⟨{0, 1},
#, 0, 𝗂𝗇𝗏⟩ is a group.

Example 9.43. Consider the following set of complex numbers:
{
1, 𝑒

1
3
2𝜋𝑖 , 𝑒

2
3
2𝜋𝑖} ⊆ ℂ. (42)

Taking the usual multiplication of complex numbers as the composition opera-
tion, these three numbers form a group.

Example 9.44. The set {0, 1, 2, 3}may be equipped with a group structure whose
composition operation is addition modulo 4, and where 0 is the neutral element.
The composition table is Table 9.4.

Example 9.45. Consider the shape of a rectangle in the plane, oriented vertically,
and assume the rectangle is not a square. Then there are four symmetries of this
shape:
1. doing nothing (leaving everything in place);
2. reflecting the shape along the vertical axis;
3. reflecting the shape along the horizontal axis;
4. rotating the shape by 180 degrees.
Let us call these symmetries 𝐼, 𝑉, 𝐻, and 𝑅, respectively. We can model these
for instance using bijective functions of the plane ℝ2. The set {𝐼, 𝑉, 𝐻, 𝑅} can
be given the structure of a group, with 𝐼 being its neutral element, and with
composition and inverses given as in Table 9.5. We think of composition meaning
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Figure 7.: The Platonic solids

Figure 8.: A Rubik’s cube

that we perform one symmetry transformation and then the other (function
composition), and inverses correspond to taking the inverse transformation. This
group is known as the Klein four-group, named after the mathematician Felix
Klein.

Example 9.46. Similar to the previous example, all sorts of geometric shapes
have groups of symmetries associated with them.
For example, each of the five Platonic solids (Fig. 7) have a group of symmetries
associated with them.
It turns out that the cube and the octahedron have the same group of symmetries,
and similarly the dodecahedron and the icosahedron have the same symmetry
group. This has to do with the fact that these Platonic solids are dual to each
other, respectively, in the following sense. An octahedron can be obtained from a
cube by replacing faces with vertices and vertices with faces, and the same goes
for the dodecahedron and the icosahedron.
The symmetry group of the tetrahedron has order 24, the symmetry group of the
cube and octahedron has order 48, and the symmetry group of the dodecahedron
and icosahedron has order 120.

Example 9.47. There is a group that describes all the possible manipulations of
a Rubik’s cube (Fig. 8). The size of this group is

43, 252, 003, 274, 489, 856, 000 = 12! ⋅ 210 ⋅ 8! ⋅ 37. (43)

Matrix groups
There are variousmatrix groups (Table 11.1) that represent linear transformations
having special properties. Here we consider only matrices with entries from the
real number field ℝ.

Definition 9.48 (General linear group GL(𝑛,ℝ))
The (real) general linear group of order 𝑛, written GL(𝑛,ℝ), is the group of
𝑛 × 𝑛 invertible matrices with entries in ℝ.

Definition 9.49 (Orthogonal group O(𝑛,ℝ))
The (real) orthogonal group of order 𝑛, writtenO(𝑛,ℝ), is the group of 𝑛 × 𝑛
real matrices that satisfy

𝐌𝐌⊺ =𝐌⊺𝐌 = 𝟏. (44)

Definition 9.50
Special linear group SL(𝑛,ℝ)] The (real) special linear group of order 𝑛, writ-
ten SL(𝑛,ℝ), is the group of 𝑛 × 𝑛 invertible real matrices with determinant
equal to 1.

Definition 9.51
Special orthogonal group SO(𝑛,ℝ)] The (real) special orthogonal group of
order 𝑛, written SO(𝑛,ℝ), is the group of 𝑛 × 𝑛 real matrices that satisfy

𝐌𝐌⊺ =𝐌⊺𝐌 = 𝟏, (45)
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and 𝖽𝖾𝗍 (𝐌) = 1.

Properties of groups
Lemma 9.52. Let ⟨𝐆, #, id, 𝗂𝗇𝗏⟩ be a group. Then
1. 𝗂𝗇𝗏(id) = id;
2. 𝗂𝗇𝗏(𝗂𝗇𝗏(𝑥)) = 𝑥, ∀𝑥 ∈ 𝐆;
3. 𝗂𝗇𝗏(𝑥 # 𝑦) = 𝗂𝗇𝗏(𝑦) # 𝗂𝗇𝗏(𝑥), ∀𝑥, 𝑦 ∈ 𝐆.

Lemma 9.53. LetG = ⟨𝐆, #, id, 𝗂𝗇𝗏⟩ be a group and let 𝑥, 𝑦 ∈ 𝐆. If 𝑥 and 𝑦 satisfy
the equation

𝑥 # 𝑦 = id, (46)

then 𝑦 = 𝗂𝗇𝗏(𝑥) and 𝑥 = 𝗂𝗇𝗏(𝑦).

Proof. If 𝑥#𝑦 = id, then, by composing both sides of this equationwith 𝗂𝗇𝗏(𝑥)
from the left, and using associativity to remove brackets, we find 𝗂𝗇𝗏(𝑥) #
𝑥 # 𝑦 = id # 𝗂𝗇𝗏(𝑥). Applying the inverse laws on the left-hand side, we
obtain id # 𝑦 = id # 𝗂𝗇𝗏(𝑥), and using the neutrality laws on both side of
this equation yields 𝑦 = 𝗂𝗇𝗏(𝑥). The fact that 𝑥 = 𝗂𝗇𝗏(𝑦) may be proved
similarly.

Corollary 9.54. LetM =
⟨
𝐌, #M, idM

⟩
be a monoid. If 𝗂𝗇𝗏1 and 𝗂𝗇𝗏2 are both

operations of inverse whichmakeM into a group, then 𝗂𝗇𝗏1 = 𝗂𝗇𝗏2 holds. In other
words, if a monoid can be made into a group by adding an inverse operation,
then the resulting group is uniquely determined by the underlying monoid.

Proof. Let 𝑥 ∈𝐌. Since ⟨𝐌, #, id, 𝗂𝗇𝗏2⟩ is a group, we have 𝑥 # 𝗂𝗇𝗏2(𝑥) = id.
Also ⟨𝐌, #, id, 𝗂𝗇𝗏1⟩ is a group, and in terms of this group, the equation 𝑥 #
𝗂𝗇𝗏2(𝑥) = id implies, by Lemma 9.53, that 𝗂𝗇𝗏2(𝑥) = 𝗂𝗇𝗏1(𝑥), by thinking
of 𝗂𝗇𝗏2(𝑥) in the role of 𝑦 fromLemma9.53. Since𝑥 ∈𝐌was arbitrary, 𝗂𝗇𝗏2 =
𝗂𝗇𝗏1 as functions on𝐌.

Example 9.55 (Orthogonal matrices). Fix an integer 𝑛 ≥ 1 and consider the set
of real orthogonalmatrices 𝐀 ∈ ℝ𝑛×𝑛: real, square matrices with orthonormal
columns and rows. One way to express orthogonality of a matrix is:

𝐀⊺𝐀 = 𝐀𝐀⊺ = 𝟏, (47)

where 𝟏 is the identity matrix. The set ℝ𝑛×𝑛 equipped with matrix multiplica-
tion as a binary operation, the identity matrix as the neutral element, and the
transposition (⋅)⊺ (which for this specific type of matrices corresponds to the
inverse) forms a group, usually denoted O(𝑛). Any orthogonal matrix 𝐀 has
the property 𝖽𝖾𝗍 (𝐀) ∈ {91, +1}. The subset of orthogonal 𝑛 × 𝑛 matrices with
determinant 1 forms the so-called special orthogonal group SO(𝑛,ℝ).

Graded exercise D.4 (GroupWithThreeElements)
In Example 9.43, what is the neutral element? What is the inverse operation?
Draw the composition table for this group.

Graded exercise D.5 (GroupInverseProperties)
Prove Lemma 9.52.

Remark 9.56. Just like for semigroups and monoids, any group has an opposite.
It is defined analogously.
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Subgroups

Definition 9.57 (Subgroup)
Let G = ⟨𝐆, #, id, 𝗂𝗇𝗏⟩ be a group. A subgroup of G is:
Constituents

1. A subset𝐇 ⊆ 𝐆.
Conditions

1. The set𝐇 is closed under the composition operation # from G:

𝑥 ∈ 𝐇 𝑦 ∈ 𝐇
;

𝑥 # 𝑦 ∈ 𝐇 (48)

2. The neutral element id ∈ 𝐆 is an element of𝐇;
3. The set𝐇 is closed under the inverse operation 𝗂𝗇𝗏 from G:

𝑥 ∈ 𝐇
.

𝗂𝗇𝗏(𝑥) ∈ 𝐇 (49)
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9.5. Rings, fields
Definition 9.58 (Ring)
A ring is
Constituents
1. a set 𝐑;
2. a binary operation ⋅∶ 𝐑 ×𝐑→ 𝐑, calledmultiplication;
3. a binary operation +∶ 𝐑 ×𝐑→ 𝐑, called addition;
4. a specified element 1 ∈ 𝐑 called one (or unit);
5. a specified element 0 ∈ 𝐑 called zero.
Conditions
1. ⟨𝐑, ⋅⟩ is a monoid, with neutral element 1;
2. ⟨𝐑, +⟩ is a commutative group, with neutral element 0;
3. Distributive law:

𝑥 ⋅ (𝑦 + 𝑧) = (𝑥 ⋅ 𝑦) + (𝑥 ⋅ 𝑧), ∀𝑥, 𝑦, 𝑧 ∈ 𝐑. (50)

Definition 9.59 (Field)
A field is a ring ⟨𝐊, ⋅, +, 1, 0⟩ such that

⟨
𝐊 ∖ {0}, ⋅

⟩
is a commutative group.
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In this chapter we look at morphisms, which are maps between two
semigroups (or monoids, groups) that “preserve the structure”.

A car shuttle train, is a shuttle train used to transport cars, and usually also other types of road vehicles, for a relatively short distance. Switzerland is well
known for many such shuttle trains, usually operating through tunnels.
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𝐒 × 𝐒 𝐓 × 𝐓

𝐒 𝐓

𝐹 × 𝐹

#S #T
𝐹

Figure 1.: Semigroup Morphism

10.1. Semigroup morphisms
A morphism is a map between semigroups that “preserves the structure” of
composition.

Definition 10.1 (Semigroup morphism)
A morphism 𝐹∶ S→ T between semigroups

S =
⟨
𝐒, #S

⟩
and T =

⟨
𝐓, #T

⟩
(1)

is a function 𝐹∶ 𝐒→ 𝐓 such that for all 𝑥, 𝑦 ∈ 𝐒,

𝐹(𝑥 #S 𝑦) = 𝐹(𝑥) #T 𝐹(𝑦). (2)

Note that we use 𝐹∶ 𝐒→ 𝐓when we want to highlight the function between sets,
andwe use𝐹 ∶ S→ Twhenwewant to highlight the relation between semigroup
structures. We think of (2) as a way of saying that the function 𝐹∶ 𝐒 → 𝐓 is
compatible with the multiplication operations on S and T, respectively.

Definition 10.2 (Identity morphism)
Let S be a semigroup. The identity function id𝐒 ∶ 𝐒 → 𝐒 is always a mor-
phism of semigroups. We can easily check that (2) is satisfied:

idS(𝑥 #S 𝑦) = 𝑥 #S 𝑦 = idS(𝑥) #S idS(𝑦). (3)

We call this the identity morphism of S.

Definition 10.3 (Semigroup isomorphism)
A morphism of semigroups 𝐹∶ S→ T is called a semigroup isomorphism if
there exists a morphism of semigroups 𝐺∶ T→ S such that

𝐹 # 𝐺 = idS and 𝐺 # 𝐹 = idT. (4)

Lemma 10.4. The composition of semigroup morphisms is a morphism:

𝐹∶ S→ T 𝐺∶ T→ U
.

(𝐹 # 𝐺)∶ S→ U
(5)

Exercise26. Prove Lemma 10.4.
See solution on page 175.

Example 10.5 (Logarithms and exponentials). The positive reals with multipli-
cation ⟨ℝ>𝟎, ⋅⟩ is a semigroup. The reals with addition ⟨ℝ, +⟩ is a semigroup.
Now consider as a bridge between the two: the logarithmic function. We have

log∶ ℝ>𝟎 → ℝ, (6)

and its inverse
exp∶ ℝ→ ℝ>𝟎. (7)

We already know that these are inverse of each other:

exp # log = idℝ,
log # exp = idℝ>𝟎 .

(8)
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We can verify that log is also a semigroup morphism, because of the following
property of the logarithms:

log(𝑎 ⋅ 𝑏) = log(𝑎) + log(𝑏). (9)

Because log is a bijection and exp is its inverse, it already follows that exp is a
morphism in the opposite direction. Alternatively we can see that is the case
because of the property of the exponential function:

exp(𝑐 + 𝑑) = exp(𝑐) ⋅ exp(𝑑). (10)

(9) and (10) are both (2) in disguise.

Example 10.6 (Transition function, continuation of Section 9.3). Consider the
map

𝑓∶ ℝ≥0 → (ℝ𝑛 → ℝ𝑛) (11)

that associates to a delta 𝛿 its transition function 𝑇𝛿. Re-reading (34), we can see
that it is a morphism between the semigroup

⟨
ℝ≥0, +

⟩
and the semigroup of

endomorphisms of ℝ𝑛.

Graded exercise D.6 (IsoViaTables)
Consider the set 𝐀 = { , } and the following three composition tables,
each of which defines a semigroup structure on 𝐀.

#1 #2 #3

Which of the three semigroups defined in this way are isomorphic to each
other? Justify your answer.

Graded exercise D.7 (SemigroupUpToIso)
How many different non-isomorphic semigroups are there with precisely
one element? How many with precisely two elements? Can you prove your
answer?

Graded exercise D.8 (CharacterizeSemigroupIsos)
Let𝐹∶ S→ T be a morphismof semigroups. Prove that𝐹 is an isomorphism
of semigroups if and only if the function 𝐹∶ 𝐒→ 𝐓 is bijective.
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10.2. Encoding as morphism
Example 10.7 (ASCII code). ASCII encoding takes any alphanumerical char-
acters and symbols into a number between 0 and 127 (Fig. 2). Call char the set
of those 128 symbols. We can see ASCII encoding as a semigroup morphism
of 𝖫𝗂𝗌𝗍 char to the free semigroup on the integers 𝖫𝗂𝗌𝗍 [0, 127]:

ASCII∶ 𝖫𝗂𝗌𝗍 char→ 𝖫𝗂𝗌𝗍 [0, 127]. (12)

Because we can also go back, by using the inverse function,

ASCII−1 ∶ 𝖫𝗂𝗌𝗍 [0, 127]→ 𝖫𝗂𝗌𝗍 char, (13)

ASCII encoding is also an isomorphism of semigroups.

Example 10.8 (ASCII code to binary). Currently, computers use binary to store
data. (There were, in fact, trinary computers.) In Fig. 2, you can see represented
also the binary encoding of each character. Therefore, we can see ASCII as a
morphism between 𝖫𝗂𝗌𝗍 char and binary lists 𝖫𝗂𝗌𝗍 {0, 1}.

Exercise27. Show that the morphism

ASCII ∶ 𝖫𝗂𝗌𝗍 char→ 𝖫𝗂𝗌𝗍 {0, 1} (14)

is not an isomorphism.
See solution on page 175.

Figure 2.: 7-bit US-ASCII encoding.
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Table 10.1.:Morse encoding

A ∙ −−−
B −−− ∙ ∙ ∙
C −−− ∙−−− ∙
D −−− ∙ ∙
E ∙
F ∙ ∙ −−− ∙
G −−−−−− ∙
H ∙ ∙ ∙ ∙
I ∙ ∙
J ∙ −−−−−−−−−
K −−− ∙−−−
L ∙ −−− ∙ ∙
M −−−−−−
N −−− ∙
O −−−−−−−−−
P ∙ −−−−−− ∙
Q −−−−−− ∙−−−
R ∙ −−− ∙
S ∙ ∙ ∙
T −−−
U ∙ ∙ −−−
V ∙ ∙ ∙ −−−
W ∙ −−−−−−
X −−− ∙ ∙ −−−
Y −−− ∙−−−−−−
Z −−−−−− ∙ ∙

0 −−−−−−−−−−−−−−−
1 ∙ −−−−−−−−−−−−
2 ∙ ∙ −−−−−−−−−
3 ∙ ∙ ∙ −−−−−−
4 ∙ ∙ ∙ ∙ −−−
5 ∙ ∙ ∙ ∙ ∙
6 −−− ∙ ∙ ∙ ∙
7 −−−−−− ∙ ∙ ∙
8 −−−−−−−−− ∙ ∙
9 −−−−−−−−−−−− ∙

Table 10.2.: 5 symbols for Morse encoding

∙ beep of length 𝓁
−−− beep of length 3𝓁
𝑠1 silence of length 𝓁
𝑠3 silence of length 3𝓁
𝑠7 silence of length 7𝓁

10.3. Morse coding
Example 10.9 (Morse code). Consider the Morse code: a way to encode the
letters and numerals to an alphabet of dots (∙) and dashes (−−−). The encoding is
shown in Table 10.1. Here, the alphabet mchar is the letters A–Z and the numbers
0–9:

mchar = (A to Z) ∪ (0 to 9). (15)

There is no difference between upper and lower case, and there are no punctuation
marks.
Transcribing a text inMorse code is not just amatter of creating the right sequence
of dots and dashes. The standard also requires a certain timing of the events.
These are the rules:
1. If the length of ∙ is 𝓁, then the length of−−−must be 3𝓁.
2. Between dashes and dots of the same letter, there must be a silence of 𝓁.
3. Between different letters, there must be a silence of 3𝓁.
4. Between different words, there must be a silence of 7𝓁.
Therefore, there are 5 symbols in the Morse alphabet (Table 10.2); each repre-
senting a signal.
Define now the extended alphabet emchar to be the union of mchar and the
set { , }, where is inter-letter space, and is inter-word space:

emchar = (A to Z) ∪ (0 to 9) ∪ { , }. (16)

Therefore, to encode the sentence

“I am well” (17)

we first transform it to upper case:

“I AMWELL”. (18)

Then we note the inter-letter space and the inter-word spaces:

I A M W E L L. (19)

At this point we can substitute the Morse code to obtain

∙ 𝑠1 ∙ 𝑠7 ∙ 𝑠1 −−− 𝑠3 −−− 𝑠1 −−− 𝑠7 ∙ 𝑠1 −−− 𝑠1 −−− 𝑠3 ∙ 𝑠3 −−− 𝑠3 −−− . (20)

In signal space—what somebody would hear—this becomes

. (21)

With this representation it is clear that 5 symbols are redundant: if we have a
1-period beep and a 1-period silence, we can obtain the 3-period silence and beeps
and the 7-period silence.
In the end, the Morse alphabet is binary in the sense that it all reduces to two
symbols: not {∙,−−−} but rather the alphabet { , }.

Exercise28. [Morse Morphism]We have seen that Morse code transforms a word
in the alphabet

(A to Z) ∪ (0 to 9) ∪ { , } (22)

to the binary alphabet
𝐁 = { , }. (23)

Something incorrect or unclear or missing? Report issues on GitHub by clicking here.

https://github.com/ACT4E/ACT4E/issues/new?labels=chap:morphisms;body=Chapter:%20Morphisms%0ASection:%20 Morse coding%0AVersion:%202024-12-09%0A%0ACheck%20all%20that%20apply:%0A-%20(%20)%20Something%20incorrect%0A-%20(%20)%20Something%20not%20clear%0A-%20(%20)%20Something%20missing%0A%0APlease%20describe%20more%20in%20detail%20below.%20Feel%20free%20to%20change%20the%20title%20to%20something%20more%20informative.%0A;title=Morphisms%20/%20 Morse coding%20/%202024-12-09


156 10. Morphisms

Is this map a morphism of list semigroups?
See solution on page 175.
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𝟏 𝐌

𝐍

idM

idN
𝐹

Figure 3.: Compatibility with identity elements

10.4. Monoid morphisms
We have defined semigroup morphisms. A monoid morphism has the same
properties, and one additional one: the constraint that it be compatible with the
identity elements.

Definition 10.10 (Monoid morphism)
A morphism 𝐹∶ M→ N between monoids

M =
⟨
𝐌, #M, idM

⟩
and N =

⟨
𝐍, #N, idN

⟩
(24)

is a function 𝐹∶ 𝐌→ 𝐍 such that for all 𝑥, 𝑦 ∈𝐌,

𝐹(𝑥 #M 𝑦) = 𝐹(𝑥) #N 𝐹(𝑦), (25)

and
𝐹(idM) = idN. (26)

Example 10.11. The set𝐌 = {91, 0, +1}, together with multiplication of whole
numbers and with 1 as neutral element, forms a monoid. The inclusion map
M→ ℤ is a morphism of monoids.

Example 10.12. Consider the monoidN in Example 9.28 and the monoidM =
⟨ℕ, +, 0⟩. Define a map

length∶ N→M (27)

that maps each string to its length. This is a monoid morphism, since:

length(𝑥 #N 𝑦) = length(𝑥) #M length(𝑦). (28)

In other words, the length of the concatenation of two lists is the sum of the
lengths of the two lists.

Definition 10.13 (Identity morphism)
LetM be a monoid. Similar to the case of semigroups, the identity function
induces a morphism of monoids idM ∶ M→M.

Definition 10.14 (Monoid isomorphism)
A morphism of monoids 𝐹∶ M → N is called a monoid isomorphism if
there is a morphism of monoids 𝐺∶ N→M such that

𝐹 # 𝐺 = idM and 𝐺 # 𝐹 = idN. (29)
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Graded exercise D.9 (MorphismMonoidIsomorphism)
Prove: a morphism of monoids 𝐹∶ M→ N is an isomorphism of monoids
if and only if the function 𝐹∶ 𝐌→ 𝐍 is bijective.

Graded exercise D.10 (TraceAndDeterminant)
Let ℝ𝑛×𝑛 denote the set of real 𝑛 × 𝑛 matrices, 𝑛 ∈ ℕ. These form a monoid
⟨ℝ𝑛×𝑛, ⋅, 𝟏⟩, with matrix multiplication as composition, and the identity ma-
trix as neutral element. They also form a monoid ⟨ℝ𝑛×𝑛, +, 0⟩ with matrix
addition as composition, and the zero matrix as neutral element. We also
note that that ⟨ℝ, ⋅, 1⟩ and ⟨ℝ, +, 0⟩ are two different monoid structures
on ℝ.
Recall that the trace of a real 𝑛 × 𝑛 matrix is the sum of its diagonal entries.
This defines a function

𝖳𝗋 ∶ ℝ𝑛×𝑛 → ℝ. (30)

Computing the determinant also corresponds to a function

𝖽𝖾𝗍 ∶ ℝ𝑛×𝑛 → ℝ. (31)

1. Does 𝖳𝗋 define a morphism of monoids
⟨
ℝ𝑛×𝑛, ⋅, 𝟏

⟩
→ ⟨ℝ, ⋅, 1⟩?

2. Does 𝖳𝗋 define a morphism of monoids
⟨
ℝ𝑛×𝑛, ⋅, 𝟏

⟩
→ ⟨ℝ, +, 0⟩?

3. Does 𝖽𝖾𝗍 define a morphism of monoids
⟨
ℝ𝑛×𝑛, ⋅, 𝟏

⟩
→ ⟨ℝ, ⋅, 1⟩?

4. Does 𝖽𝖾𝗍 define a morphism of monoids
⟨
ℝ𝑛×𝑛, ⋅, 𝟏

⟩
→ ⟨ℝ, +, 0⟩?

5. Does 𝖳𝗋 define a morphism of monoids
⟨
ℝ𝑛×𝑛, +, 0

⟩
→ ⟨ℝ, ⋅, 1⟩?

6. Does 𝖳𝗋 define a morphism of monoids
⟨
ℝ𝑛×𝑛, +, 0

⟩
→ ⟨ℝ, +, 0⟩?

7. Does 𝖽𝖾𝗍 define a morphism of monoids
⟨
ℝ𝑛×𝑛, +, 0

⟩
→ ⟨ℝ, ⋅, 1⟩?

8. Does 𝖽𝖾𝗍 define a morphism of monoids
⟨
ℝ𝑛×𝑛, +, 0

⟩
→ ⟨ℝ, +, 0⟩?

Short answers (without proof) are fine.
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10.5. Group morphisms
After semigroup morphisms and monoid morphisms, we define group mor-
phisms.

Definition 10.15 (Group morphism)
A morphism 𝐹∶ G→ H between groups

G =
⟨
𝐆, #G, idG, 𝗂𝗇𝗏G

⟩
and H =

⟨
𝐇, #H, idH, 𝗂𝗇𝗏H

⟩
(32)

is a function 𝐹∶ 𝐆→ 𝐇 such that for all 𝑥, 𝑦 ∈ 𝐆,

𝐹(𝑥 #G 𝑦) = 𝐹(𝑥) #H 𝐹(𝑦). (33)

What could be surprising is that, while a group hasmore structure than a monoid,
there are fewer conditions than in the definition of monoid morphism.
Where are the equations

𝐹(idG) = idH (34)

and
𝐹(𝗂𝗇𝗏G(𝑥)) = 𝗂𝗇𝗏H(𝐹(𝑥)) ? (35)

The answer is that they are not needed, because they can be deduced from the
group axioms (and so we omit them, because they don’t need to be checked when
we want to know if something is a group morphism or not).

Exercise29. Prove that (34) and (35) are implied by Def. 10.15.
See solution on page 176.

Exercise30. Let 𝐆 = {+1, 91, +𝑖, −𝑖} where 𝑖 is the imaginary unit. Consider the
group G = ⟨𝐆, ⋅, 1, 𝗂𝗇𝗏G⟩ and the groupH of all integers under addition. Prove
that 𝐹∶ H→ G such that 𝑓(𝑛) = 𝑖𝑛 for all 𝑛 ∈ H is a group morphism.

See solution on page 176.

Example 10.16. Consider the group

G =
⟨
ℝ2×2, +, [0 0

0 0], −
⟩

(36)

of real 2 × 2matrices, together with sum of matrices as a binary operation, “zero”
matrix as the neutral element, and the “-” operation as inverse. Furthermore,
consider the group ⟨ℝ, +, 0, −⟩. Taking the trace of a matrix corresponds to a
group morphism. Indeed, the operation

𝖳𝗋 ∶ ℝ2×2 → ℝ,

[𝑎 𝑏
𝑐 𝑑]↦ 𝑎 + 𝑑,

(37)

satisfies the required condition:

𝖳𝗋([𝑎 𝑏
𝑐 𝑑] #G [

𝑒 𝑓
𝑔 ℎ]) = 𝖳𝗋([𝑎 + 𝑒 𝑏 + 𝑓

𝑐 + 𝑔 𝑑 + ℎ])

= 𝖳𝗋([𝑎 𝑏
𝑐 𝑑]) #H 𝖳𝗋([𝑒 𝑓

𝑔 ℎ])

= (𝑎 + 𝑑) #H (𝑒 + ℎ).

(38)

Something incorrect or unclear or missing? Report issues on GitHub by clicking here.

https://github.com/ACT4E/ACT4E/issues/new?labels=chap:morphisms;body=Chapter:%20Morphisms%0ASection:%20 Group morphisms%0AVersion:%202024-12-09%0A%0ACheck%20all%20that%20apply:%0A-%20(%20)%20Something%20incorrect%0A-%20(%20)%20Something%20not%20clear%0A-%20(%20)%20Something%20missing%0A%0APlease%20describe%20more%20in%20detail%20below.%20Feel%20free%20to%20change%20the%20title%20to%20something%20more%20informative.%0A;title=Morphisms%20/%20 Group morphisms%20/%202024-12-09
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Example 10.17 (Square matrices with full rank). Fix an integer 𝑛 ≥ 1 and
consider the set of square matrices with full rank 𝐀 ∈ ℝ𝑛×𝑛, which is to say
𝖽𝖾𝗍 (𝐀) ≠ 0. This set, equipped with the usual matrix multiplication as the binary
operation (𝐀 #𝐁 ∶= 𝐀𝐁), the identity matrix 𝟏 as the neutral element, andmatrix
inverse as the inverse (𝗂𝗇𝗏(𝐀) ∶= 𝐀−1), forms a group. Furthermore, note that
for this type of matrices, we have the properties:
1. 𝖽𝖾𝗍 (𝐀𝐁) = 𝖽𝖾𝗍 (𝐀) ⋅ 𝖽𝖾𝗍 (𝐁);
2. 𝖽𝖾𝗍 (𝐀−1) = (𝖽𝖾𝗍 (𝐀))−1;
3. (𝐀𝐁)−1 = 𝐁−1𝐀−1.
This makes 𝖽𝖾𝗍 a group morphism from the group of invertible square matrices
to the real numbers with multiplication.

As before for semigroups and monoids, the identity map on the underlying set
of a group is a group morphism.

Definition 10.18 (Identity morphism)
Given a group G = ⟨𝐆, #, id, 𝗂𝗇𝗏⟩, the identity function 𝐆 → 𝐆 induces a
morphism of groups idM ∶ M→M.

Definition 10.19 (Group isomorphism)
A morphism of monoids 𝐹∶ G→ H is called a group isomorphism if there
is a morphism of groups 𝐺∶ H→ G such that

𝐹 # 𝐺 = idG and 𝐺 # 𝐹 = idH. (39)

You are reading a draft compiled on 2024-12-09 11:28:28Z



10.6. Generators and relations 161

10.6. Generators and relations
Generating subsets

In Example 9.12 we considered a set of states

𝐀 = {sprout, young,mature, old, dead}, (40)

a function 𝑓∶ 𝐀→ 𝐀, and the semigroup

S = {𝑓𝑛 ∣ 𝑛 ∈ ℕ}. (41)

Note that S has a special form: all of its elements can be expressed in terms one of
its elements, 𝑓, and the multiplication operation (which, in this case, is function
composition). To describe this state of affairs we say that S is generated by the
element 𝑓.

Definition 10.20 (Generating subsets)
Let S = ⟨𝐒, #⟩ be a semigroup, and let 𝐀 ⊆ 𝐒 be a subset. We say that S is
generated by𝐀 if every element of S can be expressed as a finite composition
of elements of 𝐀.

Remark 10.21. Mutatis mutandis, the same definition also holds for monoids.
For groups, we say 𝐀 generates the group if every element of the group can be
expressed as a finite composition of elements of 𝐀 or their inverses.

Example 10.22. Consider Example 9.10, where elements of the semigroup S
were non-empty lists built using the elements of the “alphabet” set 𝐀 = {∙, ∙}. In
this case, S is generated by 𝐀.

Example 10.23. Consider the natural numbers (without zero) as a semigroup,
where addition is the semigroup composition operation (see Example 9.7). This
semigroup is generated by the subset {1}.

Relations

Let us return to the semigroup (41). Recall that 𝑓 was defined by

𝑓(sprout) = young, (42)
𝑓(young) = mature, (43)
𝑓(mature) = old, (44)

𝑓(old) = dead, (45)
𝑓(dead) = dead. (46)

Observe that the function 𝑓4 will map all elements of 𝐀 to the element “dead”.
For example, if we start with the element “sprout”, the result of applying 𝑓 four
times is

sprout
𝑓
→ young

𝑓
→ mature

𝑓
→ old

𝑓
→ dead. (47)

Note also that for any 𝑛 ≥ 4, the function 𝑓𝑛 will map all elements of 𝐀 to the
element “dead”. If we consider 𝑓6, for example, then, for any 𝑥 ∈ 𝐀,

𝑓6(𝑥) = 𝑓2(𝑓4(𝑥)) = 𝑓2(dead) = 𝑓(𝑓(dead)) = 𝑓(dead) = dead. (48)

It follows that all 𝑓𝑛, for 𝑛 ≥ 4, are actually all the same map: the one that sends
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every state to the dead state. Thus, S = {𝑓𝑛 ∣ 𝑛 ∈ ℕ} actually only has at most
four elements: 𝑓, 𝑓2, 𝑓3, and 𝑓4.

Graded exercise D.11 (CheckRelations)
Are any of the fourmaps 𝑓, 𝑓2, 𝑓3, and 𝑓4 actually equal? Justify your answer
by argumentation or by explicitly checking via calculation.

When two elements which a priori could be distinct from each other (such as 𝑓6

and 𝑓4 above, for example) turn out to be equal, we call this a relation between
the elements of S.

Definition 10.24
A relation on a semigroup ⟨S, #⟩ is an equation between compositions of
elements of S.

Remark 10.25. Again, we have analogous definitions for monoids and groups.
In these cases, we interpret the neutral element id as a “zero-fold” multiplication,
so it can also be part of equations that express relations.

Remark 10.26. This is not the same notion as that of a (binary) relation, which
was the topic of Chapter 4 and takes up a much more important role in this book
than the notion that we are discussing here.

Example 10.27. For the semigroup (41), the relations 𝑓5 = 𝑓4, 𝑓6 = 𝑓5, and
𝑓6 = 𝑓4, etc. are satisfied. However, the relation 𝑓3 = 𝑓 is not satisfied, for
example.

Example 10.28. Consider the semigroup ⟨ℕ, +⟩. The equation 𝑙 + 𝑘 = 𝑘 + 𝑙 is
an example of a relation that holds for all 𝑙, 𝑘 ∈ ℕ.

Example 10.29. Consider the group G discussed in Example 9.43, where

𝐆 =
{
1, 𝑒

1
3
2𝜋𝑖 , 𝑒

2
3
2𝜋𝑖} ⊆ ℂ (49)

and the composition operation is multiplication of complex numbers. The ele-

ment 𝑥 ∶= 𝑒
1
3
2𝜋𝑖 satisfies the relation 𝑥3 = idG.

Example 10.30. Consider the group G given in Example 9.45 which describe
symmetries of a rectangle. We had

𝐆 = {𝐼, 𝑉, 𝐻, 𝑅} (50)

where 𝐼 = id corresponds to “doing nothing”, 𝑉 is reflecting the rectangle along
its long axis,𝐻 is reflecting on the short axis, and𝐻 is rotation by 180 degrees.
In this group, the relations 𝑉2 = 𝐼,𝐻2 = 𝐼,𝐻2 = 𝐼 are satisfied, for example.

Freeness
When, in Def. 10.20 we spoke about the semigroup S = ⟨𝐒, #⟩ being generated by
a subset 𝐀 ⊆ 𝐒, we supposed that we already had a semigroup S to work with.
However, if we start with just a set, say 𝐀 = {∙, ∙}, then we saw in Example 9.10
that we can build a semigroup from this set by considering lists of elements of 𝐀,
with concatenation as the composition operation. The resulting semigroup in
that example has a special characteristic: its elements do not satisfy any relations
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10.6. Generators and relations 163

other than the ones that are required by the definition of a semigroup, namely
those relations dictated by the associative law. Such a semigroup is called free. If
we think of relations as “constraints” (they are equations) between the elements
of a semigroup, then free semigroups are “free of constraints”.
For a given set, say 𝐀 = {∙, ∙}, there will in general be different ways of formally
building a free semigroup from it. For instance, instead of considering lists of
elements of 𝐀

[∙, ∙, ∙, ∙, ∙, ∙, ∙, ∙], (51)

we could instead consider strings of elements

∙∙∙∙∙∙∙∙, (52)

or tuples of elements
⟨∙, ∙, ∙, ∙, ∙, ∙, ∙, ∙⟩, (53)

both of which could also be composed in a way which is analogous to concatena-
tion.
A common feature of all three of these formalizations is thatwe are writing a finite
sequence of elements of𝐀, keeping account of the ordering. Both approaches will
in fact build a semigroup from the set𝐀which is free. And in both cases there is a
natural way of seeing 𝐀 as generating the resulting semigroup. However, the two
set-ups are formally distinct because we are using a different way of writing things
down with symbols. We will see in a later chapter that the resulting semigroups
are essentially “the same” (they are isomorphic) and their “freeness” can be given
an elegant characterization.
Because in fact all free semigroups constructed from 𝐀 are “the same”, indepen-
dent of the formal symbolic specifics of how they are constructed,we refer to them
all as the free semigroup generated by𝐀. Furthermore, if we were to work with a
set 𝐁 = {𝑎, 𝑏} instead of 𝐀 = {∙, ∙}, and generate a free semigroup from 𝐁, then
this would also produce a semigroup which is “the same”. Therefore, sometimes
one speaks simply of “the free group on two generators”, in view of the fact that
the essential feature is that both 𝐀 and 𝐁 have two elements.
Note that although 𝐀 and 𝐁 each only have two elements, the free semigroups
that they generate will have infinitely many elements. Indeed, there are infinitely
many lists that we can build from the elements of 𝐀. As we concatenate lists, the
resulting compositions grow longer and longer, and there are no relations which
would allow us to “simplify” a string to one which is shorter.
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We have talked about semigroups, monoids, and groups as mathe-
matical structures in isolation. In this chapter we discuss the concept
of action of a semigroup on another set. For example, we discuss how
linear transformations are a semigroup that act on vectors.

Switzerland is traditionally known for being one of the strongest nations in alpine skiing, where it has a long-running rivalry with neighboring Austria.



166 11. Actions

𝐌 × (𝐌 ×𝐀) 𝐌 ×𝐀

(𝐌 ×𝐌) ×𝐀

𝐌 ×𝐀 𝐀

id𝐌 × 𝖺𝖼𝗍

𝖺𝗌
𝖺𝖼𝗍

#S × id𝐀
𝖺𝖼𝗍

Figure 1.: Compatibility of left-action operation
with composition.

11.1. Actions
Monoid actions
Definition 11.1 (Monoid left action operation)
A left action operation of a monoidM =

⟨
𝐌, #M, idM

⟩
on a set 𝐀 is:

Constituents
1. a function

𝖺𝖼𝗍∶ 𝐌 ×𝐀→ 𝐀. (1)

Conditions
1. for all 𝑎 ∈ 𝐀 and 𝑥, 𝑦 ∈𝐌,

𝖺𝖼𝗍(𝑥, 𝖺𝖼𝗍(𝑦, 𝑎)) = 𝖺𝖼𝗍(𝑥 #M 𝑦, 𝑎); (2)

2. for all 𝑎 ∈ 𝐀,
𝖺𝖼𝗍(idM, 𝑎) = 𝑎. (3)

Equation (2) says that if we first apply the action of 𝑥 to obtain 𝖺𝖼𝗍(𝑥, 𝑎), and then
we apply the action of 𝑦 𝖺𝖼𝗍(𝑦,−), it is the same thing as applying the action of
𝑥 #M 𝑦.

Remark 11.2. Our above definition of amonoid left action operation corresponds
to what is often called a “left action”. Such action operations are often denoted
using infix notation of the kind

𝐌 ×𝐀→ 𝐀, ⟨𝑥, 𝑎⟩↦ 𝑥 ⋅ 𝑎 (4)

or even simply
𝐌 ×𝐀→ 𝐀, ⟨𝑥, 𝑎⟩↦ 𝑥𝑎 (5)

(in regard to the latter, think of the notation often used for multiplication of
matrices with vectors). If we write our notation “𝑥 #M 𝑦” as “𝑥 ⋆ 𝑦” (or even
simply “𝑥𝑦”), then (2) reads as

𝑥 ⋅ (𝑦 ⋅ 𝑎) = (𝑥 ⋆ 𝑦) ⋅ 𝑎, (6)

or simply
𝑥(𝑦𝑎) = (𝑥𝑦)𝑎. (7)

In other words, we can view (2) as a kind of “associative law”, but where two of
the three elements come from𝐌, while one of the elements comes from 𝐀.

Definition 11.3 (Monoid right action operation)
A right action operation of a monoid M =

⟨
𝐌, #M, idM

⟩
on a set 𝐀 is:

Constituents
1. a function

𝖺𝖼𝗍∶ 𝐀 ×𝐌→ 𝐀. (8)

Conditions
1. for all 𝑎 ∈ 𝐀 and 𝑥, 𝑦 ∈𝐌,

𝖺𝖼𝗍(𝖺𝖼𝗍(𝑎, 𝑥), 𝑦) = 𝖺𝖼𝗍(𝑎, 𝑥 #M 𝑦); (9)
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11.1. Actions 167

2. for all 𝑎 ∈ 𝐀,
𝖺𝖼𝗍(𝑎, idM) = 𝑎. (10)

There is a way to reformulate the notions of left and right monoid action oper-
ations which leads to a compact definition which we will generalize later. To
derive this definition, we’ll start with the definition Def. 11.3 of a right action
operation, and then apply “left currying”.
Recall that left currying is done by applying the canonical isomorphism

𝖼𝗎∶ 𝐂𝐀×𝐁 →
(
𝐂𝐀

)𝐁
, (11)

which transforms any function of the type

𝐀 × 𝐁→ 𝐂 (12)

into one of the type
𝐁→ (𝐀→ 𝐂). (13)

Applying this to 𝖺𝖼𝗍∶ 𝐀 ×𝐌→ 𝐀 we obtain a function

𝖼𝗎(𝖺𝖼𝗍)∶ 𝐌→ (𝐀→ 𝐀). (14)

Since can tell the difference between 𝖺𝖼𝗍 and 𝖼𝗎(𝖺𝖼𝗍) based on their respective
domains and codomains, so we now simply use the same name 𝖺𝖼𝗍 for both
functions, and drop the “𝖼𝗎”. Furthermore, we will usually write

𝖺𝖼𝗍∶ 𝐌→ 𝐄𝐧𝐝(𝐀), (15)

using the notation 𝐄𝐧𝐝(𝐀) for functions of type 𝐀→ 𝐀. These are the endomor-
phisms of 𝐀.
Now, so far, we have just used currying to produce the function (15) from the a
monoid action operation. Is (15) really also a homomorphisms of monoids?
To see that this is the case, consider first the second condition in the definition of
a right action operation, given by (10). Translating this to the function (15), this
means that

𝖺𝖼𝗍(idM)(𝑎) = 𝑎 ∀𝑎 ∈ 𝐀, (16)

or, in other words, that
𝖺𝖼𝗍(idM) = id𝐀. (17)

Since the identity function id𝐀 is the identity element of the monoid 𝐄𝐧𝐝(𝐀),
this shows that the function (15) respects the identity elements of the monoids
which are its source and target.
Now let’s take a look at the first condition in the definition of a right action
operation. For any 𝑥, 𝑦 ∈𝐌, we have

𝖺𝖼𝗍(𝖺𝖼𝗍(𝑎, 𝑥), 𝑦) = 𝖺𝖼𝗍(𝑎, 𝑥 #M 𝑦) ∀𝑎 ∈ 𝐀. (18)

If we translate this, via currying, into an equality of functions in 𝐄𝐧𝐝(𝐀), we
obtain

𝖺𝖼𝗍(𝑥) #𝐄𝐧𝐝(𝐀) 𝖺𝖼𝗍(𝑦) = 𝖺𝖼𝗍(𝑥 #S 𝑦). (19)

In other words, 𝖺𝖼𝗍 respects the composition operations defined on its source and
target. In sum,wehave found that 𝖺𝖼𝗍 is indeed monoidhomomorphism (Def. 10.10),
and this leads us to the the following compact definition.
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168 11. Actions

Definition 11.4 (Monoid action)
An action of a monoidM on a set 𝐀 is a monoid homomorphism

𝖺𝖼𝗍∶ M→ 𝐄𝐧𝐝(𝐀). (20)

Observe that this definition makes no reference to “left” and ”right”, even though
we derived it from the definition of a right action operation. What about left
action operations?

Graded exercise D.12 (LeftActionCurry)
Show that a left action operation of a monoidM on a set 𝐀 corresponds to a
monoid homomorphism

𝖺𝖼𝗍∶ Mop → 𝐄𝐧𝐝(𝐀). (21)

Group actions
For defining a group action, we must adapt the definition of a monoid action. The
endomorphisms𝐄𝐧𝐝(𝐀) are not a group, because they also contain non-invertible
maps. Recall that an invertible endomorphism is called an automorphism, and
that 𝐀𝐮𝐭(𝐀), the set of automorphisms of 𝐀, comes naturally equipped with a
group structure.

Definition 11.5 (Group right action operation)
A right action operation of a group G =

⟨
𝐆, #G, idG

⟩
on a set 𝐀 is:

Constituents
1. a function

𝖺𝖼𝗍∶ 𝐀 × 𝐆→ 𝐀. (22)

Conditions
1. for all 𝑎 ∈ 𝐀 and 𝑥, 𝑦 ∈ 𝐆,

𝖺𝖼𝗍(𝖺𝖼𝗍(𝑎, 𝑥), 𝑦) = 𝖺𝖼𝗍(𝑎, 𝑥 #M 𝑦); (23)

2. for all 𝑎 ∈ 𝐀,
𝖺𝖼𝗍(𝑎, idM) = 𝑎. (24)

Definition 11.6 (Group action)
An action of a group G onto a set 𝐀 is a group morphism

𝖺𝖼𝗍∶ G→ 𝐀𝐮𝐭(𝐀). (25)

Graded exercise D.13 (MatrixMultAction)
Let 𝐀 = ℝ𝑛, and let GL(𝑛,ℝ) be the group of invertible 𝑛 × 𝑛matrices. Let

𝛼∶ GL(𝑛,ℝ) ×𝐀 → 𝐀
⟨𝐌, 𝐯⟩ ↦𝐌𝐯

(26)

be the usual multiplication of matrices with vectors. Check that (26) defines
a left group action operation of GL(𝑛,ℝ) on 𝐀.
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Semigroup actions

Definition 11.7 (Semigroup action operation)
A right action operation of a semigroup S = ⟨𝐒, #S⟩ on a set 𝐀 is a function

𝖺𝖼𝗍∶ 𝐀 × 𝐒→ 𝐀 (27)

such that, for all 𝑎 ∈ 𝐀 and 𝑥, 𝑦 ∈ 𝐒,

𝖺𝖼𝗍(𝖺𝖼𝗍(𝑎, 𝑥), 𝑦) = 𝖺𝖼𝗍(𝑎, 𝑥 #S 𝑦). (28)

.

Definition 11.8 (Semigroup action)
An action of a semigroup S on a set 𝐀 is a semigroup morphism

𝖺𝖼𝗍∶ S→ 𝐄𝐧𝐝(𝐀). (29)

Actions of sets
Definition 11.9 (Set left action operation)
A left action operation of a set 𝐒 on a set 𝐀 is a function

𝖺𝖼𝗍∶ 𝐒 ×𝐀→ 𝐀. (30)

Definition 11.10 (Set right action operation)
A right action operation of a set 𝐒 on a set 𝐀 is a function

𝖺𝖼𝗍∶ 𝐀 × 𝐒→ 𝐀. (31)
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11.2. Modules, Vector spaces
Vector spaces

Definition 11.11 (Real vector space)
A real vector space is
Constituents
1. a set 𝐕, the elements of which are called vectors;
2. a binary operation +∶ 𝐕 ×𝐕 → 𝐕, called vector addition;
3. an element 0 ∈ 𝐕;
4. an operation ⋅∶ ℝ ×𝐕 → 𝐕, called scalar multiplication.
Conditions
1. ⟨𝐕, +⟩ is a commutative group, with neutral element 0;
2. Scalar multiplication is a left action operation of the ring ℝ:

a) (𝜆𝜇) ⋅ 𝑥 = 𝜆 ⋅ (𝜇 ⋅ 𝑥) ∀𝜆, 𝜇 ∈ ℝ, ∀𝑥 ∈ 𝑈;
b) 1 ⋅ 𝑥 = 𝑥 ∀𝑥 ∈ 𝐔;
c) (𝜆 + 𝜇) ⋅ 𝑥 = (𝜆 ⋅ 𝜇) + (𝜇 ⋅ 𝑥) ∀𝜆, 𝜇 ∈ ℝ, ∀𝑥 ∈ 𝐕;
d) 𝜆 ⋅ (𝑥 + 𝑦) = (𝜆 ⋅ 𝑥) + (𝜆 ⋅ 𝑦), ∀𝜆 ∈ ℝ, ∀𝑥, 𝑦 ∈ 𝐕.

Remark 11.12. The general definition of a vector space over any field K is
obtained by replacing ℝ in the above definition with an arbitrary fieldK.

Example 11.13.
⟨
ℝ𝑛, +, ⋅

⟩

Graded exercise D.14 (RealPolynomials)
Let 𝐀 denote the set of polynomials in one variable and with coefficients in
ℝ. In other words, elements of 𝐀 are polynomials of the form

𝑝(𝑋) = 𝑎𝑛𝑋𝑛 + 𝑎𝑛−1𝑋𝑛−1 +⋯ + 𝑎1𝑋 + 𝑎0, (32)

where 𝑛 ∈ ℕ and 𝑎𝑛, 𝑎𝑛−1,… , 𝑎1, 𝑎0 ∈ ℝmay vary.

1. Check (prove) that 𝐀 forms a commutative monoid when equipped with
with the usual addition operation for polynomials and the zero polyno-
mial 𝑝(𝑋) = 0 as neutral element.

2. Is the commutative monoid ⟨𝐀, +, 0⟩ in fact a group?
3. Check that ⟨𝐀, +, 0⟩ forms a real vector space when we equip it with the

following (usual) scalar multiplication:

𝜆⋅(𝑎𝑛𝑋𝑛+𝑎𝑛−1𝑋𝑛−1+⋯+𝑎1𝑋+𝑎0) ∶= 𝜆𝑎𝑛𝑋𝑛+𝜆𝑎𝑛−1𝑋𝑛−1+⋯+𝜆𝑎1𝑋+𝜆𝑎0
(33)

for any 𝜆 ∈ ℝ.
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11.3. Linear group actions
Special Euclidean group

Definition 11.14 (General Euclidean group E(𝑛,ℝ))
The general (real) Euclidean group of order 𝑛, written E(𝑛,ℝ), is the group
of (𝑛 + 1) × (𝑛 + 1) real matrices of the form

[𝐑 𝐭
𝟎 1] , (34)

where 𝐑 ∈ O(𝑛,ℝ) and 𝐭 ∈ ℝ𝑛.

Definition 11.15
Special Euclidean group SE(𝑛,ℝ𝑛)] The special (real) Euclidean group of
order 𝑛, written SE(𝑛,ℝ𝑛), is the group of (𝑛 + 1) × (𝑛 + 1) real matrices of
the form

[𝐑 𝐭
𝟎 1] , (35)

where 𝐑 ∈ SO(𝑛,ℝ) and 𝐭 ∈ ℝ𝑛.

The groups SE(2,ℝ) and SE(3,ℝ) are particular important in robotics because
they represent the roto-translations of the plane and 3D space, respectively.
From (34) we know we can represent one by a pair ⟨𝐑, 𝐭⟩, with 𝐑 ∈ SO(𝑛,ℝ)
and 𝐭 ∈ ℝ𝑛.
If we look at how matrices compose, we get

[𝐑2 𝐭2
𝟎 1 ] [

𝐑1 𝐭1
𝟎 1 ] = [𝐑2𝐑1 𝐑2𝐭1 + 𝐭2

𝟎 1 ] . (36)

The formula for composition is

⟨𝐑1, 𝐭1⟩ #SE(𝑛,ℝ𝑛) ⟨𝐑2, 𝐭2⟩ = ⟨𝐑2𝐑1,𝐑2𝐭1 + 𝐭2⟩. (37)

The group SE(𝑛,ℝ𝑛) induces a transformation on the points of ℝ𝑛. We are going
to call this an action.
The action is the following function:

𝖺𝗉𝗉𝗅𝗒∶ SE(𝑛,ℝ𝑛) ×ℝ𝑛 → ℝ𝑛,
⟨⟨𝐑, 𝐭⟩, 𝐩⟩ ↦ 𝐑𝐩 + 𝐭.

(38)

Given a roto-translation and a point, the function returns the roto-translated
point. We can also see this in matrix form as follows. We need to substitute for a

Table 11.1.:Matrix groups

GL(𝑛,ℝ) General linear group arbitrary linear transformations
SL(𝑛,ℝ) Special linear group invertible linear transformations

O(𝑛,ℝ) Orthogonal group preserve length of vectors
SO(𝑛,ℝ) Special orthogonal group rotations

E(𝑛,ℝ) Euclidean group preserve distances and angles
SE(𝑛,ℝ𝑛) Special Euclidean group rigid motions
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point 𝐩 ∈ ℝ𝑛 a homogenous point [𝐩1] ∈ ℝ𝑛+1.

[𝐑 𝐭
𝟎 1] [

𝐩
1] = [𝐑𝐩 + 𝐭

1 ] . (39)

If we apply two rototranslations, first 𝑥 = ⟨𝐑𝑥, 𝐭𝑥⟩ and then 𝑦 = ⟨𝐑𝑦 , 𝐭𝑦⟩, we
find:

𝖺𝗉𝗉𝗅𝗒(⟨𝐑𝑦 , 𝐭𝑦⟩, 𝖺𝗉𝗉𝗅𝗒(⟨𝐑𝑥, 𝐭𝑥⟩,𝐩)) = 𝖺𝗉𝗉𝗅𝗒(⟨𝐑𝑦 , 𝐭𝑦⟩,𝐑𝑥𝐩 + 𝐭𝑥)
= 𝐑𝑦𝐑𝑥𝐩 +𝐑𝑦𝐭𝑥 + 𝐭𝑦 .

(40)

It is easy to see that it is equal to compose the two transformations in the inverse
order

⟨𝐑𝑥, 𝐭𝑥⟩ #SE(𝑛,ℝ𝑛) ⟨𝐑𝑦 , 𝐭𝑦⟩ = ⟨𝐑𝑦𝐑𝑥,𝐑𝑦𝐭𝑥 + 𝐭𝑦⟩, (41)

and then apply it to the object

𝖺𝗉𝗉𝗅𝗒(⟨𝐑𝑦𝐑𝑥,𝐑𝑦𝐭𝑥 + 𝐭𝑦⟩,𝐩) = 𝐑𝑦𝐑𝑥𝐩 +𝐑𝑦𝐭𝑥 + 𝐭𝑦 . (42)

Thus, we have proved this property

𝖺𝗉𝗉𝗅𝗒(𝑦, 𝖺𝗉𝗉𝗅𝗒(𝑥,𝐩)) = 𝖺𝗉𝗉𝗅𝗒(𝑥 # 𝑦,𝐩), (43)

which is graphically reported in Fig. 2.

Figure 2.: Graphical representation of roto-
translation action.

𝐩 𝐑𝑦𝐑𝑥𝐩 +𝐑𝑦𝐭𝑥 + 𝐭𝑦

𝐑𝑥𝐩 + 𝐭𝑥
𝖺𝗉𝗉𝗅𝗒(𝑥,−) 𝖺𝗉𝗉𝗅𝗒(𝑦,−)

𝖺𝗉𝗉𝗅𝗒(𝑥 # 𝑦,−)

The notion of semigroup action generalizes this property.
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11.4. Dynamical systems
Dynamical systems are ubiquitous in engineering, and there are various ways to
formulate this concept mathematically. At a very basic level, there are usually
the following ingredients:
1. a state space which comprises the possible states of the system in question
2. a dynamics rule which governs how states of the system may change
Typically, there is a model of time involved (e.g. either in discrete time-steps, or
as continuous time) for describing how states change over time, or, instead of a
model of time, one may use a set of events as the triggers for changes of state.
A common way to model dynamics is by a right action operation of a monoid
𝐓 = ⟨𝐓, #𝐓, id𝐓⟩ on a set 𝐗 which models the state space,

𝖽𝗒𝗇∶ 𝐗 × 𝐓→ 𝐗. (44)

Discrete-time systems

Consider for example the monoid 𝐓 = ⟨ℕ, +, 0⟩ as a discrete model of time.
Observe that 𝐓 is generated by the number 1 ∈ ℕ: every natural number 𝑛 can
be written as a 𝑛-fold sum of 1 with itself. If we model a dynamical system by a
left action operation of 𝐓 on a state space 𝐗,

𝖽𝗒𝗇∶ ℕ × 𝐗→ 𝐗, (45)

then in particular this dynamics function is compatible with the summing of
natural numbers (which is the composition operation in the monoid 𝐓):

𝖽𝗒𝗇(𝑛, 𝖽𝗒𝗇(𝑚, 𝑥) = 𝖽𝗒𝗇(𝑛 +𝑚, 𝑥). (46)

Because 𝐓 = ⟨ℕ, +, 0⟩ is generated by the number 1, the function (45) is then
completely determined by the function

𝖽𝗒𝗇(1,−)∶ 𝐗→ 𝐗. (47)

If we start ‘running’ the dynamical system at some point 𝑥0 at time 𝑡 = 0, then
iteratively applying the function (47) will compute that trajectory 𝑥0, 𝑥1, 𝑥2, 𝑥3,…
of the initial point 𝑥0 as time progresses. Often a discrete-time dynamical system
is specified by defining the function (47) in the following notation,

𝑥𝑛+1 = 𝑓(𝑥𝑛), (48)

where 𝑓 = 𝖽𝗒𝗇(1,−) and 𝑥𝑛 denotes 𝖽𝗒𝗇(𝑛, 𝑥0), the 𝑛-th element of a trajectory
starting at some 𝑥0.

Example 11.16. The logistic equation

𝑥𝑛+1 = 𝑟𝑥𝑛(𝑥𝑛 − 1) (49)

is of the form (48), with 𝐗 = [0, 1] ⊆ ℝ and where 𝑟 ∈ ℝ is a parameter. Despite
being only 1-dimensional and deterministic, this dynamical system can exhibit
extremely complex behavior (more precisely: deterministic chaos), depending on
which value for the parameter 𝑟 is chosen.
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Continuous-time systems
Consider the initial value problem

{
�̇�(𝑡) = 𝑓(𝑥(𝑡))
𝑥(0) = 𝑥0

(50)

where 𝑓∶ ℝ𝑛 → ℝ𝑛 is a differentiable function, 𝑥∶ ℝ → ℝ𝑛 is a continuously
differentiable function, and 𝑥0 ∈ ℝ𝑛. Under suitable assumptions on 𝑓, for each
choice of 𝑥0, there exists a unique solution 𝑠𝑥0 ∶ ℝ → ℝ𝑛 of this initial value
problem. Using all of these solutions, it is possible to define the following map,
which is called a flow:

𝜑∶ ℝ ×ℝ𝑛 → ℝ𝑛,
⟨𝑡, 𝑥0⟩ ↦ 𝑠𝑥0(𝑡).

(51)

In this case, the flow map 𝜙 will necessarily satisfy the following conditions
1. 𝜑(𝑡 + 𝑠, 𝑥) = 𝜑(𝑡, 𝜑(𝑠, 𝑥)) ∀𝑡, 𝑠 ∈ ℝ, 𝑥 ∈ ℝ𝑛,
2. 𝜑(0, 𝑥) = 𝑥 ∀𝑥 ∈ ℝ𝑛,
which means that is is a left action operation on ℝ𝑛 by the monoid ⟨ℝ, +, 0⟩.

Definition 11.17
A continuous-time dynamical system on ℝ𝑛 is a continuously differentiable
function

𝖽𝗒𝗇∶ ℝ ×ℝ𝑛 → ℝ𝑛 (52)

which is a left action operation of the monoid ⟨ℝ, +, 0⟩

Event-based systems

Machines

Linear time-invariant systems

Definition 11.18 (LTI System)
A linear time-invariant dynamical (LTI) system, in a state-space represen-
tation, is specified by real vector spaces 𝐔 = ℝ𝑙 (input space), 𝐘 = ℝ𝑚

(output space), and 𝐗 = ℝ𝑛 (state space), along with a system of equations
of the form

�̇�(𝑡) = 𝐀𝐱(𝑡) + 𝐁𝐮(𝑡) (53)
𝐲(𝑡) = 𝐂𝐱(𝑡) +𝐃𝐮(𝑡), (54)

and an initial state 𝗌𝗍 ∈ 𝐗, where 𝑡 ∈ ℝ≥0, 𝐮(𝑡) ∈ 𝐔, 𝐲(𝑡) ∈ 𝐘, 𝐱(𝑡) ∈ 𝐗,
and where 𝐀, 𝐁, 𝐂, 𝐃 are real matrices of appropriate dimension.

We think of (53) as defining dynamics

dyn∶ 𝐔 × 𝐗 → 𝐗,
⟨𝑢, 𝑥⟩ ↦ 𝐀𝑥 + 𝐁𝑢,

(55)

and (54) as defining a read-out function

ro∶ 𝐔 × 𝐗 → 𝐘,
⟨𝑢, 𝑥⟩ ↦ 𝐂𝑥 +𝐃𝑢.

(56)
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Solutions to selected exercises
Solution of Exercise 22. No.

Solution of Exercise 23. We show a counterexample. Clearly we have

⎛
⎜
⎝

⎡
⎢
⎣

0
2
1

⎤
⎥
⎦

#
⎡
⎢
⎣

1
0
1

⎤
⎥
⎦

⎞
⎟
⎠

#
⎡
⎢
⎣

1
0
0

⎤
⎥
⎦
=
⎡
⎢
⎣

0
−2
−1

⎤
⎥
⎦
. (57)

However,
⎡
⎢
⎣

0
2
1

⎤
⎥
⎦

#
⎛
⎜
⎝

⎡
⎢
⎣

1
0
1

⎤
⎥
⎦

#
⎡
⎢
⎣

1
0
0

⎤
⎥
⎦

⎞
⎟
⎠
=
⎡
⎢
⎣

−1
0
0

⎤
⎥
⎦
, (58)

violating the associative law.

Solution of Exercise 24. Given 𝑥, 𝑦, 𝑧 ∈ ℕ, we have:

min(min(𝑥, 𝑦), 𝑧) = min(𝑥,min(𝑦, 𝑧)). (59)

Solution of Exercise 25. No. Consider the condition 0 = max(𝗂𝗇𝗏(𝑥), 𝑥). In
general, this is true only if 𝑥 = 𝗂𝗇𝗏(𝑥) = 0.

Solution of Exercise 26. We have:

(𝐹 # 𝐺)(𝑥 #S 𝑦) = 𝐺(𝐹(𝑥 #S 𝑦))
= 𝐺(𝐹(𝑥) #T 𝐹(𝑦))
= 𝐺(𝐹(𝑥)) #U 𝐺(𝐹(𝑦))
= (𝐹 # 𝐺)(𝑥) #U (𝐹 # 𝐺)(𝑦).

(60)

Solution of Exercise 27. We can show that we cannot find an inverse morphism

ASCII−1 ∶ 𝖫𝗂𝗌𝗍 {0, 1}→ 𝖫𝗂𝗌𝗍 char. (61)

Atfirst sight everything seems in order: ifwe canfindan isomorphism to𝖫𝗂𝗌𝗍 [0, 127],
and we can express integers in binary, what could hold us back?
What fails here is something so simple it could go unnoticed: the hypothetical
function 𝑔 is not well-defined for all points of its domain. We know how to
translate a binary string of length 7, 14, 21,… back to symbols; but what would
be the output of 𝑔 on the string 111?
The function 𝑔 is a left inverse for ASCII, in the sense that ASCII # 𝑔 = id𝖫𝗂𝗌𝗍 char,
but it is not a right inverse.

Solution of Exercise 28. The answer is no because the encoding is context
dependent; I don’t know if a single letter is followed by a space or another letter.
For example, take the string

I AM MAX. (62)

We can decompose it as follows

I A #M # #M #AX. (63)

If Morse encoding was a morphism 𝐹 then we would be able to encode the string
as follows:

morse(I A) #morse(M) #morse( ) #morse(M) #morse(AX). (64)
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However, this cannot work, because in the second instance of𝑀 we would need
to output a letter separator, while in the first case we don’t.
Can you find a way to fix it?
For example, consider the alphabet obtained by taking the product of the letters
and numbers with the set of spaces { , }:

((A to Z) ∪ (0 to 9)) × { , }, (65)

where we annotate if each symbol is followed by a letter or by a space.
In this representation, the string can be written as

⟨𝐼, ⟩⟨𝐴, ⟩⟨𝑀, ⟩⟨𝑀, ⟩⟨𝐴, ⟩⟨𝑋, ⟩. (66)

Based on this representation we can define context-independent rules that make
a morphism.

Solution of Exercise 29. We start with the first one. Consider 𝑥 ∈ G. We know
that

𝐹(idG #G 𝑥) = 𝐹(𝑥). (67)

On the other hand, we know:

𝐹(idG #G 𝑥) = 𝐹(idG) #H 𝐹(𝑥). (68)

These two are equivalent if and only if 𝐹(idG) = idH.
For the second statement, consider again 𝑥 ∈ G. We now that

𝐹(𝗂𝗇𝗏G(𝑥) #G 𝑥) = 𝐹(idG)
= idH,

(69)

and
𝐹(𝗂𝗇𝗏G(𝑥) #G 𝑥) = 𝐹(𝗂𝗇𝗏G(𝑥)) #H 𝐹(𝑥). (70)

These two are equivalent if and only if 𝐹(𝗂𝗇𝗏G(𝑥)) = 𝗂𝗇𝗏H(𝐹(𝑥)).

Solution of Exercise 30. We have:

𝐹(𝑚 + 𝑛) = 𝑖𝑚+𝑛

= 𝑖𝑚 ⋅ 𝑖𝑛

= 𝐹(𝑚) ⋅ 𝐹(𝑛).
(71)

You are reading a draft compiled on 2024-12-09 11:28:28Z



Part E.Categories

12. Graphs 179

13. (Semi)categories 185

14. Categories and structures 201

15. Modeling with categories 211

16. Constructing categories 235

17. Culture 243

Hiking (“wandern” in german) is one of the main sport activities in Switzerland, often referred to as the “national sport”. On average, 520 million kilometres
(in 130 million hours) are travelled every year by the Swiss. In Switzerland, the total hiking trail network is about 65,000 kilometres.





12. Graphs

12.1 Graphs . . . . . . . . . . . . . . . . 180
12.2 Graph homomorphisms . . . . . 182

In this chapter we give a formal description of graphs. Graphs are
data structures with “points” and “arrows”: it is the first time we
encounter a data structure with two kinds of elements.

Rösti is a Swiss dish, consisting of fried potatoes. Originally a breakfast dish eaten by farmers in the canton Bern, it is now eaten all over Switzerland at any
meal. It is typically served to accompany other dishes, and therefore considered as a side dish.
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Figure 1.: Intermodal mobility network of a city.

12.1. Graphs
A graph is a data structure with “points” and “arrows”, usually called nodes/ver-
tices and arcs/edges.
Graphs are widely used in many engineering disciplines, to represent, formulate,
and solve complex problems. For instance, we can represent the intermodal
mobility network in a city as a directed graph (Fig. 1). The word “intermodal”
means that one can jump from a mobility option to another. For instance, in the
figure, you can spot the graphs for an autonomous vehicle mobility service, a
micromobility service, the subway service, and roads on which you can walk.
The vertices represent locations, and the edges represent different travel routes
connecting the locations.

Defining graphs
The usual definition of directed graph in engineering, which we will not use, is
as follows:

Definition 12.1 (Directed Graph)
A directed graph is a pair 𝒢 = ⟨𝐕, 𝐄⟩, where 𝐕 is a set of vertices and 𝐄 ⊆
𝐕 ×𝐕 is a set of edges.

In this definition, an edge is a pair of vertices ⟨𝑥, 𝑦⟩ where 𝑥 is the source and 𝑦
is the target. One limitation of this notion of graph is that we can only have one
edge between two vertices in either direction.
The following definition is more expressive, though a bit more abstract.

Definition 12.2 (Directed Multigraph)
A directed multigraph 𝒢 = ⟨𝐕, 𝐄, src, tgt⟩ consists of a set of vertices 𝐕, a set
of edges 𝐄, and two functions src, tgt∶ 𝐄→ 𝐕, called the source and target
functions, respectively. Given 𝑎 ∈ 𝐄 with src(𝑎) = 𝑣 and tgt(𝑎) = 𝑤, we say
that 𝑎 is an edge (or arrow) from 𝑣 to 𝑤.

Both directed graphs and undirected graphs play a prominent role in many kinds
of mathematics. In this text, we work primarily with directed multigraphs and so,
from now on, we drop the “directed” and the “multi”: unless indicated otherwise,
the word “graph” will mean “directed multigraph”.

Paths
Definition 12.3 (Paths)
A path in a graph 𝒢 = ⟨𝐕, 𝐄, src, tgt⟩ is:
Constituents

⊳ a list of edges [𝑒1, …, 𝑒𝑛]𝐄, with 𝑛 ∈ ℕ.
• If 𝑛 ≠ 0, the source of a path [𝑒1, …, 𝑒𝑛]𝐄 is defined as src(𝑒1) and its
target is tgt(𝑒𝑛).

• If 𝑛 = 0, we speak of a “trivial path” or an “empty path” and we must
additional specify an element 𝑥 ∈ 𝐕 which is designated as both the
source and target of the path. If paths describe a journey, then trivial
paths correspond to “not going anywhere”.

Conditions

⊳ if 𝑛 ≥ 2, we require that, for any two subsequent edges 𝑒𝑖 and 𝑒𝑖+1 in [𝑒1,

You are reading a draft compiled on 2024-12-09 11:28:28Z



12.1. Graphs 181

…, 𝑒𝑛]𝐄,
tgt(𝑒𝑖) = src(𝑒𝑖+1). (1)

The length of [𝑒1, …, 𝑒𝑛]𝐄 is called the length of the path.
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12.2. Graph homomorphisms
Definition 12.4 (Graph homomorphism)
Given graphs 𝒢1 = ⟨𝐕1, 𝐄1, src1, tgt1⟩ and 𝒢2 = ⟨𝐕2, 𝐄2, src2, tgt2⟩, a graph
homomorphism 𝐹∶ 𝒢1 → 𝒢2 is given by two maps

𝐹∙ ∶ 𝐕1 → 𝐕2, (2)

𝐹� ∶ 𝐄1 → 𝐄2, (3)

such that
𝐹� # src2 = src1 # 𝐹∙, (4)

𝐹� # tgt2 = tgt1 # 𝐹∙, (5)

or, in other words, that the following diagrams commute:

𝐄1 𝐄2

𝐕1 𝐕2

𝐹�

src1 src2

𝐹∙

𝐄1 𝐄2

𝐕1 𝐕2

𝐹�

tgt1 tgt2

𝐹∙

Remark 12.5. Intuitively, all this is saying is that “arrows are bound to their
vertices”, meaning that if a vertex 𝑣1 is connected to 𝑣2 via an arrow 𝑎, the vertices
resulting from the application of the maps on nodes 𝐹∙(𝑣1) and 𝐹∙(𝑣2) have
to be connected via the arrow resulting from the application of the map on
arrows 𝐹�(𝑎).

Example 12.6. Consider the two graphs, 𝒢1 and 𝒢2 depicted in Fig. 2.

Figure 2.: Example of graphs for graph homomor-
phism.

𝑎 𝑏 𝛿 𝛼

𝑐 𝑑 𝑒 𝛽 𝛾

1

2 3
I

II

IV

4 III

𝒢1 𝒢2

Figure 3.: 𝐹∙ for the presented graph homomor-
phism.

𝑎 𝑏 𝛿 𝛼

𝑐 𝑑 𝑒 𝛽 𝛾

1

2 3
I

II

IV

4 III

𝒢1 𝒢2

A possible graph homomorphism between the two is given by 𝐹∙, 𝐹� graphically
defined as in Fig. 3 and Fig. 4, respectively.

Example 12.7 (Counterexample). By considering the graphs in Example 12.6,
we could define 𝐹∙, 𝐹� in the same way, exception made for 𝐹∙(𝑒) = 𝛼. Clearly,
this would violate the commuting diagrams condition.

Exercise31. Consider the two graphs depicted in Fig. 5.
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𝑎 𝑏 𝛿 𝛼

𝑐 𝑑 𝑒 𝛽 𝛾

1

2 3
I

II

IV

4 III
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Figure 4.: 𝐹� for the presented graph homomor-
phism.
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𝑎 𝛼
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𝑑
𝑒 𝛾

𝐹∙𝐕1 𝐕2

Figure 6.

Furthermore, consider the map 𝐹∙ depicted in Fig. 6.
Find a map 𝐹� such that 𝐹∙, 𝐹� describe a graph homomorphism between 𝒢1
and 𝒢2.

See solution on page 249.
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In this chapter we look at the fundamental notion of a category, and
also its cousin, the notion of semicategory. Wewill see that categories
generalize many of mathematical structures that we have studied in
this book so far.
Although categories are more of a protagonist in this book, we intro-
duce semicategories first because they are more rudimentary. The
step from semicategories to categories will then be very similar to
the step from semigroups to monoids.

Lucerne is a city in central Switzerland, capital of the canton of Lucerne. One of the main landmarks in the city is the Chapel Bridge, a wooden bridge
constructed in the 14th century.
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13.1. Interfaces
One way to understand semicategories is to see them as a generalization of
semigroups. In semigroups, monoids, and groupswe could take any two elements
and compose them: the elements always had a “compatible” interface.
To motivate the need for interfaces, consider the ropes of Chapter 2, which had
this composition rule:

𝑎 𝑏
.

𝑎 + 𝑏
(1)

Two chapters later, we can recognize that we were describing the monoid ⟨ℝ≥0,
+, 0⟩. Being a monoid, all pieces of rope are compatible and can be composed.
A first step towards discussing interfaces is to think of things that have a direction.
For example, consider extension cords. Let − 𝑐 − be an extension cord of
length 𝑐. If you have an extension cord of length 𝑐 and another of length 𝑑, you
can plug them together to get an extension cord of length 𝑐 + 𝑑:

− 𝑐 − − 𝑑 −
.

− 𝑐 + 𝑑 − (2)

In this form, this is still the same monoid.
But suppose now that, reading this book, you fall in love with Switzerland and
want to visit. As you start to plan your trip, at some point you need to think about
electrical adapters. Switzerland uses the connector of type N (Fig. 1). If you come
from Ireland, your appliances use type G. Now when we think of extension cords,
we might allow either end to have a plug type. These would be Irish and Swiss
extension cords of length 𝓁:

𝓁 𝓁 . (3)

You might want a cord that has a Swiss male end and an Irish female end:

𝓁 . (4)

Unfortunately these devices don’t exist. What you can buy are adapters, which
we can think of extension cord of length zeros:

0 . (5)

If you have an adapter, then you can attach an extension cord to it to obtain (4):

𝓁 0
.

𝓁 (6)
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A
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H

I

L

M

N
Figure 1.: Plug/socket types used in the world

The general formula to compose cords with generic types 𝑋,𝑌, 𝑍 is

X 𝑎 Y Y 𝑏 Z
.

X 𝑎 + 𝑏 Z (7)

This kind of composition of things that have an input and an output interface,
like cords, can be modeled by the notions of semicategory and category.
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13.2. Semicategories
We begin to introduce the concept of a semicategory by listing key aspects of the
electrical cords example in the previous section which each correspond to a part
of the formal definition of semicategory.

Objects, morphisms, composition

Firstly, in the cords example, we have a set of types of electrical interfaces. In a
semicategory, the things that play the role of interfaces are called objects. (In this
text, we often denote generic objects by letters 𝑋, 𝑌, 𝑍, etc.)
Secondly, in the electrical cords example, the cords themselves connect two in-
terfaces and have a directionality: one end has a socket, the other end has a plug.
In a semicategory, the things that play the role of cords are calledmorphisms.
(This is a word we’ve already gotten to know, and the connection here is not
accidental.) The object that denotes the type of the “socket end” of the morphism
is called the domain or source of the morphism. The object that denotes the “plug
end” of a morphism is called its codomain or target. So morphisms are directed:
they go from their source to their target.
To visualize morphisms, we often draw arrows. For example, if 𝑋 and 𝑌 are
objects in some semicategory, then we draw a morphism from 𝑋 to 𝑌 (call it 𝑓)
like this:

𝑓∶ 𝑋 → 𝑌. (8)

So here 𝑋 is the source of 𝑓, and 𝑌 is its target.
Thirdly, a key feature of the cords example is that we can compose two cords and
the result is again a chord. However, for this to work, the plug-end of the first
chord must match the socket-end of the other. Similarly, in a semicategory we
specify a way to compose two morphisms, provided that the target object of the
first morphism matches the source object of the second morphism. (When this is
the case, the morphisms are said to be composable.)
In other words, if 𝑓∶ 𝑋 → 𝑌 and 𝑔∶ 𝑌 → 𝑍 are morphisms in some semicate-
gory (note: they are composable), then the semicategory has an operation for
composing them, and the result is another morphism. Our notation for compo-
sition of 𝑓 and 𝑔 is 𝑓 # 𝑔, read “𝑓 then 𝑔”. (Once again: this is in contrast to the
more traditional notation 𝑔 ◦ 𝑓.) Thus, we have

𝑓∶ 𝑋 → 𝑌 𝑔∶ 𝑌 → 𝑍
,

(𝑓 # 𝑔)∶ 𝑋 → 𝑍 (9)

which is analogous to (7) in the cords example.

Associativity

So far we have described the building blocks, or constituents, of a semicategory:
objects, morphisms, and composition operations. We also want these to obey a
certain condition called the associativity law. This condition says that if we are
given a string of three composable morphisms, then it doesn’t matter in which
order we choose to compose them:

𝑓∶ 𝑋 → 𝑌 𝑔∶ 𝑌 → 𝑍 ℎ∶ 𝑍 → 𝑈
.

(𝑓 # 𝑔) # ℎ = 𝑓 # (𝑔 # ℎ) (10)

This is analogous to the fact, in the electrical cords example, that if we look at
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𝑋 𝑌 𝑍
𝑓 𝑔

Figure 2.

𝑋 𝑌 𝑍
𝑓

𝑓 # 𝑔

𝑔

Figure 3.

three cords connected together, we cannot tell if the first two were connected
together first and then the result was connected to the third, or if the connecting
happened the other way around.

The definition of a semicategory
Here is the full formal definition of a semicategory. Have a read through, then
we illustrate it further with examples.

Definition 13.1 (Semicategory)
A semicategory C is specified by:
Constituents
1. Objects: A collection* ObC whose elements are called objects.
2. Morphisms: For every pair of objects 𝑋,𝑌 in ObC, there is a set called a
“hom-set” and indicated as HomC(𝑋;𝑌), elements of which are called
morphisms and denoted 𝑓∶ 𝑋 → 𝑌.
For such an 𝑓, we call 𝑋 its source and 𝑌 its target.

3. Composition operations: For every three objects 𝑋,𝑌, 𝑍 in ObC there is a
composition map

#𝑋,𝑌,𝑍 ∶ HomC(𝑋;𝑌) ×HomC(𝑌;𝑍)→ HomC(𝑋;𝑍). (11)

We usually just write # instead of #𝑋,𝑌,𝑍 :

𝑓∶ 𝑋 → 𝑌 𝑔∶ 𝑌 → 𝑍
.

(𝑓 # 𝑔)∶ 𝑋 → 𝑍 (12)

The morphism 𝑓 # 𝑔 is called the composition of 𝑓 and 𝑔.
Conditions
1. Associativity: it holds that

𝑓∶ 𝑋 → 𝑌 𝑔∶ 𝑌 → 𝑍 ℎ∶ 𝑍 → 𝑈
.

(𝑓 # 𝑔) # ℎ = 𝑓 # (𝑔 # ℎ) (13)

Remark 13.2. We denote composition of morphisms using the symbol “#” (pro-
nounced “then”), as already introduced for functions in Section 3.4. This is in
contrast to the more common notation for composition, namely 𝑔 ◦ 𝑓, or sim-
ply 𝑔𝑓, which reads as “𝑔 after 𝑓”. As usual, 𝑓2 denotes 𝑓 # 𝑓, 𝑓3 denotes 𝑓 # 𝑓 #
𝑓, and so on.

Remark 13.3. 1. Whenwewant to emphasize which semicategory we are work-
ing with, we will sometimes write

𝑓∶ 𝑋 →C 𝑌 (14)

to indicate
𝑓 ∈ HomC(𝑋;𝑌). (15)

2. Sometimes we will use the notationMorC to denote the collection of allmor-
phisms in a semicategory C, not just a certain hom-set.

Remark 13.4. We will often visualize objects and morphisms using diagrams
where symbols or dots indicate objects and arrows indicate morphisms. For
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190 13. (Semi)categories

instance, if 𝑋, 𝑌, 𝑍 are objects in a semicategory C, and 𝑓∶ 𝑋 → 𝑌 and 𝑔∶ 𝑌 →
𝑍 are morphisms, we draw this as in Fig. 2, for example. The composition 𝑓 # 𝑔
of 𝑓 with 𝑔 corresponds to yet another arrow, as in Fig. 3.

Example 13.5. There is a semicategory whose objects are all sets, morphisms are
functions between sets, and the composition operations are the usual composition
of functions.
Let us also check that composition of functions does indeed satisfy the associa-
tivity law. Suppose 𝑓∶ 𝑋 → 𝑌, 𝑔∶ 𝑌 → 𝑍, and ℎ∶ 𝑍 → 𝑈 are three composable
functions, and let 𝑥 ∈ 𝑋 be an arbitrary element. On the one hand

((𝑓 # 𝑔) # ℎ)(𝑥) = ℎ((𝑓 # 𝑔)(𝑥)) = ℎ(𝑔(𝑓(𝑥))), (16)

while on the other hand

(𝑓 # (𝑔 # ℎ))(𝑥) = (𝑔 # ℎ)(𝑓(𝑥)) = ℎ(𝑔(𝑓(𝑥))). (17)

So
(𝑓 # 𝑔) # ℎ = 𝑓 # (𝑔 # ℎ) (18)

holds.

Example 13.6. This example is an extension of Example 9.12. We will describe
a semicategory C with two objects, ObC = {𝐀, 𝐁}. Each of the objects is a set
which describes possible states of a plant. Let

𝐀 = {sprout, young,mature, old, dead}, (19)

and
𝐁 = {alive, dead}. (20)

Also, let 𝑓∶ 𝐀→ 𝐀 be the function with

𝑓(sprout) = young,
𝑓(young) = mature,
𝑓(mature) = old,

𝑓(old) = dead,
𝑓(dead) = dead;

(21)

let 𝑔∶ 𝐁→ 𝐁 be the function with

𝑔(alive) = dead,
𝑔(dead) = dead;

(22)

and let ℎ∶ 𝐀→ 𝐁 be the function with

ℎ(sprout) = alive,
ℎ(young) = alive,
ℎ(mature) = alive,

ℎ(old) = alive,
ℎ(dead) = dead.

(23)
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For our sets of morphisms, we let

HomC(𝐀;𝐀) = {𝑓, 𝑓2, 𝑓3, 𝑓4},
HomC(𝐁;𝐁) = {𝑔},

HomC(𝐀;𝐁) = {ℎ, 𝑓 # ℎ, 𝑓2 # ℎ, 𝑓3 # ℎ, 𝑓4 # ℎ},
HomC(𝐁;𝐀) = ∅;

(24)

and for the composition operations, we define these to be the usual composi-
tion of functions, which we know obeys the associative law. Thus, we have a
semicategory.
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13.3. Categories
Now we come to one of the central protagonists of this book: the concept of a
category. Categories are like semicategories, but with one more ingredient added:
identity morphisms. A good analogy is that categories are to semicategories as
monoids are to semigroups. A monoid is a semigroup that additionally has an
identity element, and similarly a category is a semicategory that additionally has
identity morphisms.

Identity morphisms
One might say that identity morphisms are morphisms that “do nothing”: they
do not have any effect when we compose with them. This is analogous to how
the identity element of a monoid “does nothing” when we multiply it with other
elements of the monoid.

Definition 13.7 (Identity morphisms)
LetC be a semicategory. An identitymorphism, or just identity, for an object𝑋
of C is a morphism

id𝑋 ∶ 𝑋 → 𝑋 (25)

in C that acts neutrally with respect to composition with any morphism in
the category with which it is composable:

𝑓∶ 𝑊 → 𝑋
,

𝑓 # id𝑋 = 𝑓 (26)

and
𝑔∶ 𝑋 → 𝑌

.
id𝑋 # 𝑔 = 𝑔 (27)

Remark 13.8. If an identitymorphism id𝑋 for an object𝑋 exists, then it is unique.
To see this, observe that HomC(𝑋;𝑋) is a semigroup, and id𝑋 is a neutral element
for this semigroup, making HomC(𝑋;𝑋) a monoid. We have seen earlier that
neutral elements for semigroups are necessarily unique.

Categories

Definition 13.9 (Category)
A category C is a semicategory in which there is an identity morphism for
every object.

Example 13.10. The semicategory of sets and functions described above in
Example 13.5 is in fact a category. Given a set 𝑋, the identity morphism for this
set is the identity function

id𝑋 ∶ 𝑋 → 𝑋,
𝑥 ↦ 𝑥.

(28)

Let us check that the conditions (26) and (27) are satisfied. Given a function
𝑓∶ 𝑊 → 𝑋, the function composition 𝑓 # id𝑋 is the same function as just 𝑓 on
its own:

(𝑓 # id𝑋)(𝑥) = id𝑋(𝑓(𝑥)) = 𝑓(𝑥). (29)

Given a function 𝑔∶ 𝑋 → 𝑌, we can show similarly that id𝑋 # 𝑔 = 𝑔.
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Definition 13.11 (Category of sets)
The category Set of sets is defined by:
1. Objects: all sets.
2. Morphisms: given sets 𝑋 and 𝑌, the hom-set Hom Set(𝑋;𝑌) is the set of

all functions from 𝑋 to 𝑌.
3. Composition: the usual composition of functions.
4. Identitymorphisms: given a set𝑋, its identitymorphism id𝑋 is the identity

function 𝑋 → 𝑋, id𝑋(𝑥) = 𝑥.

Graded exercise E.1 (LinearMaps)
Morphisms between real vector spaces are called linear maps. Given real
vector spaces 𝑈 = ⟨𝐔, +𝑈 , 0𝑈 , ⋅𝑈⟩ and 𝑉 = ⟨𝐕, +𝑉 , 0𝑉 , ⋅𝑉⟩, a linear map
𝑓∶ 𝑈 → 𝑉 is a function

𝑓∶ 𝐔→ 𝐕 (30)

which satisfies the following conditions:
1. 𝑓(𝑥 +𝑈 𝑦) = 𝑓(𝑥) +𝑉 𝑓(𝑦) ∀𝑥, 𝑦 ∈ 𝐔;
2. 𝑓(𝜆 ⋅𝑈 𝑥) = 𝜆 ⋅𝑉 𝑓(𝑥) ∀𝑥 ∈ 𝐔, ∀𝜆 ∈ ℝ.
Your task in this exercise is to prove that the composition of linear maps
is again a linear map. Concretely, suppose that you are given linear maps
𝑓∶ 𝑈 → 𝑉 and 𝑔∶ 𝑉 →𝑊 and check that the composition of functions 𝑓 #
𝑔∶ 𝐔→𝐖 is again a linear map.

Graded exercise E.2 (CategoryRealVect)
Show that real vector spaces and linear maps between them form a category.
This means:
1. Statewhat are the objects, themorphisms, and the composition operations
(and check that the latter are well-defined).

2. Check that the associative law holds.
3. State what the identity morphisms are, and prove that they are neutral

for composition.

Graded exercise E.3 (PointedEuclideanSpaces)
In this exercise we will define a category Euc∗ of “pointed Euclidean spaces”
and your task is to check that it is in fact a category.
The objects of Euc∗ are pairs

⟨
ℝ𝑛, 𝑥

⟩
where 𝑥 ∈ ℝ𝑛 (and 𝑛 ∈ ℕ varies).

A morphism 𝑓∶
⟨
ℝ𝑛, 𝑥

⟩
→ Euc∗

⟨
ℝ𝑚, 𝑦

⟩
is a smooth (infinitely differen-

tiable) function 𝑓∶ ℝ𝑛 → ℝ𝑚 such that 𝑓(𝑥) = 𝑦.
Composition is given by composition of smooth functions, and identity
morphisms are identity functions.

Graded exercise E.4 (Endofunctions)
In this exercise we will define a category EndSet of “endofunctions” and it
is your task to check that it really is a category.
The objects of EndSet are pairs ⟨𝐀, 𝜑⟩ where 𝐀 is a set and 𝜑∶ 𝐀→ 𝐀 is a
function.
A morphism 𝑓∶ ⟨𝐀, 𝜑⟩→ EndSet⟨𝐁, 𝜓⟩ is a function 𝑓∶ 𝐀→ Set 𝐁 with the
property that 𝑓 # 𝜓 = 𝜑 # 𝑓.
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Composition is given by composition of functions, and identity morphisms
are identity functions.

Graded exercise E.5 (HwkGSet)
Consider the definition below of the category 𝐆𝐒𝐞𝐭. Your task: check/justify
that this does indeed define a category.

Definition 13.12 (GC)
An object of 𝐆𝐒𝐞𝐭 is a tuple

⟨𝑄, 𝐴, 𝑅⟩, (31)

where 𝑄 and 𝐴 are sets, and 𝑅 ∶ 𝑄 → Rel 𝐴 is a relation.
A morphism 𝐫 ∶ ⟨𝑄1, 𝐴1, 𝑅1⟩→𝐆𝐒𝐞𝐭 ⟨𝑄2, 𝐴2, 𝑅2⟩ is a pair of maps

𝐫 = ⟨𝑟♭, 𝑟♯⟩, (32)
𝑟♭ ∶ 𝑄1 ← Set 𝑄2, (33)

𝑟♯ ∶ 𝐴1 → Set 𝐴2, (34)

that satisfy the property

∀𝑞2 ∶ 𝑄2 ∀𝑎1 ∶ 𝐴1 𝑟♭(𝑞2)𝑅1𝑎1 ⇒ 𝑞2𝑅2 𝑟♯(𝑎1). (35)

Morphism composition is defined component-wise

(𝐫 # 𝐬)♭ = 𝑠♭ # 𝑟♭, (36)

(𝐫 # 𝐬)♯ = 𝑟♯ # 𝑠♯. (37)

The identity at ⟨𝑄, 𝐴, 𝑅⟩ is id⟨𝑄, 𝐴, 𝑅⟩ =
⟨
id𝑄, id𝐴

⟩
.

Isomorphisms
What are identity morphisms good for? One thing we can do with them is define,
for any category, the important notion of isomorphism. This concept describes a
way of saying when two objects are “the same”, even if they are not equal.

Definition 13.13
Let C be a category. A morphism 𝑓∶ 𝑋 → 𝑌 in C is an isomorphism if there
exists a morphism 𝑔∶ 𝑌 → 𝑋 in C such that

𝑓 # 𝑔 = id𝑋 (38)

and
𝑔 # 𝑓 = id𝑌 . (39)

Remark 13.14. Note that the above definition coincides, for the category Set of
sets and functions, with Def. 3.21. We saw in Exercise 7 that an isomorphism in
the category Set is the same thing as a bijective function.
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𝑋 𝑌 𝑍 𝑈
𝑓 𝑔 ℎ

Figure 4.
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(𝑓 # 𝑔) # ℎ

𝑓 # (𝑔 # ℎ)

𝑔

𝑔 # ℎ

ℎ

Figure 5.
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𝑔
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𝑋 𝑌 𝑍
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𝑋 𝑌

𝑍 𝑈
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𝑖
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𝑋 𝑌

𝑋

𝑓

id𝑋
𝑔

Figure 9.

13.4. Diagrams
When working with (semi)categories, it is typical to use diagrams that look like
directed graphs,with nodes representing objects and directed arrows representing
morphisms. Diagrams are usually used as a tool to speak and think about specific
situations, where one is focusing on certain objects and morphisms of a given
(semi)category. We typically don’t draw every single object and morphism in the
(semi)category, we just draw the ones that we want to refer to.
For example, we might draw a diagram as in Fig. 4 because we are considering
the morphisms 𝑓, 𝑔, and ℎ. The diagram encodes their sources and targets, and is
suggestive of how they may be composed. Composition corresponds to following
paths in the diagram. Based on Fig. 4, we could build all the morphisms depicted
in Fig. 5. By the associative law for semicategories, however, we know that (𝑓 #
𝑔) # ℎ = 𝑓 # (𝑔 # ℎ); this morphism corresponds to the path along 𝑓, 𝑔, and ℎ.

Commutative diagrams
Often we will be interested in knowing whether two given morphisms in a hom-
set are equal or not. For instance, in Fig. 5 we have (𝑓 # 𝑔) # ℎ = 𝑓 # (𝑔 # ℎ). Or
consider for example the situation in Fig. 6. It could be that the morphisms 𝑓 #
𝑔 and ℎ are two distinct elements of HomC(𝑋;𝑍), or it could be that they are in
fact equal, 𝑓 # 𝑔 = ℎ. When the latter is the case, we encode this information
compactly by drawing just the diagram in Fig. 7 and saying that it is commutative.
This is a shorthand way of saying that both possible paths from 𝑋 to 𝑍 in the
diagram (namely via ℎ or via 𝑓 then 𝑔) give rise to the same morphism.

Definition 13.15 (Commutative diagram)
A diagram in a (semi)category is commutative if, for any two objects𝑋 and𝑌
in the diagram, all morphisms that arise from following paths in the diagram
from 𝑋 to 𝑌 are in fact equal.

As a further example, if we say that the diagram in Fig. 8 is commutative, then
this means in particular that the morphisms 𝑓 # 𝑔, ℎ # 𝑖, and 𝑗 are all equal. By
Def. 13.15 it also means for instance that all paths between 𝑌 and 𝑈 give rise to
the same morphism, but since there is only one path, namely via 𝑔, this doesn’t
give us any new information.

Remark 13.16. When drawing a diagram in a category (as opposed to just a
semicategory), we usually do not draw the identity morphisms. By the definition
of a category, we know the identity morphisms are there, and because they act
neutrally for composition, they do not alter the computation of morphisms via
following paths in a diagram.
Sometimes,however, it ismore clear or simply needed to draw identitymorphisms
in a diagram. For instance, saying that the diagram in Fig. 9 is commutative is a
way of saying that 𝑓 # 𝑔 = id𝑋 .

Graded exercise E.6 (InventingCommDiagrams)
Come up with three different examples of a commutative diagram in the
category of sets and functions. In each example, be sure to define clearly all
of the functions involved.

Graphical calculi
Later in the book we will get to know another kind of diagram: string diagrams.
These are a different visual tool for reasoning “diagrammatically” about situations
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196 13. (Semi)categories

in category theory. In fact, the string diagrams we will introduce are just one
example in a whole zoo of visual tools, “graphical calculi”, that combine visual
intuition with formal rigor. For now though, the word “diagram” will refer to the
kind discussed above.
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13.5. Semicategories vs directed graphs
One might now be led to ask: what is actually the difference between a semicat-
egory and a directed graph?
With directed graphs we have nodes and directed edges, and with semicategories
we have objects andmorphisms. These are the same ingredients, apart from name
differences.
A further essential ingredient in the definition of a semicategory is the composi-
tion operation: for any two morphisms where the target of one is the source of
the other, we can compose them to obtain a further morphism.
One might thus say: a semicategory corresponds to a special kind of directed
graph, where for any two adjacent directed edges there must exist a third edge
corresponding to the “composite” of those edges. This is technically a true state-
ment, however it does not emphasize the key point that, in category theory, we
are often interested in comparing composite morphisms which might turn out to
be equal, or not.
In Section 24.6, we will spell out an elegant and formally detailed way of thinking
about the relationship between directed graphs and (semi)categories.
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13.6. Generating categories from graphs
We can turn any graph into a (semi)category.

Definition 13.17 (Semicategory generated by a graph)
Let 𝒢 =

⟨
𝐕, 𝐄, src, tgt

⟩
be a graph. The free semicategory on 𝒢, denoted

SC(𝒢), has as objects the vertices 𝐕 of 𝒢, and given vertices 𝑣 ∈ 𝐕 and 𝑤 ∈
𝐕, morphisms HomSC(𝒢)(𝑣;𝑤) are the non-trivial paths from 𝑣 to 𝑤. The
composition of morphisms is given by concatenation of paths.

Definition 13.18 (Category generated by a graph)
Given a graph 𝒢 =

⟨
𝐕, 𝐄, src, tgt

⟩
, the free category on 𝒢, denoted C(𝒢), is

defined analogously to SC(𝒢) but with the modification that HomC(𝒢)(𝑣;𝑤)
is equal to all paths from 𝑣 to 𝑤. Identity morphisms are the trivial paths.

For instance, consider the graph

𝑣 𝑤 𝑦

𝑥

[𝑎]

[𝑏]

[𝑐]
(40)

The free category on this graph is given by

𝑣 𝑤 𝑦

𝑥

[𝑎]
[id]

[𝑏]

[𝑐]
[id]

[id]

[id]

(41)

and has 8 morphisms (each vertex/object has identity morphisms, 𝑎, 𝑏, 𝑐 give
rise to three morphisms, and the composition of 𝑎, 𝑐 gives rise to a morphism,
omitted from the drawing).
Does Def. 13.18 define a category? We can check it ourselves. For it to define a
category, unitality and associativity need to be satisfied. Given our definition of
path, this is easy. The concatenation of paths is just list concatenation (which we
already proved to be associative). Furthermore, a trivial path can be expressed
via an empty list, which acts as an identity when composed to any other path.
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Graded exercise E.7 (HowManyMorphisms)
Consider the following five graphs. For each graph 𝒢, how many morphisms in total are there in the associated cate-
gory SC(𝒢)?

𝑣 𝑤𝑎
𝑣 𝑤
𝑎

𝑏

𝑣

𝑎
𝑣 𝑤
𝑎

𝑏

𝑣 𝑤

𝑥

𝑎

𝑏
𝑐

(42)
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In this chapter we will take a tour of various categories whose objects
are sets equipped with additional structures, and whose morphisms
are maps between those sets that preserve the given structures.

Lucerne is a city in central Switzerland, capital of the canton of Lucerne. One of the main landmarks in the city is the Chapel Bridge, a wooden bridge
constructed in the 14th century.



202 14. Categories and structures

14.1. Categories of sets and functions
Wehave already introduced in Example 13.10 the category of all sets and functions
(it is a very large category). A close relative of this category is the category FinSet,
where we only consider finite sets as objects, but otherwise, everything is the
same as in the category Set.
Other categories of sets and functions can be obtained by restricting what type
of functions we consider. For example, there is a category InjSet where the
objects are all sets and where morphisms are injective functions. Similarly, there
is a category Surj of surjective functions, and also a category Bij of bijective
functions.

Exercise32. Spell out a definition of the category InjSet of injective functions,
and check that it is indeed a category. In particular:
1. Specify what the composition operations are and check if the composition of

two composable injective functions is again injective;
2. Specify what the identity morphisms are and check that they are indeed

injective functions;
3. Argue why the associativity condition is satisfied.

See solution on page 249.
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14.2. Categories of relations
Recall that a (binary) relation from a set 𝐀 to a 𝐁 is a subset 𝑅 ⊆ 𝐀 × 𝐁. We have
already seen that relations can be composed, so it is natural now to think of a
relation 𝑅 ⊆ 𝐀 × 𝐁 as amorphism from 𝐀 to 𝐁.

Definition 14.1 (Category Rel)
The category Rel of relations is defined by:
1. Objects: all sets.
2. Morphisms: for sets 𝑋,𝑌, Hom Rel(𝑋;𝑌) is the set of all relations 𝑅 ⊆

𝑋 × 𝑌.
3. Composition: for relations 𝑅∶ 𝑋 → 𝑌 and 𝑆∶ 𝑌 → 𝑍, their composition

is
𝑅 # 𝑆 ∶= {⟨𝑥, 𝑧⟩ ∈ 𝑋 × 𝑍 ∣ ∃𝑦 ∈ 𝑌∶ (𝑥𝑅𝑦) ∧ (𝑦𝑆𝑧)}. (1)

4. Identity morphisms: for a set 𝑋, its identity morphism is

id𝑋 ∶= {⟨𝑥, 𝑦⟩ ∈ 𝑋 × 𝑋 ∣ 𝑥 = 𝑦}. (2)

Graded exercise E.8 (IsosInRel)
Prove that isomorphisms in the category Rel are precisely those relations
which correspond to bijective functions.
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14.3. Categories of semigroups, monoids, groups
Definition 14.2 (Category of semigroups)
The category SGrp of semigroups is:
1. Objects: all semigroups.
2. Morphisms: for semigroups 𝑋 and 𝑌, the hom-set Hom SGrp(𝑋;𝑌) is the

set of all semigroup morphisms from 𝑋 to 𝑌.
3. Composition: composition of semigroup morphisms (composition of the

underlying functions).
4. Identity morphisms: for a semigroup 𝑋 =

⟨
𝐒, #𝑋

⟩
, its identity morphism

id𝑋 is given by the identity function 𝐒→ 𝐒.

Graded exercise E.9 (CategorySemigroups)
Check explicitly that the above definition does indeed define a category. Is
the composition of composable morphisms again a morphism? Does the
associative law hold? Are the conditions for identity morphisms satisfied?

Remark 14.3. An isomorphism (in the sense of category theory) in the category
SGrp of semigroups is the same thing as an isomorphism of semigroups (in the
sense of algebra).

Definition 14.4 (Category of monoids)
The category Mon of monoids is:
1. Objects: all monoids.
2. Morphisms: for monoids 𝑋 and 𝑌, the hom-set HomMon(𝑋;𝑌) is the set

of all monoid morphisms from 𝑋 to 𝑌.
3. Composition: composition of monoid morphisms.
4. Identity morphisms: for a monoid 𝑋 = ⟨𝐌, #, id⟩, its identity morphism

id𝑋 is given by the identity function𝐌→𝐌.

Definition 14.5 (Category of groups)
The category Grp of groups is:
1. Objects: all groups.
2. Morphisms: for groups 𝑋, 𝑌, the hom-set Hom Grp(𝑋;𝑌) is the set of all

group morphisms from 𝑋 to 𝑌.
3. Composition: composition of group morphisms.
4. Identity morphisms: for a group 𝑋, its identity morphism id𝑋 is given by

the identity function 𝐆→ 𝐆.
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14.4. Categories from linear algebra
Definition 14.6 (Category of real matrices)
The categoryMatℝ of real matrices is:
1. Objects: natural numbers ℕ.
2. Morphisms: for any 𝑚, 𝑛 ∈ ℕ, HomMatℝ(𝑚;𝑛) is the set of 𝑛 × 𝑚 real

matrices.
3. Composition: matrix multiplication.
4. Identity morphisms: identity matrices.

Definition 14.7 (Category of real vector spaces)
The category Vectℝ of real vector spaces is:
1. Objects: all real vector spaces.
2. Morphisms: Hom Vectℝ(𝑋;𝑌) is the set of real linear maps 𝑋 → 𝑌.
3. Composition: the usual composition of linear maps.
4. Identity morphisms: for any real vector space 𝑋 = ⟨𝐗, +, ⋅⟩, the identity

morphism id𝑋 is given by the identity function 𝐗→ 𝐗.
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14.5. Categories of posets
Definition 14.8 (Category Pos)
The category Pos is:
1. Objects: all posets.
2. Morphisms: for posets 𝑋 = ⟨𝐏, ⪯𝑋⟩ and 𝑌 = ⟨𝐏, ⪯𝑌⟩, Hom Pos(𝑋;𝑌) is

the set of all monotone maps from 𝑋 to 𝑌.
3. Composition: composition of monotone maps.
4. Identity morphisms: for a poset 𝑋 = ⟨𝐏, ⪯⟩, its identity morphism id𝑋 is

given by the identity function 𝐏→ 𝐏.

Occasionally we will write 𝑓∶ 𝑋 → Pos 𝑌 to emphasize that a monotone map
between posets is a morphism in Pos.
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14.6. Sets with data
There are various simple constructions where we can build categories whose
objects are not just sets, but sets together with some extra data. Morphisms are
then functions which are compatible with the extra data. Below we give a few
examples and we encourage the reader to imagine further variations.

Definition 14.9 (Pointed sets)
The category Set∗ of pointed sets is:
1. Objects: pairs ⟨𝐀, 𝑥⟩ where 𝐀 is a set and 𝑥 ∈ 𝐀 is an element of 𝐀.
2. Morphisms: a morphism 𝑓∶ ⟨𝐀, 𝑥⟩ → Set∗⟨𝐁, 𝑦⟩ is a function 𝑓∶ 𝐀 →

Set𝐁 such that 𝑓(𝑥) = 𝑦.
3. Composition: the usual composition of functions.
4. Identity morphisms: identity functions.

Exercise33. Prove that Def. 14.9 really is a category.
See solution on page 249.

Definition 14.10 (Endofunctions)
The category EndSet of endofunctions is:
1. Objects: pairs ⟨𝐀, 𝜑⟩ where 𝐀 is a set and 𝜑∶ 𝐀→ 𝐀 is a function.
2. Morphisms: amorphism𝑓∶ ⟨𝐀, 𝜑⟩→ EndSet⟨𝐁, 𝜓⟩ is a function𝑓∶ 𝐀→ Set

𝐁 with the property that 𝑓 # 𝜓 = 𝜑 # 𝑓.
3. Composition: the usual composition of functions.
4. Identity morphisms: identity functions.

Exercise34. Prove that Def. 14.10 is indeed a category.
See solution on page 249.

Definition 14.11 (Equivalence relations)
The category EquivRel of equivalence relations is:
1. Objects: pairs ⟨𝐀, ∼𝐀⟩ where 𝐀 is a set and ∼𝐀 ∶ 𝐀→ Rel𝐀 is an equiva-

lence relation.
2. Morphisms: a morphism 𝑓∶ ⟨𝐀, ∼𝐀⟩ → EquivRel⟨𝐁, ∼𝐁⟩ is a function
𝑓∶ 𝐀→ Set𝐁 such that

𝑥∼𝐀𝑦 ⟹ 𝑓(𝑥)∼𝐁𝑓(𝑦). (3)

3. Composition: the usual composition of functions.
4. Identity morphisms: identity functions.

Exercise35.We can visualize an equivalence relation on a set 𝐀 as a partition of
𝐀. Can you visualize the condition (3) in terms of sets and partitions of them?

See solution on page 249.

Remark 14.12. The above example with equivalence relations is very similar to
the category of posets andmonotonemaps; we are simply considering equivalence
relations instead of relations which are partial orders. The category of posets,
and as well as most of our other examples of categories of algebraic structures
(semigroups, monoids, groups, etc.) , can all be thought of as categories built from
“sets with extra data”.
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14.7. Categories of graphs
Before introducing the category of graphs Grph, we show how we can com-
pose graph homomorphisms. Given graph homomorphisms 𝐹∶ 𝒢1 → 𝒢2 and
𝐺∶ 𝒢2 → 𝒢3, their composition 𝐹 # 𝐺∶ 𝒢1 → 𝒢3 acts on vertices with 𝐹∙ # 𝐺∙ and
on edges with 𝐹� # 𝐺�.

Lemma 14.13. The composition of graph homomorphisms is a graph homo-
morphism.

Proof. Consider graphs 𝒢1 =
⟨
𝐕1, 𝐄1, src1, tgt1

⟩
, 𝒢2 =

⟨
𝐕2, 𝐄2, src2, tgt2

⟩
,

and 𝒢3 =
⟨
𝐕3, 𝐄3, src3, tgt3

⟩
and graph homomorphisms 𝐹∶ 𝒢1 → 𝒢2

and 𝐺∶ 𝒢2 → 𝒢3. The composition of the graph homomorphisms is 𝐹 #
𝐺∶ 𝒢1 → 𝒢3, and acts on vertices with 𝐹∙ # 𝐺∙ and on edges with 𝐹� # 𝐺�.
Then, 𝐹 # 𝐺 is a graph homomorphism, since we have:

(𝐹� # 𝐺�) # src3 = 𝐹� # 𝐺� # src3 associativity in Set
= 𝐹� # src2 # 𝐺∙ 𝐺 is a graph homom.
= src1 # 𝐹∙ # 𝐺∙ 𝐹 is a graph homom.
= src1 # (𝐹∙ # 𝐺∙) associativity in Set,

(4)

and
(𝐹� # 𝐺�) # tgt3 = 𝐹� # 𝐺� # tgt3 associativity in Set

= 𝐹� # tgt2 # 𝐺∙ 𝐺 is a graph homom.
= tgt1 # 𝐺∙ # 𝐺∙ 𝐹 is a graph homom.
= tgt1 # (𝐺∙ # 𝐺∙) associativity in Set.

(5)

These are precisely the conditions for a graph homomorphism 𝒢1 → 𝒢3

Definition 14.14 (Category Grph)
The category Grph is defined by:
1. Objects: all graphs.
2. Morphisms: for graphs 𝑋 and 𝑌, Hom Grph(𝑋;𝑌) is the set of graph ho-

momorphisms (Def. 12.4) from 𝑋 to 𝑌.
3. Composition: composition of graph homomorphisms.
4. Identitymorphisms: for a graph𝑋 =

⟨
𝐕, 𝐄, src, tgt

⟩
, its identitymorphism

id𝑋 is the graph homomorphism 𝐹 with 𝐹∙ = id𝐕 and 𝐹� = id𝐄.

Lemma 14.15. Grph is indeed a category.

Proof. First, from Lemma 14.13 we know that the composition of graph
homomorphisms is a graph homomorphism. We check unitality and as-
sociativity. We start with unitality. Consider graphs 𝒢1,𝒢2 and a graph
homomorphism 𝐹∶ 𝒢1 → 𝒢2. For id𝒢1 #𝐹 we have, for every 𝑎 ∈ 𝐄1 that id #
𝐹∙ = 𝐹∙ and id #𝐹� = 𝐹�. Similarly, for 𝐹 # id𝒢2 we have, for every 𝑎 ∈ 𝐄2 that
𝐹∙ # id = 𝐹∙ and 𝐹� # id = 𝐹�. (In short, unitality follows from the unitality
in Set). Similarly, associativity follows from associativity in Set.
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{𝑥, 𝑦, 𝑧}

{𝑥, 𝑦} {𝑥, 𝑧} {𝑦, 𝑧}

{𝑥} {𝑦} {𝑧}

∅

𝖯𝗈𝗐 {𝑥, 𝑦, 𝑧}

Figure 1.: Power set 𝖯𝗈𝗐 {𝑎, 𝑏, 𝑐} as a poset.

14.8. Preorders as categories
Definition 14.16 (Categorification of a preorder)
Given a preorder 𝐏 = ⟨𝐏, ⪯𝐏⟩, its categorification C(𝐏) is a category with
1. Objects: the elements of 𝐏;
2. Morphisms: given 𝑋,𝑌 ∈ 𝐏, we define the homset HomC(𝐏)(𝑋;𝑌) to be

HomC(𝐏)(𝑋;𝑌) = {
𝟏 if 𝑋 ⪯𝐏 𝑌
∅ else.

(6)

3. Composition: should be given by functions of the type

HomC(𝐏)(𝑋;𝑌) ×HomC(𝐏)(𝑌;𝑍)→ HomC(𝐏)(𝑋;𝑍). (7)

When either of the factors in the source set are the empty set, then there
is a unique function of the desired type. When both factors are equal to
the set 𝟏, then thanks to the transitivity of the preorder ⪯𝐏 the target set
HomC(𝐏)(𝑋;𝑍)must also be the set 𝟏, and there is a unique function of
the type 𝟏 × 𝟏→ 𝟏.

4. Identities: given any𝑋 ∈ ObC(𝐏),we always have𝑋 ⪯𝐏 𝑋, by the reflexivity
of the preorder ⪯𝐏. Hence HomC(𝐏)(𝑋;𝑋) = 𝟏 always. We define the
single element of HomC(𝐏)(𝑋;𝑋) = 𝟏 to be the identity morphism of 𝑋.

Remark 14.17. A thin category is one in which there is at most one morphism
in any homset. Categorifications of preorders are examples of thin categories.
Conversely, every thin category can be interpreted as defining a preorder.

Remark 14.18. If we consider a preorder which is actually a poset, then its
categorification is an example of a skeletal category. These are categories where,
if any two objects are isomorphic, then they are necessarily equal.

Example 14.19. We revisit Def. 5.12, in which we had a poset 𝐏 on 𝖯𝗈𝗐 {𝑎, 𝑏, 𝑐}
with order given by inclusion (Fig. 1). Its categorification C(𝐏) is a category, with
ObC(𝐏) = 𝖯𝗈𝗐({𝑎, 𝑏, 𝑐}), and morphisms given by the inclusions. Note that we
omit self-arrows for the identity morphisms, taking these to be tacitly implied.
Composition is given by the transitivity law of posets. For instance, since {𝑎} ⊆
{𝑎, 𝑏} and {𝑎, 𝑏} ⊆ {𝑎, 𝑏, 𝑐}, we can say that {𝑎} ⊆ {𝑎, 𝑏, 𝑐}.
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210 14. Categories and structures

14.9. Monoids as categories
Definition 14.20 (Categorification of a monoid)
Given a monoidM = ⟨𝐌, #, id⟩, its categorification C(M) is the category
with
1. Objects: a single object, which we denote by ⋆ (this is arbitrarily chosen);
2. Morphisms: HomC(M)(⋆;⋆) =𝐌;
3. Composition: is defined by the composition operation # of the monoid;
4. Identity morphism: is defined by the neutral element id of the monoid.
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In this chapter we provide some examples of modeling real-world
phenomena using categories.

Fondue is a Swiss dish consisting of melted cheese, served in a caquelon (communal pot) over a réchaud (portable stove). It is best enjoyed with boiled
potatoes, bread, and pickled vegetables.



212 15. Modeling with categories

15.1. Mobility
For a specific mode of transportation, say a car, we can define a graph

𝒢c =
⟨
𝐕c, 𝐄c, srcc, tgtc

⟩
, (1)

where 𝐕c represents geographical locations which the car can reach and 𝐄c
represents the paths it can take, such as roads. Similarly, we consider a graph 𝒢s =⟨
𝐕s, 𝐄s, srcs, tgts

⟩
, representing the subway system of a city, with stations𝐕s and

subway lines going through paths 𝐄s, and a graph 𝒢b =
⟨
𝐕b, 𝐄b, srcb, tgtb

⟩
,

representing onboarding and off boarding at airports. In the following, we want
to express intermodality: the phenomenon that someone might travel to a certain
intermediate location in a car and then take the subway to reach their final
destination. By considering the graph 𝒢 = (𝐕,𝐄, src, tgt) with 𝐕 = 𝐕c ∪𝐕s ∪𝐕b
and 𝐄 = 𝐄c ∪ 𝐄s ∪ 𝐄b, we obtain the desired intermodality graph. Graph 𝒢 can
be seen as a new category, with objects 𝐕 and morphisms 𝐄.

Example 15.1. Consider the Car category, describing your road trip through
Italy and Switzerland, with

𝐕c = {FCOc , Florence, Bologna,MPXc , Gotthard, ZRHc }, (2)

and arrows as in Fig. 1. The nodes represent typical touristic road-trip checkpoints
in Italy and Switzerland and the arrows represent highways connecting them.

FCOc Florence Bologna MPXc Gotthard ZRHc

A1

E35

E45

A9, A2

A2, A4

Figure 1.: The Car category.

Furthermore, consider the Flight category with

𝐕f = {FCOf , LIN,MPXf , ZRHf } (3)

and arrows as in Fig. 2. The nodes represent airports in Italy and Switzerland
and the arrows represent connections, offered by specific flight companies.

Figure 2.: The Flight category.

ZRHf

FCOf LIN MPXf

�Sw
iss
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� E
w
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�
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�Ew
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�

Ita N

We then consider the Board category, with nodes

𝐕b = {FCOf , FCOc ,MPXf ,MPXc , ZRHf , ZRHc } (4)

and arrows as in Fig. 3. Nodes represent airports and airport parking lots, and
arrows represent the onboarding and off boarding paths we have to walk to get
from the parking lot to the airport and vice-versa.
The combination of the three, which we call the intermodal graph, can be repre-
sented as a graph, in which we use dashed arrows for intermodal morphisms,
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FCOf MPXf ZRHf
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Figure 3.: The Board category.

arising from composition of morphisms involving multiple modes (Fig. 4). Imag-
ine that you are in the parking lot of ZRH airport and you want to reach Florence.
From there, you can onboard to a Swiss flight to FCOf , will then offboard reach-
ing the parking lot FCOc , and drive on highway A1 reaching Florence. This is
intermodality.

FCOf MPXf LIN ZRHf

FCOc Florence Bologna MPXc Gotthard ZRHc

� Swiss N

FC
O
offboard

M
PX

offboard

� Ita N
� Ewings N
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H
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�

Ewings S

�

Ita S

�

Swiss S
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Figure 4.: Intermodal graph. The dashed arrows represent intermodal morphisms, and we depict just one of them for simplicity.

The intermodal network category Intermodal is the free category on the graph
illustrated in Fig. 4.
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214 15. Modeling with categories

15.2. Trekking in the Swiss Mountains
In the section we discuss a more “continuum-flavored”(as opposed to “discrete-
flavored”) example of how one might describe “connectedness” using a cate-
gory.
Suppose we are planning a hiking tour in the Swiss Alps. In particular, we wish
to consider various routes for hikes. We have a map of the relevant region which
uses coordinates ⟨𝑥, 𝑦, 𝑧⟩. We assume the 𝑧-th coordinate is given by an “elevation
function”, 𝑧 = ℎ(𝑥, 𝑦), and that ℎ is 𝐶1 (a continuously differentiable function).
We think of the graph of ℎ as describing the surface of the landscape; call this
surface 𝐿.
We will now define a category where the morphisms are built from 𝐶1 paths
through the landscape, and such that these paths can be composed, essentially,
by concatenation. We take paths which are 𝐶1 so that we can speak of the slope
(steepness) of a path in any given point, as given by its derivative.
To set things up, we need to have a way to compose 𝐶1 paths such that their
composition is again 𝐶1. For this, the derivative (velocity) at the end of one path
must match the starting velocity of the subsequent path.

Definition 15.2 (Berg)
Let Berg be the category defined as follows:
⊳ Objects: Objects are tuples ⟨𝑝, 𝑣⟩, where
• 𝑝 ∈ 𝐿,
• 𝑣 ∈ ℝ3 (we think of this as a tangent vector to 𝐿 at 𝑝).

⊳ Morphisms: Amorphism ⟨𝑝1, 𝑣1⟩→ ⟨𝑝2, 𝑣2⟩ is ⟨𝛾, 𝑇⟩, where
• 𝑇 ∈ ℝ≥0,
• 𝛾∶ [0, 𝑇] → 𝐿 is a 𝐶1 function with 𝛾(0) = 𝑝1 and 𝛾(𝑇) = 𝑝2, as
well as �̇�(0) = 𝑣1 and �̇�(𝑇) = 𝑣2 (we take one-sided derivatives at the
boundaries).

⊳ Identity morphism: For any object ⟨𝑝, 𝑣⟩, we define its identity morphism

id⟨𝑝, 𝑣⟩ = ⟨𝛾, 0⟩ (5)

formally: its path 𝛾 is defined on the closed interval [0, 0], (with 𝑇 = 0
and 𝛾(0) = 𝑝). We declare this path to be 𝐶1 by convention, and declare
its derivative at 0 to be 𝑣.

⊳ Composition of morphisms: Given morphisms

⟨𝛾1, 𝑇1⟩∶ ⟨𝑝1, 𝑣1⟩→ ⟨𝑝2, 𝑣2⟩ (6)

and
⟨𝛾2, 𝑇2⟩∶ ⟨𝑝2, 𝑣2⟩→ ⟨𝑝3, 𝑣3⟩, (7)

their composition is ⟨𝛾, 𝑇⟩ with 𝑇 = 𝑇1 + 𝑇2 and

𝛾(𝑡) = {
𝛾1(𝑡) 0 ≤ 𝑡 ≤ 𝑇1
𝛾2(𝑡 − 𝑇1) 𝑇1 ≤ 𝑡 ≤ 𝑇1 + 𝑇2.

(8)

Since we are only amateurs, we don’t feel comfortable hiking on paths that are
too steep in some places. We want to only consider paths that have a certain
maximum inclination. Mathematically speaking, for any path – as described by a
morphism ⟨𝛾, 𝑇⟩ in the category Berg– we can compute its vertical inclination
(vertical slope) and renormalize it to give a number in the interval [91,+1], say.
(Here 91 represents vertical descent, and +1 represents vertical ascent.) Taking
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15.2. Trekking in the Swiss Mountains 215

absolute values of inclinations – call the resulting quantity “steepness” – we can
compute the maximum steepness that a path 𝛾 obtains over its domain [0, 𝑇].
This gives, for every hom-set HomBerg(⟨𝑝1, 𝑣1⟩; ⟨𝑝2, 𝑣2⟩), a function

𝖬𝖺𝗑𝖲𝗍𝖾𝖾𝗉𝗇𝖾𝗌𝗌∶ HomBerg(⟨𝑝1, 𝑣1⟩; ⟨𝑝2, 𝑣2⟩)⟶ [0, 1). (9)

Now, suppose we decide that we don’t want to traverse paths which have a maxi-
mal steepness greater than 1∕2. Paths which satisfy this condition we call feasible.
Consider only the feasible paths in Berg. If we keep the same objects as Berg,
but only consider feasible path, will the resulting structure still form a category?
Should we restrict the set of objects for this to be true? We’ll let you ponder here;
this type of question leads to the notion of a subcategory, which we’ll introduce
soon in a subsequent chapter.

Something incorrect or unclear or missing? Report issues on GitHub by clicking here.

https://github.com/ACT4E/ACT4E/issues/new?labels=chap:modeling-cats;body=Chapter:%20Modeling with categories%0ASection:%20 Trekking in the Swiss Mountains%0AVersion:%202024-12-09%0A%0ACheck%20all%20that%20apply:%0A-%20(%20)%20Something%20incorrect%0A-%20(%20)%20Something%20not%20clear%0A-%20(%20)%20Something%20missing%0A%0APlease%20describe%20more%20in%20detail%20below.%20Feel%20free%20to%20change%20the%20title%20to%20something%20more%20informative.%0A;title=Modeling with categories%20/%20 Trekking in the Swiss Mountains%20/%202024-12-09
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15.3. Currency categories
In this section,we introduce a kind of category for describing currency exchangers.
Our idea is to model currencies as objects of a category, and morphisms will
describe ways of exchanging between those currencies. As an example, currency
exchangers offer this service.
We start with a set 𝐂 of labels for all the currencies we wish to consider:

𝐂 = {EUR,USD, CHF, SGD, …}. (10)

Nowconsider two currencies, sayUSDandEUR. Howcanwe describe the process
of changing an amount of USD to an amount of EUR? We model this using two
numbers: an exchange rate 𝑟 and a commission 𝑐 for the transaction. Amorphism
from one currency to another is given by this pair of numbers ⟨𝑟, 𝑐⟩. Now, for each
morphism, there is a function which takes an amount of the source currency and
transforms it into an amount of the target currency. Given an amount 𝑥 ∈ ℝ of
USD, this function is:

𝑓⟨𝑟, 𝑐⟩ ∶ ℝ → ℝ,
𝑥 ↦ 𝑟𝑥 − 𝑐.

(11)

Note that the commission 𝑐 is to be intended in the target currency. Of course, for
changing USD to EUR, there may be various different banks or agencies which
each offer different exchange rates and/or different commissions. Each of these
corresponds to a different morphism from USD to EUR.
To build our category, we also need to specify how currency exchangers com-
pose. Given currencies 𝑋,𝑌, 𝑍, and given currency exchangers ⟨𝑟, 𝑐⟩ from 𝑋 to 𝑌
and ⟨𝑠, 𝑑⟩ from 𝑌 to 𝑍, we define the composition ⟨𝑟, 𝑐⟩ # ⟨𝑠, 𝑑⟩ to be the currency
exchanger from 𝑋 to 𝑍 given by the pair of numbers

⟨𝑟𝑠, 𝑠𝑐 + 𝑑⟩. (12)

In other words, we compose currency exchangers as one would expect: we multi-
ply the first and the second exchange rates together, and we add the commissions
(paying attention to first transform the first commission into the units of the final
target currency).
Finally, we also need to specify identity morphisms for our category. These are
currency exchangers which “do nothing”. For any object𝑋, its identity morphism
is

⟨1, 0⟩, (13)

the currency exchanger from 𝑋 to 𝑋 with exchange rate “1” and commission
“0”.
We now want to check that the composition of currency exchangers as defined
above obeys unitality and associativity.
Given ⟨1, 0⟩ from 𝑋 to 𝑋, ⟨1, 0⟩ from 𝑌 to 𝑌, and ⟨𝑟, 𝑐⟩ from 𝑋 to 𝑌 we have:

⟨1, 0⟩ # ⟨𝑟, 𝑐⟩ = ⟨1 ⋅ 𝑟, 𝑟 ⋅ 0 + 𝑐⟩
= ⟨𝑟, 𝑐⟩,

(14)

and
⟨𝑟, 𝑐⟩ # ⟨1, 0⟩ = ⟨𝑟 ⋅ 1, 1 ⋅ 𝑐 + 0⟩

= ⟨𝑟, 𝑐⟩,
(15)

This is unitality. Furthermore, given ⟨𝑠, 𝑑⟩ from 𝑌 to 𝑍, and ⟨𝑡, 𝑒⟩ from 𝑍 to𝑈 we
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have:
(⟨𝑟, 𝑐⟩ # ⟨𝑠, 𝑑⟩) # ⟨𝑡, 𝑒⟩ = ⟨𝑟𝑠, 𝑠𝑐 + 𝑑⟩ # ⟨𝑡, 𝑒⟩

= ⟨𝑟𝑠𝑡, 𝑡(𝑠𝑐 + 𝑑) + 𝑒⟩
= ⟨𝑟, 𝑐⟩ # ⟨𝑠𝑡, 𝑡𝑒 + 𝑒⟩
= ⟨𝑟, 𝑐⟩ # (⟨𝑠, 𝑑⟩ # ⟨𝑡, 𝑒⟩).

(16)

This is associativity. Thus, we indeed have a category.
We can formally define the category of currencies Curr.

Definition 15.3 (Category Curr)
The category of currencies Curr is specified by:
1. Objects: a collection of currencies.
2. Morphisms: given two currencies 𝑋,𝑌, morphisms between them are

currency exchangers ⟨𝑟, 𝑐⟩ from 𝑋 to 𝑌.
3. Identity morphism: given a currency 𝑋, its identity morphism is the

currency exchanger ⟨1, 0⟩. We also call such morphisms “trivial currency
exchangers”.

4. Composition of morphisms: the composition of morphisms is given by the
formula (12), describing a composed currency exchanger.

As an illustration, consider three currency exchange companies ExchATM, Mon-
eyLah, and Frankurrencies, which operate on several currencies (Table 15.1).

Table 15.1.: Three currency exchange companies operating different currencies.

Company name Exchanger label Direction Exchange rate 𝑎 Fixed commission 𝑏
ExchATM A USD→ CHF 0.95 (in CHF/USD) 2.0 (in CHF)
ExchATM B CHF→ USD 1.05 (in USD/CHF) 1.5 (in USD)
ExchATM C USD→ SGD 1.40 (in SGD/USD) 1.0 (in SGD)
MoneyLah D USD→ CHF 1.00 (in CHF/USD) 1.0 (in CHF)
MoneyLah E SGD→ USD 0.72 (in USD/SGD) 3.0 (in USD)

Frankurrencies F EUR→ CHF 1.20 (in CHF/EUR) 0.0 (in CHF)
Frankurrencies G CHF→ EUR 1.00 (in EUR/CHF) 1.0 (in EUR)

We can represent this information as a graph, where the nodes are the currencies
and the edges are particular exchange operations (Fig. 5).

USD CHF

SGD EUR

A

D
C G

B

E F

Figure 5.: Three currency exchange companies
operating different currencies as a graph.

There is a currency category built from the information in Table 15.1 and the
graph in Fig. 5. Its collection of objects is the set {EUR,USD, CHF, SGD}, and its
morphisms are, in total:
⊳ the trivial currency exchanger (identity morphism) ⟨1, 0⟩ for each of the four
currencies (which are the objects),

⊳ the currency exchangers corresponding to each item in Table 15.1,
⊳ all possible compositions of the currency exchangers listed in Table 15.1.
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218 15. Modeling with categories

The phrase “all possible compositions” is a bit vague. What we mean here can be
made more precise. It corresponds to a general recipe for starting with a graph 𝐺,
such as in Fig. 5, and obtaining from it an associated category, called the free
category on 𝐺.
We introduce this concept in Section 13.6.

Exercise36. [Temperatures] Define a category of temperature converters, where
the objects are Celsius, Kelvin, Fahrenheit, and the morphisms are the rules to
transform a measurement from one unit to another.
Prove that this forms a category.

See solution on page 249.
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15.4. Resources dependencies
In engineering design, one creates systems out of components. Each component
has a reason to be in there. We will show how category theory can help in for-
malizing the chains of causality that underlie a certain design.
Wewill need to reason at the level of abstractionwhere we consider the “function”,
or “functionality”, which each component provides, and the “requirements” that
are needed to provide the function.
We will start with a simple example of the functioning principle of an electric
car.
In an electric car, there is a battery, a store of the electric energy resource. We can
see the production of motion as the series of two transformations:

⊳ The motor transmutes the electricity into rotation.
⊳ The rotation is converted into translation by the wheels and their friction with
the road.

We see that there are two types of things in this example:
1. The “transmuted”: the electricity, the rotation, the translation: these are ob-

jects in a category of transmuted resources.
2. The “transmuters”: the motor and wheels: these are morphisms in a category

of transmuted resources.
For a first qualitative description of the scenario, we might choose to just keep
track of what is transmuted into what. We can draw a diagram in which each
resource is a point (Fig. 6).

∙ ∙ ∙

translation rotation electricity
Figure 6.: Resources in the electric car example.

Now, we can draw arrows between two points if there is a transmuter between
them.
We choose the direction of the arrow such that

X Ytransmuter (17)

means that “using transmuter, having Y is sufficient to produce X”.

Remark 15.4 (Are we going the wrong direction?). The chosen direction for the
arrows is completely the opposite of what you would expect if you thought about
“input and outputs”. There is a good reason to use this convention, though it will
be apparent only a few chapters later. In the meantime, it is a good exercise to
liberate your mind about the preconception of what an arrow means; in category
theory there will be categories where the arrows represent much more abstract
concepts than input/output.

Another way to write (17) would be as follows:

transmuter∶ X→ Y. (18)

With these conventions, we can describe the two transmuters as these arrows:

motor ∶ rotation→ electricity,
wheels ∶ translation→ rotation.

(19)

We can put these arrows in the diagrams, and obtain the following (Fig. 7).
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Figure 7.: Transmuters are arrows between re-
sources.

∙ ∙ ∙

translation rotation electricity

wheels motor

In this representation, the arrows are the components of the system. The basic
rule is composition. If we use the semantics that an arrow from resource 𝑋 to
resource 𝑌 means “having 𝑌 is enough to obtain 𝑋”, then, since 𝑌 is enough
for 𝑌 per definition, we can add a self-loop for each resource. We will call the
self-loops identities (Fig. 8).

Figure 8.: System components and identities.

∙ ∙ ∙

translation rotation electricity

wheels motor

Furthermore, we might consider the idea of composition of arrows. Suppose that
we know that

X
𝑓
→ Y and Y

𝑔
→ Z, (20)

that is, using a 𝑔 we can get a Y from a Z, and using a 𝑓 we can get a X from a Y,
then we conclude that using a 𝑓 and a 𝑔 we can get an X from a Z.
In our example, if the arrows wheels andmotor exist, then also the arrow “wheels
then motor” exists (Fig. 9).

Figure 9.: Composition of system components.

∙ ∙ ∙

translation rotation electricity

wheels then motor

wheels motor

So far, we have drawn only one arrow between two points, but we can draw as
many as we want. If we want to distinguish between different brands of motors,
we would just draw one arrow for each model. For example, Fig. 10 shows two
models of motors (motor A, and motor B) and two models of wheels (wheels U
and wheels V).

Figure 10.: Multiple models for wheels and mo-
tors.

∙ ∙ ∙

translation rotation electricity

wheels U

wheels V

motor A

motor B

The figure implies now the existence of four composed arrows: “wheels U then
motor A”, “wheels U then motor B”, “wheels V then motor A”, and “wheels V
then motor B”, all going from translation to electricity;
Note that we may save some ink when drawing diagrams of morphisms:
⊳ We do not need to draw the identity arrows from one object to itself, because,
by Def. 13.9, they always exist.

⊳ Given arrows 𝑋 → 𝑌 and 𝑌 → 𝑍, we do not need to draw their composition
because, by Def. 13.9, this composition is guaranteed to exist.

With these conventions, we can just draw the arrows motor and wheels in the
diagram, and the rest of the diagram is implied (Fig. 11).
In particular, the electric car example corresponds to the category C specified
by
⊳ Objects: ObC = {electricity, rotation, translation}.
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∙ ∙ ∙

translation rotation electricity

wheels #motor

wheels motor

Figure 11.: Electric car example. The gray arrows
are implied by the properties of a category.

⊳ Morphisms: The system components are the morphisms. For instance, we have
motor, wheels, and the morphism wheels #motor, implied by the properties
of the category.

We can slightly expand this example by noting the reverse transformations. In
an electric car it is possible to regenerate power; that is, we can obtain rotation
of the wheels from translation (via the morphism move), and then convert the
rotation into electricity (via the morphism dynamo) (Fig. 12, Fig. 13).

∙ ∙ ∙

translation rotation electricity

move dynamo

Figure 12.: Electric power can be produced from
motion.

∙ ∙ ∙

translation rotation electricity

wheels

wheels #motor

motor

move dynamo

dynamo #move

Figure 13.: Electric car example: forward and
backward transformations.

Given the semantics of the arrows in a category, all compositions of arrows
exist, even if they are not drawn explicitly. For example, we can consider the
composition

wheels #motor # dynamo #move, (21)

which converts translation into rotation, into electricity, then back to rotation
and translation. Note that this is an arrow that has the same head and tail as
the identity arrow on translation (Fig. 14). However, these two arrows are not
necessarily the same. In this example we are representing physical systems, so
we would in fact not expect them to be the same, since there will be some losses
during the many conversions.

∙ translation

Identity

wheels #motor # dynamo #move Figure 14.: There can bemultiplemorphisms from
an object to itself.

The directionality of the arrows is also important. While the convention of which
resource is the tail and which the head is just a typographic convention, it might
be the case that we know how to convert one resource into another, but not vice
versa. Figure 15 shows an example of a diagram that describes a process which is
definitely not invertible.

Example 15.5. Given any category C, and any object 𝑋 ∈ C, the set of endo-
morphisms HomC(𝑋;𝑋) is a monoid. The category depicted in Fig. 16 has three
objects 𝑋,𝑌, 𝑍 and several morphisms. 𝑋 has four endomorphisms, 𝑌 two, and 𝑍
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Figure 15.: An example of a process which is not
invertible.

∙ ∙

electricity heat

three (including identity morphisms). Take the binary operation # to be the com-
position # in C, and the neutral element to be the identity id𝑋 . The associativity
and unitality laws of the category C coincide with the ones of the monoid’s def-
inition, and are satisfied. Therefore, we can identify a monoid as a one-object
category.

Figure 16. 𝑋 𝑌 𝑍
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15.5. Design problems form a category
Series composition
We will define several ways to connect design problems together. The first and
most basic way is series composition, or just “composition”.

Definition 15.6 (Series composition)
Let 𝐝∶ 𝐏 ,↦ 𝐐 and 𝐞∶ 𝐐 ,↦ 𝐑 be design problems. We define their series
composition (𝐝 # 𝐞)∶ 𝐏 ,↦ 𝐑 as:

(𝐝 # 𝐞)∶ 𝐏 op ×𝐑 → Pos Bool,
⟨𝑝∗, 𝑟⟩ ↦

⋁

𝑞∈𝐐
𝐝(𝑝∗, 𝑞) ∧ 𝐞(𝑞∗, 𝑟). (22)

The series composition (𝐝 # 𝐞) judges a pair ⟨𝑝∗, 𝑟⟩ as feasible if and only if there
exists a 𝑞 ∈ 𝐐 such that 𝐝(𝑝∗, 𝑞) and 𝐞(𝑞∗, 𝑟) are feasible.
Given a set 𝐀 and a map 𝑠∶ 𝐀 → Bool, we can define the boolean⋁𝑎∈𝐀 𝑠(𝑎)
by

⋁

𝑎∈𝐀
𝑠(𝑎) ∶= {

⊤ if there exists 𝑎 ∈ 𝐀 for which 𝑠(𝑎) = ⊤,
⊥ if there exists no 𝑎 ∈ 𝐀 for which 𝑠(𝑎) = ⊤.

(23)

In (22) we could have written “∃𝑞∈𝐐” instead of “
⋁

𝑞∈𝐐”:

∃𝑞∈𝐐 𝐝(𝑝∗, 𝑞) ∧ 𝐞(𝑞∗, 𝑟). (24)

Using
⋁
form highlights the connection with an integration operation ∫𝑞.

We use the same diagrammatic notation for DPs as for DPIs. We represent series
composition as

𝐝 𝐞 (𝐝 # 𝐞)≡⪯ (25)

One can notice the “co-design constraint” ⪯, which can be interpreted as follows.
The resource required by a component is limited by the functionality produced
by another component.
When viewing compositions (and larger diagrams) formed from these boxes, it is
tempting to interpret the boxes as input-output processes. However, that would
be misleading. The arrows do not represent information flow, materials flow, or
energy flow. Design problems do not represent input-output processes but rather
a static calculus of requirements–a requirements flow.
When the posets involved are finite, the series composition of design prob-
lems can be calculated visually, using the kind of representation discussed in
Example 7.14.
To explain how this works, consider the design problem

𝐝∶ 𝐏 op ×𝐐→ Pos Bool, (26)

from Example 7.14, visualized again for convenience in the first row of Fig. 17.
And consider another design problem of the type

𝐞∶ 𝐐 op ×𝐑→ Pos Bool, (27)

as given by the visualization in the first row of Fig. 17.
We can calculate the series composition 𝐝 # 𝐞 by tracing paths in the “composite”
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224 15. Modeling with categories

visualization given in the second row of Fig. 17. Namely, a pair ⟨𝑎, 𝑐⟩ is in the
feasibility set of 𝐝 # 𝐞 if and only if we can trace a path from 𝑎 to 𝑐 by only moving
upwards in the posets𝐏,𝐐, and𝐑, or crossing fromone poset to another following
dashed arrows in the direction they are pointing. Thus, the visualization of the
composite 𝐝 # 𝐞 is as in the third row of Fig. 17.

Figure 17.

𝑎3 𝑏2

𝑎2

𝑎1 𝑏1
𝐏 𝐐𝐝

𝑏2 𝑐4

𝑐2 𝑐3

𝑏1 𝑐1
𝐐 𝐑

𝐞

𝑎3 𝑏2 𝑐4

𝑎2 𝑐2 𝑐3

𝑎1 𝑏1 𝑐1
𝐏 𝐐 𝐑𝐝

𝐞

𝑎3 𝑐4

𝑎2 𝑐2 𝑐3

𝑎1 𝑐1
𝐏 𝐑

𝐝 # 𝐞

Let us check that, given design problems 𝐝 and 𝐞, their series composition (𝐝 # 𝐞)
is in fact a design problem.

Lemma 15.7. Series composition as in (22) is monotone in 𝑝 and 𝑟.

Proof. We need to show that (𝐝 # 𝐞)(𝑝∗, 𝑟) is monotone in 𝑝∗ and 𝑟. Be-
cause 𝐝 represents a design problem, 𝐝(𝑝∗, 𝑞) is monotone in 𝑝∗, and sim-
ilarly 𝐞(𝑞∗, 𝑟) is monotone in 𝑟. The conjunction “∧” is monotone in both
variables, and likewise the “∨” operation.

We can show two important properties for the “#” operation: associativity and
unitality.

Lemma 15.8. The series composition operation as in (22) is associative:

(𝐝 # 𝐞) # 𝐠 = 𝐝 # (𝐞 # 𝐠). (28)

Proof. Consider 𝐝∶ 𝐏 ,↦ 𝐐, 𝐞∶ 𝐐 ,↦ 𝐑, 𝐠∶ 𝐑 ,↦ 𝐒. To show that the
operation is associative, we can use distributivity and commutativity in
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Bool:

((𝐝 # 𝐞) # 𝐠)(𝑝∗, 𝑠) =
⋁

𝑟∈𝐑

⎛
⎜
⎝

⋁

𝑞∈𝐐
𝐝(𝑝∗, 𝑞) ∧ 𝐞(𝑞∗, 𝑟)

⎞
⎟
⎠
∧ 𝐠(𝑟∗, 𝑠)

=
⋁

𝑟∈𝐑

⎛
⎜
⎝

⋁

𝑞∈𝐐
𝐝(𝑝∗, 𝑞) ∧ 𝐞(𝑞∗, 𝑟) ∧ 𝐠(𝑟∗, 𝑠)

⎞
⎟
⎠

=
⋁

𝑞∈𝐐
𝐝(𝑝∗, 𝑞) ∧

⎛
⎜
⎝

⋁

𝑟∈𝐑
𝐞(𝑞∗, 𝑟) ∧ 𝐠(𝑟∗, 𝑠)

⎞
⎟
⎠

= (𝐝 # (𝐞 # 𝐠))(𝑝∗, 𝑠).

(29)

Because of associativity, we can write 𝐝 # 𝐞 # 𝐠 without ambiguity. Associativity of
composition is represented as:

𝐝 𝐞 𝐠⪯ ⪯ ≡ (𝐝 # 𝐞) 𝐠⪯

≡ 𝐝 (𝐞 # 𝐠)⪯

(30)

Identity for DP
There exists an identity for the “#” operation. We define the identity id𝐏 ∶ 𝐏 ,↦
𝐏 as follows.

Definition 15.9 (Identity design problem)
For any poset 𝐏, the identity design problem id𝐏 ∶ 𝐏 ,↦ 𝐏 is a monotone map

id𝐏 ∶ 𝐏 op × 𝐏 → Pos Bool,
⟨𝑝∗1 , 𝑝2⟩ ↦ 𝑝1 ⪯𝐏 𝑝2.

(31)

Remark 15.10 (Monotonicity of the identity). Let’s consider 𝑝1′ ⪯𝐏 𝑝1. If it
holds 𝑝1 ⪯𝐏 𝑝2, then it also holds 𝑝1′ ⪯𝐏 𝑝2. Similarly, now consider 𝑝2 ⪯𝐏 𝑝2′.
If it holds 𝑝1 ⪯𝐏 𝑝2, then it also holds 𝑝1 ⪯𝐏 𝑝2′.

In the diagrammatic notation, we represent id𝐏 as:

id𝐏 𝐏𝐏 (32)

Lemma 15.11. The series composition operation as in (22) satisfies the left and
right unit laws ((33)).

id𝐏 𝐝 id𝐐⪯ ⪯ ≡ 𝐝 (33)

Proof. Given 𝐝∶ 𝐏 ,↦ 𝐐, we need to show:

id𝐏 # 𝐝 = 𝐝 = 𝐝 # id𝐐. (34)

In the following,we prove id𝐏 #𝐝 = 𝐝. Proving 𝐝#id𝐐 = 𝐝 is similar. Consider
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226 15. Modeling with categories

the poset Bool. Since for 𝑥, 𝑦 ∈ Bool,

𝑥 ≅ 𝑦
,

𝑥 = 𝑦 (35)

(also referred to as skeletality [5]), we just need to show that 𝐝 ⪯ id𝐏 # 𝐝
and id𝐏 # 𝐝 ⪯ 𝐝. Here, 𝐝 ⪯ 𝐞means 𝐝(𝑝∗, 𝑞) ⪯ Bool 𝐞(𝑝∗, 𝑞) for all 𝑝 ∈ 𝐏, 𝑞
∈ 𝐐. We have

𝐝(𝑝∗, 𝑞) = ⊤ ∧ 𝐝(𝑝∗, 𝑞)
= id𝐏(𝑝∗, 𝑝) ∧ 𝐝(𝑝∗, 𝑞)

⪯
⋁

𝑝′∈𝐏
id𝐏(𝑝∗, 𝑝′) ∧ 𝐝(𝑝′∗, 𝑞)

= (id𝐏 # 𝐝)(𝑝∗, 𝑞).

(36)

For the other direction, we need to show that id𝐏 # 𝐝 ⪯ 𝐝:
⋁

𝑝′∈𝐏
id𝐏(𝑝∗, 𝑝′) ∧ 𝐝(𝑝′∗, 𝑞) ⪯ 𝐝(𝑝∗, 𝑞). (37)

This holds if and only if id𝐏(𝑝∗, 𝑝′) ∧ 𝐝(𝑝′∗, 𝑞) ⪯ 𝐝(𝑝∗, 𝑞) for some 𝑝′ ∈ 𝐏.
If there is no such 𝑝′, then the inequality holds (⊥ ⪯ ⊥ and ⊥ ⪯ ⊤). If there
is such an element 𝑝′, it means that id𝐏(𝑝∗, 𝑝′) = ⊤ and 𝐝(𝑝′∗, 𝑞) = ⊤. We
know that

id𝐏(𝑝∗, 𝑝′) = ⊤

𝑝 ⪯ 𝑝′ (38)

and hence 𝐝(𝑝∗, 𝑞) = ⊤.

The category DP
Finally, we can declare that the design problems so defined are morphisms in a
category that we call DP.

Definition 15.12 (Category of design problems DP)
The category of design problems DP consists of the following constituents:
1. Objects: The objects of DP are posets.
2. Morphisms: The morphisms of DP are design problems (Def. 7.12).
3. Identity morphism: The identity morphism id𝐏 ∶ 𝐏 ,↦ 𝐏 is given by

Def. 15.9.
4. Composition operation: Given morphisms 𝐝∶ 𝐏 ,↦ 𝐐 and 𝐞∶ 𝐐 ,↦ 𝐑,

their composition 𝐝 # 𝐞∶ 𝐏 ,↦ 𝐑 is given by Def. 15.6.

We have already shown that the composition operator “#” is associative and
unital, and that the composition of two design problems is a design problem
(closure). Therefore, DP is a category.
DP is called Feas or ℙrof Bool in [5].

Graded exercise E.10 (ComposingDesignProblems)
Consider the following posets, given in terms of Hasse diagrams:
⊳ Speed:
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fast

slow
⊳ Size:

large

small
⊳ Money:

120K

40K

20K
⊳ Time:

long

short
Furthermore let the poset Speed × Size be equipped with the standard
product partial ordering.
Consider the design problem given by the monotone function

𝑓∶ (Speed × Size)op ×Money→ Bool (39)

𝑓
Speed
Size

Money

with

𝑓−1(⊤) = {⟨⟨slow, small⟩, 20K⟩, ⟨⟨slow, small⟩, 40K⟩, ⟨⟨slow, small⟩, 120K⟩,
⟨⟨
slow, large

⟩
, 40K

⟩
,
⟨⟨
slow, large

⟩
, 120K

⟩

⟨⟨fast, small⟩, 120K⟩}

along with the design problem given by the monotone function

𝑔∶ Moneyop × Time→ Bool (40)

𝑔Money Time

with
𝑔−1(⊤) = {⟨20K, short⟩,

⟨
20K, long

⟩
,
⟨
40K, long

⟩
}.

1. Compute the series composition 𝑓 # DP 𝑔 in the category of design prob-
lems. The result should be a design problem described in terms of a
monotone function (Speed × Size)op × Time→ Bool.

2. We interpret elements of Speed × Size as properties of cars that Alice
considers buying. Money represents the amounts of money that she
would need to buy one of said cars, and Time represents the amounts of
time Alice could spend saving money. The feasibility relations 𝑓 and 𝑔
describe what is possible for Alice. According to 𝑓 # DP 𝑔, is it feasible for
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228 15. Modeling with categories

Alice to buy a fast small car? If yes, will she have to work, at minimum, a
long or a short amount of time in order to save enough money to buy it?

Graded exercise E.11 (DPComposition)
Consider the following posets, given in terms of Hasse diagrams:
⊳ Time:

long

short
⊳ Money:

100K

20K
⊳ Tech complexity:

fancy

simple

⊳ Task complexity:
high

medium

low
Let the poset Time×Money be equipped with the standard product partial
ordering.
You are in charge of an engineering team that should develop a robotic
system. It is not yet clear what strategy you wish follow for realizing the
project, and youwish to do a preliminary feasibility study. Youwill potentially
need to make some tradeoffs between the time that your team works on the
project and themoney that you invest. Furthermore, you will need to decide
between implementing either a cutting edge fancy robotic system, or a simple
one. This will have an impact on the complexity of the tasks that the system
will be able to handle.
Design problems capture feasibility relations. In your case, the feasibility
relation between Task complexity and Tech complexity is given by the
design problem

𝑓∶ Task complexityop × Tech complexity→ Bool (41)

𝑓Task complexity Tech complexity

with

𝑓−1(⊤) = {
⟨
high, fancy

⟩
, ⟨medium, fancy⟩, ⟨low, fancy⟩, ⟨low, simple⟩}

and the feasibility relation between Tech complexity and Time ×Money
is given by the design problem

𝑔∶ Tech complexityop × (Time ×Money)→ Bool (42)
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𝑔Tech complexity Time
Money

with

𝑔−1(⊤) ={
⟨
fancy,

⟨
long, 100K

⟩⟩
,
⟨
simple,

⟨
long, 100K

⟩⟩
,
⟨
simple,

⟨
long, 20K

⟩⟩
,

⟨simple, ⟨short, 100K⟩⟩}.

Your tasks in this exercise:
1. Compute the series composition 𝑓 # DP 𝑔 in the category of design prob-

lems.
2. Based on the previous calculation, would it be feasible to build a robotic

system that can handle medium-complexity tasks if your team works
only a short time on the project but invests 100K?
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15.6. Procedures
In programming, it is common to use the name function; we keep that word to
denote mathematical functions: morphisms of the category Set. We use the word
procedure to refer to pieces of code that run on a computer or virtual machine.
Procedures are richer than functions:
⊳ They might be non-deterministic: not always return the same value.
⊳ They might have side effects: change the world in some way.
⊳ They have resource consumption associated to them: they need memory and
computation to produce the result.

The category Set is not sufficient to describe these properties, but we can easily
invent categories that are built on top of Set to add these properties.
We are going to do this in stages. First, we are going to define a category of
procedures that keeps track of running time. Then we are going to keep track of
time depending on the size of the input. Finally, we are going to keep track of
memory usage.

Modeling execution time
We can model execution time by keeping track of an additional real number in
the morphism.

Definition 15.13 (Semicategory ProcTime)
The semicategory ProcTime consists of the following constituents:
1. Objects: The objects of ProcTime are the objects of Set.
2. Morphisms: A morphism

𝑓∶ 𝑋 →ProcTime 𝑋 (43)

is a pair ⟨𝑓𝑒, 𝑡⟩, where 𝑓𝑒 ∶ 𝑋 → Set 𝑌 is a regular function that describes
what the procedure computes and 𝑡 > 0 is a real number representing
“execution time”.

3. Composition operation: Given two morphisms

𝑓∶ 𝑋 →ProcTime 𝑌 and 𝑔∶ 𝑌 →ProcTime 𝑍, (44)

representedby ⟨𝑓𝑒, 𝑡1⟩ and ⟨𝑔𝑒, 𝑡2⟩, their composition is given by ⟨𝑓𝑒 # Set 𝑔𝑒,
𝑡1 + 𝑡2⟩.

This category allows distinguishing between different implementations of the
same functions with different computational requirements. For example, there
could be two morphisms ⟨𝑓𝑒, 1⟩ and ⟨𝑓𝑒, 10⟩ which compute the same function,
but the second takes 10 times as much.

Modeling sized data
The category ProcTimemodels execution time, but it does not model how the
execution time depends on the size of the input.
If we wanted to capture such ideas, we need to have an explicit way to talk about
the size of the input. For this we introduce “sized sets”.
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Definition 15.14 (Sized set)
A sized set is a pair ⟨𝐀, 𝗌𝗂𝗓𝖾⟩, where 𝐀 is a set, and 𝗌𝗂𝗓𝖾∶ 𝐀→ ℕ ∪ {∞} is the
size function.

For example, we could have 𝐀 = lists of integers and 𝗌𝗂𝗓𝖾 = length of list.
Now we can create a category whose objects are sized sets.
The procedures are morphisms that keep track of how the size of the input
influences the size of the output. For example, a sorting function produces an
output that is the same size as the input, while a function that chooses an element
of a list produces an output of size 1, no matter how large the input is.

Definition 15.15 (Semicategory ProcSize)
The semicategory ProcSize consists of the following constituents:
1. Objects: The objects are sized sets.
2. Morphisms: A morphism

𝑓∶ 𝑋 →ProcSize 𝑋 (45)

between the two objects

𝑋 = ⟨𝐀, 𝗌𝗂𝗓𝖾𝐀⟩ and 𝑌 = ⟨𝐁, 𝗌𝗂𝗓𝖾𝐁⟩ (46)

is a pair
⟨𝑓𝑒, 𝜎⟩, (47)

where:
a) 𝑓𝑒 ∶ 𝐀→ 𝐁 is the function computed;
b) 𝜎 ∶ ℕ→ ℕ keeps track of how the size changes.

3. Composition: The composition of

⟨𝑓𝑒, 𝜎𝑓⟩ and ⟨𝑔𝑒, 𝜎𝑔⟩ (48)

is given by
⟨𝑓𝑒 # 𝑔𝑒, 𝜎𝑓 # 𝜎𝑔⟩. (49)

Modeling data-size-dependent running times
Now we can create a category that keeps track of both data size and execution
time, possibly dependent on data size.

Definition 15.16 (Semicategory ProcSizeTime)
The semicategory ProcSizeTime consists of the following constituents:
1. Objects: The objects are sized sets.
2. Morphisms: A morphism

𝑓∶ 𝑋 →ProcSize 𝑋 (50)

between the two objects

𝑋 = ⟨𝐀, 𝗌𝗂𝗓𝖾𝐀⟩ and 𝑌 = ⟨𝐁, 𝗌𝗂𝗓𝖾𝐁⟩ (51)

is a tuple
⟨𝑓𝑒, 𝜎, 𝖽𝗎𝗋⟩, (52)
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232 15. Modeling with categories

where:
a) 𝑓𝑒 ∶ 𝐀→ 𝐁 is the function computed;
b) 𝜎 ∶ ℕ→ ℕ keeps track of how the size changes.
c) 𝖽𝗎𝗋 ∶ ℕ → ℝ says what is the computation time as a function of

instance size;
3. Composition: The composition of

⟨𝑓1, 𝜎1, 𝖽𝗎𝗋1⟩ and ⟨𝑔2, 𝜎2, 𝖽𝗎𝗋2⟩ (53)

is given by
⟨𝑓1 # 𝑔2, 𝜎1 # 𝜎2, 𝖽𝗎𝗋1,2⟩, (54)

where 𝖽𝗎𝗋1,2 is defined as

𝖽𝗎𝗋1,2 ∶ ℕ → ℝ,
𝑛 ↦ 𝖽𝗎𝗋1(𝑛) + 𝖽𝗎𝗋2(𝜎1(𝑛)).

(55)

Exercise37. Check that associativity holds for the composition in ProcSizeTime.
See solution on page 250.

Graded exercise E.12 (Asymptotics)
The category ProcSizeTime as defined thinks of time as real numbers,
and size of the data as integers. In computer science, it is convenient to use
asymptotic analysis. For example, we know that, in the general case, ordering
a list of 𝑛 elements takes 𝑂(𝑛 log𝑛) steps.
Discuss how you can extend or modify ProcSizeTime to be able to capture
asymptotic analysis.
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15.7. Software dependencies

We will discuss two examples:
⊳ Makefiles.
⊳ Python packages dependencies.
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16. Constructing categories
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In this chapter we discuss various ways of building new categories
from old ones. Given categories C and D, we will see how to build
their cartesian productC×D and their direct sumC+D, respectively.
In addition to these constructions, we will see how to start with a
category C and construct its opposite category C op, as well as various
other categories derived from C by thinking of kinds of diagrams in C
as objects themselves.

Swiss International Air Lines AG (also known as Swiss), is the flag carrier company of Switzerland. The airline was formed following the bankruptcy of
Swissair in 2002.



236 16. Constructing categories

16.1. Product of Categories
Definition 16.1 (Cartesian product of categories)
Given two categories C and D, their cartesian product C ×D is the category
specified as follows:
1. Objects: Objects are pairs ⟨𝑋, 𝑌⟩, with 𝑋 ∈ ObC and 𝑌 ∈ ObD.
2. Morphisms: A morphism from ⟨𝑋, 𝑌⟩ to ⟨𝑍, 𝑈⟩ is a pair of morphisms

⟨𝑓, 𝑔⟩∶ ⟨𝑋, 𝑌⟩→ ⟨𝑍, 𝑈⟩, (1)

with 𝑓∶ 𝑋 →C 𝑍, 𝑔∶ 𝑌 →D 𝑈.
3. Composition: The composition of morphisms is given by composing each

component of the pair separately:

⟨𝑓, 𝑔⟩ #C×D ⟨ℎ, 𝑖⟩ = ⟨𝑓 #C ℎ, 𝑔 #D 𝑖⟩. (2)

4. Identity morphisms: Given objects 𝑋 ∈ ObC and 𝑌 ∈ ObD, the identity
morphism on ⟨𝑋, 𝑌⟩ is the pair ⟨id𝑋 , id𝑌⟩.

Remark16.2. In amanner analogous toDef. 16.1we can also define the cartesian
product of any finite number of categories. For example, if A,B,C are three
categories, their triple cartesian productA×B×C is a category whose objects are
triples ⟨𝑋, 𝑌, 𝑍⟩, with 𝑋 ∈ ObA, 𝑌 ∈ ObB, 𝑍 ∈ ObC. For any 𝑛 ∈ ℕ, the 𝑛-fold
cartesian product of a category C with itself is denoted C𝑛.
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16.2. Disjoint Union of Categories
Definition 16.3 (Disjoint union category)
Given two categories C and D, their disjoint union C + D is the category
specified as follows:
1. Objects: ObC+D ∶= ObC +ObD. That is, objects of C+D are tuples of the

form ⟨𝑖, 𝑋⟩, with 𝑖 = 1 and 𝑋 ∈ ObC or 𝑖 = 2 and 𝑋 ∈ ObD.
2. Morphisms: Given objects ⟨𝑖, 𝑋⟩, ⟨𝑗, 𝑌⟩ ∈ ObC+D,

HomC+D(⟨𝑖, 𝑋⟩; ⟨𝑗, 𝑌⟩) ∶=
⎧

⎨
⎩

HomC(𝑋;𝑌) if 𝑖 = 𝑗 = 1,
HomD(𝑋;𝑌) if 𝑖 = 𝑗 = 2,

∅ else.
(3)

3. Composition: The composition operations #C+D, which are functions from

HomC+D(⟨𝑖, 𝑋⟩; ⟨𝑗, 𝑌⟩) ×HomC+D(⟨𝑗, 𝑌⟩; ⟨𝑘, 𝑍⟩)

to
HomC+D(⟨𝑖, 𝑋⟩; ⟨𝑘, 𝑍⟩),

are equal to

{ #C if 𝑖 = 𝑗 = 𝑘 = 1,
#D if 𝑖 = 𝑗 = 𝑘 = 2,

and equal to the unique function

∅→ HomC+D(⟨𝑖, 𝑋⟩; ⟨𝑘, 𝑍⟩)

in all other cases.
4. Identity morphisms: The identities are copied from either category:

idC+D⟨1, 𝑋⟩ ∶= idC𝑋 , (4)

idC+D⟨2, 𝑋⟩ ∶= idD𝑋 . (5)

Remark 16.4. If you think about categories in diagrammatic form, this operation
corresponds to placing two categories side-by-side, without connecting them.

Remark 16.5. A remark similar to Remark 16.2 holds here, too: we can form
the disjoint union of any finite number of categories. For example,A+B+C for
three categories A,B,C.

Exercise38. Show that the disjoint union of two categories is indeed again a
category.

See solution on page 250.
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16.3. Opposite Category
Definition 16.6 (Opposite category)
Given a category C, its opposite category C op is specified by:
1. Objects: ObC op = ObC.
2. Morphisms: Given objects 𝑋,𝑌 ∈ ObC op = ObC,

HomC op(𝑋;𝑌) ∶= HomC(𝑌;𝑋). (6)

For each morphism 𝑓∶ 𝑋 →C 𝑌, there is a morphism 𝑓op ∶ 𝑌 →C op 𝑋.
Graphically, given

𝑋 𝑌
𝑓

(7)

we have

𝑌 𝑋
𝑓op

(8)

3. Composition: Given morphisms

𝑓op ∶ 𝑍 →C op 𝑌 and 𝑔op ∶ 𝑌 →C op 𝑋 (9)

their composition is defined as

𝑓op #C op 𝑔op ∶= (𝑔 #C 𝑓)op. (10)

4. Identity morphisms: given by the identities of the original category C.

Given 𝑋 ∈ ObC, we will sometimes (though not always) write 𝑋op to signify
when we are thinking of 𝑋 as an object of ObC op .

Graded exercise E.13 (OppositeCat)
Verify that Def. 16.6 defines a category. In other words, check that its con-
stituents satisfy the conditions of associativity and unitality.

Example 16.7 (Opposite of a poset). A single poset 𝐏 = ⟨𝐏, ⪯𝐏⟩ can be described
as a category, in which each point is an object, and there is a morphism between
two objects 𝑥 and 𝑦 if and only if 𝑥 ⪯𝐏 𝑦. We have defined the opposite of a poset
in Section 6.3. The opposite category of a category for a poset, is the category for
the opposite poset.

(C(𝐏))op ≃ C((𝐏 op)). (11)
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16.4. Arrow construction
Definition 16.8 (Arrow category)
Given any category C, its arrow category 𝐀𝐫𝐫 C is:
1. Objects:morphisms of C.
2. Morphisms: Given objects 𝑓∶ 𝑋 →C 𝑌 and 𝑔∶ 𝑍 →C 𝑈, a morphism
𝜑∶ 𝑓 →𝐀𝐫𝐫 C 𝑔 in 𝐀𝐫𝐫 C is a pair of morphisms ⟨𝜑𝑠, 𝜑𝑡⟩ in C that make
the following diagram

𝑋 𝑍

𝑌 𝑈

𝜑𝑠

𝑓 𝑔

𝜑𝑡

(12)

a commutative square in C.
3. Composition: Composition in 𝐀𝐫𝐫 C is given by placing commutative

squares side by side. Consider ⟨𝜑𝑠, 𝜑𝑡⟩∶ 𝑓 → 𝑔 and ⟨𝜓𝑠, 𝜓𝑡⟩∶ 𝑔 → ℎ
in 𝐀𝐫𝐫 C giving rise to the following composite commutative diagram

𝑋 𝑍 𝑉

𝑌 𝑈 𝑊
𝑓

𝜑𝑠

𝑔

𝜓𝑠

ℎ

𝜑𝑡 𝜓𝑡

. (13)

Since this diagram is again commutative, we define

⟨𝜑𝑠, 𝜑𝑡⟩ #𝐀𝐫𝐫 C ⟨𝜓𝑠, 𝜓𝑡⟩ ∶=
⟨
𝜑𝑠 #C 𝜓𝑠, 𝜑𝑡 #C 𝜓𝑡

⟩
. (14)

4. Identities: given an object 𝑓∶ 𝑋 → 𝑌 of 𝐀𝐫𝐫 C, its identity morphism is
⟨id𝑋 , id𝑌⟩.

Example 16.9 (Intervals). Consider a poset 𝐏. The arrow category 𝐀𝐫𝐫 (C(𝐏)) is
isomorphic to the poset (viewed as a category) C((𝐀𝐫𝐫 𝐏)) of nonempty intervals
in 𝐏:

𝐀𝐫𝐫 (C(𝐏)) ≃ C((𝐀𝐫𝐫 𝐏)). (15)
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16.5. Twisted arrow construction
Definition 16.10 (Twisted arrow category)
Given a category C, its twisted arrow category 𝐓𝐰 C is:
1. Objects:morphisms in C.
2. Morphisms: A morphism in 𝐓𝐰 C from 𝑓∶ 𝑋 →C 𝑌 to 𝑔∶ 𝑍 →C 𝑈 is

given by a pair ofmorphisms ⟨𝜑𝑠, 𝜑𝑡⟩ inC such that the following diagram
commutes:

𝑋 𝑍

𝑌 𝑈
𝑓

𝜑𝑠

𝑔

𝜑𝑡

(16)

3. Composition: Composition in 𝐓𝐰 C is given by placing commutative
squares side by side. Consider ⟨𝜑𝑠, 𝜑𝑡⟩∶ 𝑓 → 𝑔 and ⟨𝜓𝑠, 𝜓𝑡⟩∶ 𝑔 → ℎ
in 𝐓𝐰 C, giving rise to the following composite diagram

𝑋 𝑍 𝑉

𝑌 𝑈 𝑊
𝑓

𝜑𝑠

𝑔

𝜓𝑠

ℎ

𝜑𝑡 𝜓𝑡

. (17)

It is commutative because its component squares are, and hence it defines
a morphism 𝑓 → ℎ in 𝐓𝐰 C, namely

⟨𝜑𝑠, 𝜑𝑡⟩ #𝐓𝐰 C ⟨𝜓𝑠, 𝜓𝑡⟩ ∶=
⟨
𝜓𝑠 #C 𝜑𝑠, 𝜑𝑡 #C 𝜓𝑡

⟩
. (18)

4. Identitites: given an object 𝑓∶ 𝑋 → 𝑌 of 𝐓𝐰 C, its identity morphism is
⟨id𝑋 , id𝑌⟩.

Remark 16.11. The above construction might be more precisely called the
“source twisted arrow category” of C, because it is a modification of the arrow
construction where we are “twisting” the arrow between source objects of mor-
phisms of C by reversing its direction. An analogous construction exists where
instead we twist the arrow construction by reversing the arrow between targets
of morphisms of C. This latter construction might be called the “target twisted
arrow category”. For brevity, we have only spelled out the source twisted variant
here.

Graded exercise E.14 (TwistedCat)
Let C be a category, and let 𝐓𝐰 C be the associated twisted arrow category.
Check that the definition of𝐓𝐰 C does indeed define a category. Specifically,
check that for 𝐓𝐰 C
1. composition of composable morphism does again define a morphism of

𝐓𝐰 C;
2. composition is associative;
3. identity morphisms satisfy the identity laws (that they behave neutrally

for composition).

Example 16.12 (Twisted construction in posets and categories). Consider a
poset 𝐏. The twisted arrow category 𝐓𝐰 C(𝐏) is isomorphic to the poset (viewed
as a category) C((𝐓𝐰 𝐏)) of nonempty intervals in 𝐏:

𝐓𝐰 (C(𝐏)) ≃ C((𝐓𝐰 𝐏)). (19)
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Exercise39. Prove the statement inExample 16.12. Recall that,given elements𝑥, 𝑦
∈ 𝐏, the interval [𝑥, 𝑦] is

[𝑥, 𝑦] ∶= {𝑧 ∈ 𝐏 ∣ 𝑥 ⪯𝐏 𝑧 ⪯𝐏 𝑥}. (20)

Start to show that the partial order is equivalent to a twisted morphism.
See solution on page 250.
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16.6. (Co)slice construction
Definition 16.13 (Slice categories)
Let C be a category and fix an object 𝑇 ∈ ObC. The slice category C∕𝑇 of C
over 𝑇 is:
1. Objects: morphisms in C of the type 𝑋 → 𝑇, where 𝑋 ranges over all

objects of C.

2. Morphisms: given objects 𝑋
𝑓
→ 𝑇 and 𝑌

𝑔
→ 𝑇, a morphism

𝜑C∕𝑇 ∶ (𝑋
𝑓
→ 𝑇)→C∕𝑇 (𝑌

𝑔
→ 𝑇) (21)

is specified by a morphism 𝜑∶ 𝑋 →C 𝑌 such that the diagram

𝑋 𝑌

𝑇

𝜑

𝑓 𝑔
(22)

commutes.
3. Composition: defined via the composition in C. Concretely, given com-

posable morphisms 𝜑C∕𝑇 and 𝜓C∕𝑇 of C∕𝑇, we define

𝜑C∕𝑇 #C∕𝑇 𝜓C∕𝑇 ∶= (𝜑 #C 𝜓)C∕𝑇 . (23)

4. Identities: defined by the identities in C.

Graded exercise E.15 (SliceCat)
Let C be a category, fix 𝑇 ∈ ObC, and consider the slice category C∕𝑇. Your
task is to check that the composition of two composable morphisms in C∕𝑇
is again in fact a morphism in C∕𝑇.

Definition 16.14 (Coslice categories)
Let C be a category and fix an object 𝑆 ∈ ObC. The coslice category 𝑆∕C of C
under 𝑆 is:
1. Objects: morphisms in C of the type 𝑆 → 𝑋, where 𝑋 ranges over all

objects of C.

2. Morphisms: given objects 𝑆
𝑓
→ 𝑋 and 𝑆

𝑔
→ 𝑌, a morphism

𝜑𝑆∕C ∶ (𝑆
𝑓
→ 𝑋)→𝑆∕C (𝑆

𝑔
→ 𝑌) (24)

is specified by a morphism 𝜑∶ 𝑋 →C 𝑌 such that the diagram

𝑋 𝑌

𝑆

𝜑

𝑓 𝑔
(25)

commutes.
3. Composition: defined by the composition in C.
4. Identities: defined by the identities in C.
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Culture is what you don’t think about. Mathematics has a quite dif-
ferent culture than engineering. Engineering is about getting things
to work in practice. Conventions are important. Specifics of protocols
are important. In mathematics, certain things just not matter: one
studies what is true regardless of conventions.

Schwingen is the traditional Swiss wrestling native to the pre-alpine parts of German-speaking Switzerland. Wrestlers wear Schwingerhosen that can be used
to hold and grapple the adversary.
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17.1. Definitional impetus vs computational goals
The category Curr represents the set of all possible currency exchangers that
could ever exist. However, in this set there would be very irrational agents. For
example, there is a currency exchanger that, given 1 USD, will give you back 2
USD; there is one currency exchanger that corresponds to converting USD to
CHF back and forth 21 times before getting you the money. There is even one
that will not give you back any money.
Moreover, using the composition operations we could produce many more mor-
phisms. In fact, if there are loops, we could traverse the loops multiple times, and,
depending on the numbers, finding new morphisms, possibly infinitely many
more.
This highlights a recurring topic: often mathematicians will be happy to define
a broader category of objects, while, in practice, the engineer will find herself
thinking about a more constrained set of objects. In particular, while the mathe-
matician is more concerned with defining categories as hypothetical universes of
things, the engineer is typically interested in representing concrete things, and
solve some computational problem on the represented structure.
For example, in the case of the currency exchangers, the problem might be that
of finding the sequence of the best conversions between a source and a target
currency.
First, the engineer would add more constraints to the definition to work with
more well-behaved objects. For example, it is reasonable to limit the universe of
morphisms in such a way that the action of converting back and forth the same
currency to have a cost (through the commission) higher than 0.
In that case, we will find that the optimal paths of currencies never pass through
a currency more than once. To see this, consider three currencies A,B,C, a cur-
rency exchanger ⟨𝑎, 𝑏⟩ from A to B, a currency exchanger ⟨𝑐, 𝑑⟩ from B to C,
and a currency exchanger ⟨𝑒, 𝑓⟩ from C to A. The composition of the currency
exchangers reads:

⟨𝑒𝑐𝑎, 𝑒𝑐𝑏 + 𝑒𝑑 + 𝑓⟩ = ⟨𝑔, ℎ⟩. (1)

Assuming 𝑒 = 𝑎−1 (in words, an exchange rate direction is not more profitable
than the other), and ℎ ≠ 0, because of the commissions we can show that there
are multiple morphisms from A to A, and that the identity morphism is the most
“convenient” one. If we only pass through each currency at most once, there are
only a finite amount of paths to check, and this might simplify the computational
problem.
Second, the engineer might be interested in keeping track only of the “dominant”
currency exchangers. For example, if we have two exchangers with the same rate
but different commission, we might want to keep track only of the one with the
lowest commission.
In the next chapters we will see that there are concepts that will be useful to
model these situations:
⊳ There is a concept of subcategory that allows to define more specific categories
of a parent one, in a way that still satisfies the axioms.

⊳ There is a concept called locally posetal categories, in which the set of mor-
phisms between two objects is assumed to be a poset rather than a set, that is,
we assume that there is an order, and that this order will be compatible with
the operation of composition.
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(a)Mars climate orbiter

(b)

Figure 1.

17.2. Things that don’t matter
In engineering we know that using the right conventions is essential.
There are many famous examples of unit mismatches causing disasters or near-
disasters:
⊳ The loss of the Mars Climate Orbiter in 1999 was due to the fact that NASA
used the metric system, while contractor Lockheed Martin used (by mistake)
imperial units (Fig. 1).

⊳ In 1983, an Air Canada’s Boeing 767 jet ran out of fuel in mid-flight because
there was a miscalculation of the fuel needed for the trip. In the end, the pilot
managed to successfully land the “Gimli Glider”.

⊳ Going back in history, Columbus wound up in the Bahamas because he mis-
calculated the Earth’s circumference, due to several mistakes, and one of them
was assuming that his sources were using the Roman mile rather than the
Arabic mile [20]. Columbus’ mathematical mistakes led to a happy incident
for him, but not so great outcomes for many others.

However, in category theory, we look at the “essence” of things, and we consider
what is true regardless of conventions.

Something incorrect or unclear or missing? Report issues on GitHub by clicking here.
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Figure 2.: A page fromMuh. ammad ibn Mūsā al-
Khwārizmı̄’s Algebra. The word algorithm comes
from the name al-Khwārizmı̄.

17.3. The choice of symbols does not matter
For example, it doesn’t matter what symbols we use to represent numerals. It also

should not matter that we use base-10 numerals—certainly mathematical truths
do not depend on how many fingers humans have.
Just like this book is written in rather plain English, and could be translated to
another language while preserving the meaning, in category theory we look at
what is not changed by a 1:1 translation that can be reversed.
This will be covered later in a section on “isomorphisms”; but for now we can
look at this intuitively.
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17.4. Typographical conventions don’t matter
Some of you might have objected to the conventions that we used in this chapter
for the notation for composition of morphisms. We have used the notation 𝑓 # 𝑔
(“𝑓 then 𝑔”) while usually in the rest of mathematics we would have used 𝑔 ◦ 𝑓
(“𝑔 after 𝑓”). However, any concept we will use is “invariant” to the choice of
notation. We can decide to rewrite the book using the other convention and still
all the theorems would remain true, and all the falsities will remain false. More
technically, we can take any formula written in one convention and rewrite it
with the other convention, and vice versa using a specific mechanical rule. For
example, the formula

(𝑓 # 𝑔) # ℎ = 𝑓 # (𝑔 # ℎ) (2)

would be transformed in

ℎ ◦ (𝑔 ◦ 𝑓) = (ℎ ◦ 𝑔) ◦ 𝑓. (3)

(A bit more advanced category theory can describe this transformation more
precisely.)

=

# #

# ℎ 𝑓 #

𝑓 𝑔 𝑔 ℎ

=

◦ ◦

ℎ ◦ ◦ 𝑓

𝑔 𝑓 ℎ 𝑔

(𝑓 # 𝑔) # ℎ = 𝑓 # (𝑔 # ℎ) ℎ ◦ (𝑔 ◦ 𝑓) = (ℎ ◦ 𝑔) ◦ 𝑓

# ◦

Figure 3.:Mechanical rule to transform one convention to another.
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This invariance to mechanical invertible transformations only holds for mathe-
matical and technical writing. In other contexts it might fail.
For example, “Veni Vidi Vici” has a sound to it that the English translation does
not have (Fig. 4).

Figure 4.
VENI VIDI VICI I came; I saw; I conquered.

Sometimes, the meaning is in the typography, as in Apollinaire’s poem “Poème à
Lou” (Fig. 5).

Reconnais-toi
Cette adorable personne c’est toi
Sous le grand chapeau canotier
Oeil
Nez
La bouche
Voici l’ovale de ta figure
Ton cou exquis
Voici enfin l’imparfaite image de ton buste adoré
vu comme à travers un nuage
Un peu plus bas c’est ton coeur qui bat

Figure 5.
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1 I
2
3 II
4 III
5 IV

𝐹�𝐄1 𝐄2
Figure 6.

Solutions to selected exercises
Solution of Exercise 31. We know:
⊳ src(1) = 𝑎 and tgt(1) = 𝑏: we have 𝐹∙(𝑎) = 𝛼 and 𝐹∙(𝑏) = 𝛽, meaning
that 𝐹�(1) = I.

⊳ src(2) = 𝑏 and tgt(2) = 𝑐: we have 𝐹∙(𝑏) = 𝛽 and 𝐹∙(𝑐) = 𝛾, meaning
that 𝐹�(2) = II.

⊳ src(3) = 𝑐 and tgt(3) = 𝑑: we have 𝐹∙(𝑐) = 𝛾 and 𝐹∙(𝑑) = 𝛼, meaning
that 𝐹�(3) = III.

⊳ src(4) = 𝑑 and tgt(4) = 𝑒: we have 𝐹∙(𝑑) = 𝛼 and 𝐹∙(𝑒) = 𝛾, meaning
that 𝐹�(4) = IV.

⊳ src(5) = 𝑒 and tgt(5) = 𝑎: we have 𝐹∙(𝑒) = 𝛾 and 𝐹∙(𝑎) = 𝛼, meaning
that 𝐹�(5) = III.

Therefore, the map 𝐹� is as reported in Fig. 6.

Solution of Exercise 32. We define the category InjSet to be such that its
objects are all sets, its morphisms are injective functions, composition is the
usual composition of functions, and identity morphisms are the usual identity
functions.
1. We show that the composition of two injective functions is injective. Given

functions 𝑓∶ 𝑋 → 𝑌 and 𝑔∶ 𝑌 → 𝑍 injective, suppose that 𝑔(𝑓(𝑥1)) =
𝑔(𝑓(𝑥2)) for some 𝑥1, 𝑥2 ∈ 𝑋. By the injectivity of 𝑔 it follows that 𝑓(𝑥1) =
𝑓(𝑥2), and then using the injectivity of 𝑓, we can conclude that 𝑥1 = 𝑥2.

2. Identity functions are clearly injective.
3. Associativity of composition holds because it holds for all functions, so in

particular also for injective ones.

Solution of Exercise 33.

Solution of Exercise 34.

Solution of Exercise 35.

Solution of Exercise 36. The concept of this exercise is very similar to the one
of Curr. In general, we can write a temperature converter (morphism) from e
to f as a pair of numbers ⟨𝑎, 𝑑⟩, 𝑎, 𝑑 ∈ ℝ. For each morphism we have a map
which actually transform an amount of the first temperature into an amount of
the second temperature:

𝑓⟨𝑎, 𝑑⟩ ∶ ℝ→ ℝ
𝑥 ↦ 𝑎𝑥 + 𝑑.

(4)

Now, all the possible conversions between the three temperature conventions
feature specific values for 𝑎, 𝑑, listed in Table 17.1 (rows are to be intended as the
source, and columns as the target convention).

Table 17.1.: Temperature conversion factors.

Celsius Kelvin Fahrenheit
Celsius 𝑎 = 1, 𝑑 = 0 𝑎 = 1, 𝑑 = 273 𝑎 = 9∕5, 𝑑 = 32
Kelvin 𝑎 = 1, 𝑑 = −273 𝑎 = 1, 𝑑 = 0 𝑎 = 9∕5, 𝑑 = −459.4
Fahrenheit 𝑎 = 5∕9, 𝑑 = −17.7̄ 𝑎 = 5∕9, 𝑑 = 255.2̄ 𝑎 = 1, 𝑑 = 0

We now define the category Temp as being constituted of:
⊳ Objects: ObTemp = {Celsius, Kelvin, Fahrenheit};
⊳ Morphisms: There is a single morphism from e to f for any e, f ∈ ObTemp, given
by ⟨𝑎, 𝑑⟩, with 𝑎, 𝑑 as in Table 17.1;
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⊳ Composition of morphisms: Analogous to the one in Curr;
⊳ Identity morphisms: Analogous to the ones in Curr.
This indeed forms a category, as we have shown for Curr.

Solution of Exercise 37. The only nontrivial step is checking that associativity
holds for composition of 𝖽𝗎𝗋. Consider 3 compatible morphisms 𝑓1, 𝑓2, 𝑓3. We
know from (55) that

𝖽𝗎𝗋1;2(𝑛) = 𝖽𝗎𝗋1(𝑛) + 𝖽𝗎𝗋2(𝜎1(𝑛)). (5)

Now we compose 𝑓1;2 with 𝑓3. For 𝖽𝗎𝗋 we obtain

𝖽𝗎𝗋(1;2);3(𝑛) = 𝖽𝗎𝗋1;2(𝑛) + 𝖽𝗎𝗋3(𝜎1;2(𝑛)) (6)
= 𝖽𝗎𝗋1(𝑛) + 𝖽𝗎𝗋2(𝜎1(𝑛)) + 𝖽𝗎𝗋3(𝜎2(𝜎1(𝑛))) (7)

Instead, if we first compute 𝑓2 # 𝑓3, we have

𝖽𝗎𝗋2;3(𝑛) = 𝖽𝗎𝗋2(𝑛) + 𝖽𝗎𝗋3(𝜎2(𝑛)). (8)

If we now compose 𝑓1 with 𝑓2 # 𝑓3 we get:

𝖽𝗎𝗋1;(2;3)(𝑛) = 𝖽𝗎𝗋1(𝑛) + 𝖽𝗎𝗋2;3(𝜎1(𝑛)) (9)
= 𝖽𝗎𝗋1(𝑛) + 𝖽𝗎𝗋2(𝑛) + 𝖽𝗎𝗋3(𝜎2(𝜎1(𝑛))), (10)

which is the same as (7).

Solution of Exercise 38. We check the two conditions. First, consider a mor-
phism 𝑓∶ 𝑋 → 𝑌 ∈ HomC+D(⟨𝑋, 𝑖⟩; ⟨𝑌, 𝑖⟩) (the index 𝑖 is repeated, because
following the definition of morphisms, no morphism connects objects of one
category to objects of the other one). We have

idC+D # 𝑓 = { idC # 𝑓 = 𝑓 if 𝑖 = 1,
idD # 𝑓 = 𝑓 if 𝑖 = 2, (11)

and
𝑓 # idC+D = { 𝑓 # idC = 𝑓 if 𝑖 = 1,

𝑓 # idD = 𝑓 if 𝑖 = 2. (12)

Second, consider the morphisms 𝑓∶ 𝑋 → 𝑌 ∈ HomC+D(⟨𝑋, 𝑖⟩; ⟨𝑌, 𝑖⟩), 𝑔∶ 𝑌 →
𝑍 ∈ HomC+D(⟨𝑋, 𝑗⟩; ⟨𝑌, 𝑗⟩), and ℎ∶ 𝑍 → 𝑈 ∈ HomC+D(⟨𝑋, 𝑘⟩; ⟨𝑌, 𝑘⟩). We
have

(𝑓#C+D𝑔)#C+Dℎ ∶=
⎧

⎨
⎩

(𝑓 #C 𝑔) #C ℎ = 𝑓 #C 𝑔 #C ℎ if 𝑖 = 𝑗 = 𝑘 = 1,
(𝑓 #D 𝑔) #D ℎ = 𝑓 #D 𝑔 #D ℎ if 𝑖 = 𝑗 = 𝑘 = 2,

does not exist else.
(13)

and

𝑓#C+D(𝑔#C+Dℎ) ∶=
⎧

⎨
⎩

𝑓 #C (𝑔 #C ℎ) = 𝑓 #C 𝑔 #C ℎ if 𝑖 = 𝑗 = 𝑘 = 1,
𝑓 #D (𝑔 #D ℎ) = 𝑓 #D 𝑔 #D ℎ if 𝑖 = 𝑗 = 𝑘 = 2,

does not exist else.
(14)

SolutionofExercise 39. ConsiderC((𝐓𝐰 𝐏)). Take twomorphisms in𝐏:𝑓∶ 𝑋 →
𝑌 (from𝑋 ⪯ 𝑌) and𝑔∶ 𝑍 → 𝑈 (from𝑍 ⪯ 𝑈). These are two objects inC((𝐓𝐰 𝐏)).
Now, a morphism in C((𝐓𝐰 𝐏)) is a pair ⟨ℎ, 𝑖⟩ where ℎ∶ 𝑍 → 𝑋 (from 𝑍 ⪯ 𝑋)
and 𝑖∶ 𝑌 → 𝑈 (from 𝑌 ⪯ 𝑈). Therefore, we have 𝑍 ⪯ 𝑋 ⪯ 𝑌 ⪯ 𝑈, which cor-
responds to [𝑋, 𝑌] ⪯𝐓𝐰 𝐏 [𝑍, 𝑈]. Therefore, morphisms in C((𝐓𝐰 𝐏)) between
arrows (intervals) correspond to order relations between intervals.
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Figure 1.: Robot on a grid example.

18.1. Moore machines, first version
In the following we considerMooremachines*, which are a type of basic model
for describing certain dynamical systems. Its characteristic features are:
⊳ a state space which describes all possible states that the system can possibly
be in;

⊳ an input space and an output space;
⊳ a dynamics which describes how, given an input, the system’s state changes
according to that input;

⊳ a read-out which relates the current state of the system to the output space.
We are in particular interested in the ways that such a machine can transform a
sequence of inputs into a sequence of outputs.

A first mathematical model
Our first version for formalizing the idea of a Moore machine looks as follows.
We model the input space, state space, and output space as sets 𝐔, 𝐗, and 𝐘
respectively, and we model the dynamics and read-out as functions

{
dyn∶ 𝐔 × 𝐗→ 𝐗,
ro∶ 𝐗→ 𝐘.

(1)

We will also choose an element 𝗌𝗍 ∈ 𝐗 of the state space as an initial state; we will
use this when specifying how a Moore machine acts on sequences of inputs.
Thus, in total, a Moore machine is specified by a tuple of the following type:

⟨𝐔, 𝐗, 𝐘, dyn, ro, 𝗌𝗍⟩. (2)

Example 18.1 (Robot on a grid). Weconsider a robotmoving on a two-dimensional
unit grid, represented as ℕ2[0,100] (Fig. 1).

The state of the robot is described by its position coordinates, as 𝑥 ∈ ℕ2[0,100] (for
convenience, consider the first element of the state to be the horizontal coordinate
and the second element to be the vertical one). The robot can choose from a set
of input actions𝐔 = {↑, ↓,→,←}, each representing a movement of 1 unit in the
corresponding direction on the grid. We can write the dynamics as

dyn∶ 𝐔 × 𝐗→ 𝐗
⟨↑, ⟨𝑥1, 𝑥2⟩⟩↦ ⟨𝑥1,min(𝑥2 + 1, 100)⟩,
⟨↓, ⟨𝑥1, 𝑥2⟩⟩↦ ⟨𝑥1,max(𝑥2 − 1, 0)⟩,
⟨→, ⟨𝑥1, 𝑥2⟩⟩↦ ⟨min(𝑥1 + 1, 100), 𝑥2⟩,
⟨←, ⟨𝑥1, 𝑥2⟩⟩↦ ⟨max(𝑥1 − 1, 0), 𝑥2⟩,

(3)

where the “min” and “max” ensure that the robot stays in within the boundaries
of the grid. The readout can be thought of as a sensor measuring the position of
the robot (the state). Assuming a perfect sensor, we have:

ro∶ 𝐗 → 𝐘,
⟨𝑥1, 𝑥2⟩ ↦ ⟨𝑥1, 𝑥2⟩.

The starting position of the robot can be specified as any 𝗌𝗍 ∈ ℕ2[0,100].

* They are named after Edward F. Moore.
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𝑓
𝐔𝑓 𝐘𝑓𝐗𝑓 𝑔

𝐔𝑔 𝐘𝑔𝐗𝑔

𝑓 # 𝑔
𝐔𝑓 𝐘𝑔𝐗𝑓 × 𝐗𝑔

Figure 2.: Composition of Moore machines (first
version).

Moore machines acting on sequences

Given a Moore machine 𝑓 = ⟨𝐔, 𝐘, 𝐗, dyn, ro, 𝗌𝗍⟩, the following is a standard
way to think of it as acting on a sequence of inputs, transforming it into a sequence
of outputs.
Given an infinite sequence of inputs 𝑢0, 𝑢1, 𝑢2,…, we use the following recipe

{
𝑥𝑘+1 = dyn(𝑢𝑘, 𝑥𝑘)
𝑦𝑘 = ro(𝑥𝑘),

(4)

to produce an infinite sequence 𝑦0, 𝑦1, 𝑦2,… of outputs. For the very first step,
when 𝑘 = 0, we need the initial state 𝑥0 = 𝗌𝗍 in order to compute 𝑥1 = dyn(𝑢0, 𝑥0)
and 𝑦0 = ro(𝑥0).

Example 18.2. To continue Example 18.1, we can consider a robot with starting
position ⟨0, 0⟩. We consider a sequence of inputs→, ↑,→, ↓,←. Using the recipe
given by theMooremachine in Example 18.1, one can find the sequences of states
and outputs, which in this case coincide, given the identity readout:

𝑥0 = 𝗌𝗍 = 𝑦0 = ⟨0, 0⟩
𝑥1 = 𝑦1 = ⟨1, 0⟩,
𝑥2 = 𝑦2 = ⟨1, 1⟩,
𝑥3 = 𝑦3 = ⟨2, 1⟩,
𝑥4 = 𝑦4 = ⟨2, 0⟩,
𝑥5 = 𝑦5 = ⟨1, 0⟩,

An infinite sequence 𝑢0, 𝑢1, 𝑢2,… of elements of 𝐔 can be also thought as a
function 𝑢∶ ℕ → 𝐔 with 𝑢(0) = 𝑢0, 𝑢(1) = 𝑢1, 𝑢(2) = 𝑢2,… etc. To denote an
infinite sequence of elements of𝐔 we use the two notations𝐔ℕ and 𝖲𝗍𝗋𝖾𝖺𝗆𝐔:

𝖲𝗍𝗋𝖾𝖺𝗆𝐀 ∶= (ℕ→ 𝐀) = 𝐀ℕ. (5)

For a fixed Moore machine 𝑓, the recipe (4) defines a function 𝖺𝖼𝗍𝑓 which maps
any given sequence 𝑢 of elements of𝐔 to a corresponding sequence 𝑦 = 𝖺𝖼𝗍𝑓(𝑢)
of elements of 𝐘. In other words, from ⟨𝐔, 𝐘, 𝐗, dyn, ro, 𝗌𝗍⟩ and (4) we obtain

𝖺𝖼𝗍𝑓 ∶ 𝖲𝗍𝗋𝖾𝖺𝗆𝐔→ 𝖲𝗍𝗋𝖾𝖺𝗆𝐘. (6)

We think of this function 𝖺𝖼𝗍𝑓 as describing the external behavior of the Moore
machine 𝑓, because it encodes what is externally observable in terms of how the
Moore machine is used to relate inputs to outputs.

Composing Moore machines

Let us consider composing Moore machines serially by letting the output of
one machine be the input of the next. We’d like the result to again be a Moore
machine.
In other words, given Moore machines

𝑓 = ⟨𝐔𝑓 , 𝐗𝑓 , 𝐘𝑓 , dyn𝑓 , ro𝑓 , 𝗌𝗍𝑓⟩ (7)

and
𝑔 = ⟨𝐔𝑔, 𝐗𝑔, 𝐘𝑔, dyn𝑔, ro𝑔, 𝗌𝗍𝑔⟩, (8)
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with 𝐘𝑓 = 𝐔𝑔, we’d like to define their composition as a Moore machine

𝑓 # 𝑔 = ⟨𝐔𝑓#𝑔, 𝐗𝑓#𝑔, 𝐘𝑓#𝑔, dyn𝑓#𝑔, ro𝑓#𝑔, 𝗌𝗍𝑓#𝑔⟩. (9)

The situation is illustrated in Fig. 2.
Here is one way to do it: we set

𝐔𝑓#𝑔 ∶= 𝐔𝑓 ,
𝐗𝑓#𝑔 ∶= 𝐗𝑓 × 𝐗𝑔,
𝐘𝑓#𝑔 ∶= 𝐘𝑔,
𝗌𝗍𝑓#𝑔 ∶= ⟨𝗌𝗍𝑓 , 𝗌𝗍𝑔⟩,

(10)

we define the composite dynamics to be

dyn𝑓#𝑔 ∶ 𝐔𝑓 × (𝐗𝑓 × 𝐗𝑔) → (𝐗𝑓 × 𝐗𝑔),
⟨𝑢, ⟨𝑥𝑓 , 𝑥𝑔⟩⟩ ↦ ⟨dyn𝑓(𝑢, 𝑥𝑓), dyn𝑔(ro𝑓(𝑥𝑓), 𝑥𝑔)⟩,

(11)

and we define the composite readout to be

ro𝑓#𝑔 ∶ (𝐗𝑓 × 𝐗𝑔) → 𝐘𝑔,
⟨𝑥𝑓 , 𝑥𝑔⟩ ↦ ro𝑔(𝑥𝑔).

(12)

This formalization works very nicely – it models composition using the output of
one machine as the input of the next, and result of composition is again a Moore
machine.
However, there is one aspect which we wish were different: this composition
operation is not associative. It almost is, but not quite. We explain why below.
The reason we wish it were associative is that Moore machines would then form
a semicategory, and we could integrate them nicely into the mathematics we
have been developing thus far.
The culprit for associativity failing is the cartesian product that we use to define
the state space 𝐗𝑓 × 𝐗𝑔 of a composite Moore machine 𝑓 # 𝑔. Consider three
composable systems 𝑓, 𝑔, and ℎ. If we compose them in the two ways (𝑓 # 𝑔) # ℎ
and 𝑓 # (𝑔 # ℎ), then their respective state spaces are (𝐗𝑓 × 𝐗𝑔) × 𝐗ℎ and 𝐗𝑓 ×
(𝐗𝑔 × 𝐗ℎ). These sets are isomorphic, but they are not equal on the nose, and
hence also the Moore machines (𝑓 # 𝑔) # ℎ and 𝑓 # (𝑔 # ℎ) are very close to being
equal, but are not quite.
To see why

(𝐗𝑓 × 𝐗𝑔) × 𝐗ℎ ≠ 𝐗𝑓 × (𝐗𝑔 × 𝐗ℎ), (13)

recall that the elements of (𝐗𝑓 × 𝐗𝑔) × 𝐗ℎ are nested tuples of the form

⟨⟨𝑥𝑓 , 𝑥𝑔⟩, 𝑥ℎ⟩ (14)

while the elements of 𝐗𝑓 × (𝐗𝑔 × 𝐗ℎ) are nested tuples of the form

⟨𝑥𝑓 , ⟨𝑥𝑔, 𝑥ℎ⟩⟩. (15)

An isomorphism between the two sets is given by the following function

(𝐗𝑓 × 𝐗𝑔) × 𝐗ℎ → 𝐗𝑓 × (𝐗𝑔 × 𝐗ℎ)
⟨⟨𝑥𝑓 , 𝑥𝑔⟩, 𝑥ℎ⟩↦ ⟨𝑥𝑓 , ⟨𝑥𝑔, 𝑥ℎ⟩⟩

(16)

which simply re-brackets the tuples.
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In the next section we will introduce a technical construction for defining a
product similar to the cartesian product, but which is associative on the nose -
not just “up to an isomorphism”. This construction will allow us to make a new,
modified formalization of Mooremachines which form a bona fide semicategory,
and it will prove useful in other respects further down the road.
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18.2. The category ⦉ Set⦊
We will define a category ⦉ Set⦊ whose objects are “sets of tuples”.
Given sets 𝐀1,𝐀2,… ,𝐀𝑛, where 𝑛 ∈ ℕ, we define

⦉𝐀1,𝐀2, …,𝐀𝑛⦊ ∶= {⟨𝑥1, 𝑥2, …, 𝑥𝑛⟩ ∣ 𝑥1 ∈ 𝐀1, 𝑥2 ∈ 𝐀2, …, 𝑥𝑛 ∈ 𝐀𝑛}. (17)

So for example,

⦉ℤ, ℕ,ℝ⦊ = {⟨𝑥, 𝑦, 𝑧⟩ ∣ 𝑥 ∈ ℤ, 𝑦 ∈ ℕ, 𝑧 ∈ ℝ}. (18)

Note the case 𝑛 = 0, where
⦉⦊ = {⟨⟩} (19)

is a singleton set whose element is the empty tuple.
All the objects of ⦉ Set⦊ are in particular just sets, so we can package them into a
category whose morphisms are simply functions between such sets.

Definition 18.3 (⦉ Set⦊)
The category ⦉ Set⦊ is the category whose objects are those sets which are
of the form ⦉𝐀1,𝐀2, …,𝐀𝑛⦊, for any 𝑛 ∈ ℕ and any sets 𝐀1,𝐀2,… ,𝐀𝑛. Mor-
phisms in ⦉ Set⦊ are any functions between such sets, and the composition
operations and identities are the usual ones for functions.

From Set to ⦉ Set⦊

Observe that we can turn any set into an object of ⦉ Set⦊: given a set 𝐀, there is
the associated set

⦉𝐀⦊ = {⟨𝑥⟩ ∣ 𝑥 ∈ 𝐀} (20)

whose elements are precisely all the tuples of length onewhose entry is an element
of 𝐀. This defines a function

Ob Set → Ob⦉ Set⦊
𝐀↦ ⦉𝐀⦊

(21)

which one might call “bracket”.
Similarly, given a function 𝑓∶ 𝐀→ 𝐁 between sets, there is an associated func-
tion ⦉𝑓⦊∶ ⦉𝐀⦊→ ⦉𝐁⦊ given by

⦉𝑓⦊(⟨𝑥⟩) ∶= ⟨𝑓(𝑥)⟩. (22)

This defines a function

Hom Set(𝐀,𝐁)→ Hom⦉ Set⦊(⦉𝐀⦊, ⦉𝐁⦊) (23)

for any sets 𝐀 and 𝐁; one might also call it “bracket”.

Concatenation of tuples

Given tuples ⟨𝑥, 𝑦, 𝑧⟩ and ⟨𝑢, 𝑣⟩ we can stick them together to make the longer
tuple ⟨𝑥, 𝑦, 𝑧, 𝑢, 𝑣⟩, using the already defined concatenation of tuples.
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Multiplication in ⦉ Set⦊
We define a multiplication for objects of ⦉ Set⦊. The symbol #⦉ will denote this
multiplication in infix notation.
Given ⦉𝐀1, …,𝐀𝑚⦊ and ⦉𝐁1, …, 𝐁𝑛⦊ we define the operation

#⦉ ∶ Ob⦉ Set⦊ × Ob⦉ Set⦊ → Ob⦉ Set⦊ (24)

by
⦉𝐀1, …,𝐀𝑚⦊ #⦉ ⦉𝐁1, …, 𝐁𝑛⦊ ∶= ⦉𝐀1, …,𝐀𝑚, 𝐁1, …, 𝐁𝑛⦊ (25)

for any 𝑛,𝑚 ∈ ℕ.
The elements of ⦉𝐀1, …,𝐀𝑚⦊ #⦉ ⦉𝐁1, …, 𝐁𝑛⦊ are all possible concatenations of
elements of ⦉𝐀1, …,𝐀𝑚⦊ with elements of ⦉𝐁1, …, 𝐁𝑛⦊.
Equation (25) holds in particular also in the cases when𝑚 = 0 or 𝑛 = 0:

⦉ ⦊ #⦉ ⦉𝐁1, …, 𝐁𝑛⦊ = ⦉𝐁1, …, 𝐁𝑛⦊ (26)

and
⦉𝐀1, …,𝐀𝑚⦊ #⦉ ⦉ ⦊ = ⦉𝐀1, …,𝐀𝑚⦊. (27)

The multiplication of objects in ⦉ Set⦊ is associative (which was our goal with
making this construction). Indeed, both

(⦉𝐀1, …,𝐀𝑙⦊ #⦉ ⦉𝐁1, …, 𝐁𝑚⦊) #⦉ ⦉𝐂1, …, 𝐂𝑛⦊ (28)

and
⦉𝐀1, …,𝐀𝑙⦊ #⦉ (⦉𝐁1, …, 𝐁𝑚⦊ #⦉ ⦉𝐂1, …, 𝐂𝑛⦊) (29)

are equal to
⦉𝐀1, …,𝐀𝑙, 𝐁1, …, 𝐁𝑚, 𝐂1, …, 𝐂𝑛⦊. (30)

Remark 18.4. Note that, for any sets 𝐀,𝐁, we have

⦉𝐀, 𝐁⦊ = 𝐀 × 𝐁. (31)

In other words, the multiplication operation in ⦉ Set⦊ “coincides” with the carte-
sian product operation in the special case when we are multiplying two sets
together.
Because of this, the operation of cartesian product is well-defined for ⦉ Set⦊.
Namely, given tuples sets ⦉𝐀1, …,𝐀𝑙⦊ and ⦉𝐁1, …, 𝐁𝑚⦊, their cartesian product
is again a tuple set:

⦉𝐀1, …,𝐀𝑙⦊ × ⦉𝐁1, …, 𝐁𝑚⦊ = ⦉⦉𝐀1, …,𝐀𝑙⦊⦉𝐁1, …, 𝐁𝑚⦊⦊, (32)

(which is a “nested” tuple set).
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18.3. Moore machines, ⦉ Set⦊ version
We can now slightly rework the definition of Moore machines using morphisms
in ⦉ Set⦊ rather than Set.

Definition 18.5 (Moore machine, ⦉ Set⦊ version)
AMoore machine is a tuple

⟨𝐔, 𝐗, 𝐘, dyn, ro, 𝗌𝗍⟩, (33)

where𝐔, 𝐗, and 𝐘 are objects of ⦉ Set⦊,

dyn∶ 𝐔 #⦉ 𝐗→ 𝐗, (34)

and
ro∶ 𝐗→ 𝐘, (35)

are morphisms in ⦉ Set⦊ (so they are functions), and 𝗌𝗍 ∈ 𝐗.

Composition

Consider two Moore machines

𝑓 = ⟨𝐔𝑓 , 𝐗𝑓 , 𝐘𝑓 , dyn𝑓 , ro𝑓 , 𝗌𝗍𝑓⟩ (36)

𝑔 = ⟨𝐔𝑔, 𝐗𝑔, 𝐘𝑔, dyn𝑔, ro𝑔, 𝗌𝗍𝑔⟩, (37)

that are compatible for composition, in the sense that𝐘𝑓 = 𝐔𝑔. Their composition
is given by

𝑓 # 𝑔 = ⟨𝐔𝑓#𝑔, 𝐗𝑓#𝑔, 𝐘𝑓#𝑔, dyn𝑓#𝑔, ro𝑓#𝑔, 𝗌𝗍𝑓#𝑔⟩, (38)

where
𝐔𝑓#𝑔 ∶= 𝐔𝑓 ,
𝐗𝑓#𝑔 ∶= 𝐗𝑓 #⦉ 𝐗𝑔,
𝐘𝑓#𝑔 ∶= 𝐘𝑔,
𝗌𝗍𝑓#𝑔 ∶= 𝗌𝗍𝑓 #⟨ 𝗌𝗍𝑔,

(39)

and dyn𝑓#𝑔 and ro𝑓#𝑔 are defined as

dyn𝑓#𝑔 ∶ 𝐔𝑓 #⦉ 𝐗𝑓 #⦉ 𝐗𝑔 → 𝐗𝑓 #⦉ 𝐗𝑔,
𝑢 #⟨ 𝑥𝑓 #⟨ 𝑥𝑔 ↦ dyn𝑓(𝑢 #⟨ 𝑥𝑓) #⟨ dyn𝑔(ro𝑓(𝑥𝑓) #⟨ 𝑥𝑔),

(40)

and
ro𝑓#𝑔 ∶ 𝐗𝑓 #⦉ 𝐗𝑔 → 𝐘𝑔,

𝑥𝑓 #⟨ 𝑥𝑔 ↦ ro𝑔(𝑥𝑔).
(41)

Composition is associative

Let three composable Moore machines 𝑓, 𝑔, and ℎ be given. We check that each
of the six entries in the definition Def. 18.5 coincide for (𝑓 # 𝑔) #ℎ and 𝑓 # (𝑔 #ℎ).
Clearly,

𝐔(𝑓#𝑔)#ℎ = 𝐔𝑓 = 𝐔𝑓#(𝑔#ℎ) (42)

and
𝐘(𝑓#𝑔)#ℎ = 𝐘ℎ = 𝐘𝑓#(𝑔#ℎ). (43)
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Furthermore,

𝐗(𝑓#𝑔)#ℎ = (𝐗𝑓 #⦉ 𝐗𝑔) #⦉ 𝐗ℎ = 𝐗𝑓 #⦉ (𝐗𝑔 #⦉ 𝐗ℎ) = 𝐗𝑓#(𝑔#ℎ) (44)

since concatenation of lists is associative. Similarly,

𝗌𝗍(𝑓#𝑔)#ℎ = 𝗌𝗍𝑓#𝑔 #⟨ 𝗌𝗍ℎ
= (𝗌𝗍𝑓 #⟨ 𝗌𝗍𝑔) #⟨ 𝗌𝗍ℎ
= 𝗌𝗍𝑓 #⟨ (𝗌𝗍𝑔 #⟨ 𝗌𝗍ℎ)
= 𝗌𝗍𝑓 #⟨ 𝗌𝗍𝑔#ℎ
= 𝗌𝗍𝑓#(𝑔#ℎ).

(45)

Next we show that dyn(𝑓#𝑔)#ℎ = dyn𝑓#(𝑔#ℎ).

On the one hand,

dyn(𝑓#𝑔)#ℎ ∶ 𝐔𝑓 #⦉ 𝐗𝑓 #⦉ 𝐗𝑔 #⦉ 𝐗ℎ → 𝐗𝑓 #⦉ 𝐗𝑔 #⦉ 𝐗ℎ
𝑢 #⟨ 𝑥𝑓 #⟨ 𝑥𝑔 #⟨ 𝑥ℎ ↦ dyn𝑓#𝑔(𝑢 #⟨ 𝑥𝑓 #⟨ 𝑥𝑔) #⟨ dynℎ(ro𝑓#𝑔(𝑥𝑓 #⟨ 𝑥𝑔) #⟨ 𝑥ℎ)

= dyn𝑓(𝑢 #⟨ 𝑥𝑓) #⟨ dyn𝑔(ro𝑓(𝑥𝑓) #⟨ 𝑥𝑔) #⟨ dynℎ(ro𝑔(𝑥𝑔) #⟨ 𝑥ℎ),
(46)

while on the other hand

dyn𝑓#(𝑔#ℎ) ∶ 𝐔𝑓 #⦉ 𝐗𝑓 #⦉ 𝐗𝑔 #⦉ 𝐗ℎ → 𝐗𝑓 #⦉ 𝐗𝑔 #⦉ 𝐗ℎ
𝑢 #⟨ 𝑥𝑓 #⟨ 𝑥𝑔 #⟨ 𝑥ℎ ↦ dyn𝑓(𝑢 #⟨ 𝑥𝑓) #⟨ dyn𝑔#ℎ(ro𝑓(𝑥𝑓) #⟨ 𝑥𝑔 #⟨ 𝑥ℎ)

= dyn𝑓(𝑢 #⟨ 𝑥𝑓) #⟨ dyn𝑔(ro𝑓(𝑥𝑓) #⟨ 𝑥𝑔) #⟨ dynℎ(ro𝑔(𝑥𝑔) #⟨ 𝑥ℎ).
(47)

So, these two functions are indeed the same.
Finally, we verify that ro(𝑓#𝑔)#ℎ = ro𝑓#(𝑔#ℎ):

ro(𝑓#𝑔)#ℎ ∶ 𝐗𝑓 #⦉ 𝐗𝑔 #⦉ 𝐗ℎ → 𝐘ℎ
𝑥𝑓 #⟨ 𝑥𝑔 #⟨ 𝑥ℎ ↦ roℎ(𝑥ℎ)

(48)

while
ro𝑓#(𝑔#ℎ) ∶ 𝐗𝑓 #⦉ 𝐗𝑔 #⦉ 𝐗ℎ → 𝐘ℎ,

𝑥𝑓 #⟨ 𝑥𝑔 #⟨ 𝑥ℎ ↦ ro𝑔#ℎ(𝑥𝑔 #⟨ 𝑥ℎ) = roℎ(𝑥ℎ).
(49)

The semicategory of Moore machines
Now that we have shown that composition of Moore machines is associative
(with our new definition), we can organize Moore machines as a semicategory.

Definition 18.6 (Moo)
The semicategory of Moore machinesMoo is given by:
1. Objects: objects of ⦉ Set⦊.
2. Morphisms: Amorphism from𝐔 to 𝐘 is a Moore machine

⟨𝐔, 𝐗, 𝐘, dyn, ro, 𝗌𝗍⟩, (50)

where
⊳ 𝐔,𝐗,𝐘 are objects of ⦉ Set⦊;
⊳ dyn∶ 𝐔 #⦉ 𝐗→ 𝐗 and ro∶ 𝐗→ 𝐘 are morphisms in ⦉ Set⦊;
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⊳ 𝗌𝗍 ∈ 𝐗.
3. Composition: as defined above in this section.
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18.4. Standard action of Moore machines
Given a Moore machine 𝑓 = ⟨𝐔𝑓 , 𝐗𝑓 , 𝐘𝑓 , dyn𝑓 , ro𝑓 , 𝗌𝗍𝑓⟩ we saw that we can
use it to transform an infinite sequence of inputs 𝑢0, 𝑢1, 𝑢2,… into an infinite
sequence of outputs 𝑦0, 𝑦1, 𝑦2,… using the following recipe

{
𝑥𝑘+1 = dyn𝑓(𝑢𝑘 #⟨ 𝑥𝑘)
𝑦𝑘 = ro𝑓(𝑥𝑘).

(51)

Rephrased mathematically, this means that (51), together with 𝑓, defines a func-
tion

𝖺𝖼𝗍𝑓 ∶ 𝖲𝗍𝗋𝖾𝖺𝗆𝐔𝑓 → 𝖲𝗍𝗋𝖾𝖺𝗆𝐘𝑓 , (52)

which takes any sequence of elements of 𝐔𝑓 and maps it to a corresponding
sequence of elements of 𝐘𝑓 . We call this the standard action of 𝑓 on sequences.

Remark 18.7. One way to think about the function 𝖺𝖼𝗍𝑓 is to imagine it being
calculated in two steps.
1. Given a sequence 𝑢 = 𝑢0, 𝑢1, 𝑢2,…, there is a unique solution 𝑠 = 𝑠0, 𝑠1, 𝑠2,…

of the recursion 𝑥𝑘+1 = dyn𝑓(𝑢𝑘, 𝑥𝑘) with 𝑠0 = 𝗌𝗍𝑓 . (Clearly, this solution can
be computed iteratively.)

2. Given the solution 𝑠, the sequence 𝑦 = 𝖺𝖼𝗍𝑓(𝑢) is simply 𝑦 = 𝑠 # ro𝑓 .

Example 18.8. Consider a Moore machine 𝑓 with𝐔 = 𝐗 = 𝐘 = ⦉ℕ⦊ and let

dyn𝑓 ∶ 𝐔 #⦉ 𝐗 → 𝐗

⟨𝑚⟩ #⟨ ⟨𝑛⟩ ↦ ⟨𝑚 + 𝑛⟩
(53)

and
ro𝑓 ∶ 𝐗 → 𝐘

⟨𝑛⟩ ↦ ⟨𝑛 + 1⟩
(54)

and 𝗌𝗍 = ⟨0⟩.
Given a sequence of inputs of the form 𝑢 = ⟨1⟩, ⟨2⟩, ⟨3⟩, ⟨4⟩, ⟨5⟩,…, what are the
first five entries of the corresponding sequence of outputs?
To compute this, let us first calculate the first five entries of the sequence of
states 𝑠 = 𝑠0, 𝑠1, 𝑠2,… that solves (51). We have

𝑠0 = 𝗌𝗍 = ⟨0⟩, (55)
𝑠1 = ⟨1 + 0⟩ = ⟨1⟩, (56)
𝑠2 = ⟨2 + 1⟩ = ⟨3⟩, (57)
𝑠3 = ⟨3 + 3⟩ = ⟨6⟩, (58)
𝑠4 = ⟨4 + 6⟩ = ⟨10⟩. (59)

Now, applying ro𝑓 to the entries of this sequence of state, we obtain the first five
entries of the output sequence:

𝑦0 = ⟨0 + 1⟩ = ⟨1⟩, (60)
𝑦1 = ⟨1 + 1⟩ = ⟨2⟩, (61)
𝑦2 = ⟨3 + 1⟩ = ⟨4⟩, (62)
𝑦3 = ⟨6 + 1⟩ = ⟨7⟩, (63)
𝑦4 = ⟨10 + 1⟩ = ⟨11⟩. (64)
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Graded exercise F.1 (ComputingMooreActions)
Consider the Moore machine 𝑓 with𝐔 = 𝐗 = 𝐘 = ⦉ℤ⦊, 𝗌𝗍 = ⟨0⟩, and

dyn𝑓 ∶ 𝐔 #⦉ 𝐗 → 𝐗

⟨𝑚⟩ #⟨ ⟨𝑛⟩ ↦ ⟨𝑛 −𝑚⟩,
(65)

ro𝑓 ∶ 𝐗 → 𝐘
⟨𝑛⟩ ↦ ⟨𝑛 + 2⟩.

(66)

Given a stream𝑢 ∈ 𝖲𝗍𝗋𝖾𝖺𝗆𝐔 of inputs of the form𝑢 = ⟨1⟩, ⟨2⟩, ⟨3⟩, ⟨4⟩, ⟨5⟩,…,
compute the first five entries of the corresponding stream of outputs for the
following two actions:
1. The standard action defined via the recursion

{
𝑥𝑘+1 = dyn𝑓(𝑢𝑘 #⟨ 𝑥𝑘)
𝑦𝑘 = ro𝑓(𝑥𝑘)

(67)

with 𝑥0 = 𝗌𝗍.
2. The action defined via the recursion

⎧

⎨
⎩

𝑥𝑘+1 = dyn𝑓(𝑢𝑘 #⟨ 𝑥𝑘)
�̃�𝑘+1 = dyn𝑓(𝑢𝑘 #⟨ 𝑥𝑘+1)
𝑦𝑘 = ro𝑓(�̃�𝑘)

(68)

with 𝑥0 = 𝑥0 = 𝗌𝗍.

Compositionality
Proposition 18.9. The standard action of Moore machines on signal sequences
is compatible with Moore machine composition in the sense that

𝖺𝖼𝗍𝑓#𝑔 = 𝖺𝖼𝗍𝑓 # 𝖺𝖼𝗍𝑔 (69)

for any composable Moore machines 𝑓 and 𝑔.

Proof. Suppose we have Moore machines

𝑓 = ⟨𝐔𝑓 , 𝐗𝑓 , 𝐘𝑓 , dyn𝑓 , ro𝑓 , 𝗌𝗍𝑓⟩ (70)

and
𝑔 = ⟨𝐔𝑔, 𝐗𝑔, 𝐘𝑔, dyn𝑔, ro𝑔, 𝗌𝗍𝑔⟩, (71)

with 𝐘𝑓 = 𝐔𝑔.
We will first calculate the right-hand side of (69), following the procedure of
Remark 18.7.
Given a sequence 𝑢 ∈ 𝖲𝗍𝗋𝖾𝖺𝗆𝐔𝑓 , to calculate 𝖺𝖼𝗍𝑓(𝑢) we first map 𝑢 to the
unique solution 𝑟𝑢 ∈ 𝖲𝗍𝗋𝖾𝖺𝗆𝐗𝑓 of the recursion

𝑥𝑘+1 = dyn𝑓(𝑢𝑘, 𝑥𝑘) 𝑘 ∈ ℕ, (72)

such that 𝑟𝑢(0) = 𝗌𝗍𝑓 . Then 𝖺𝖼𝗍𝑓(𝑢) = 𝑟𝑢 # ro𝑓, an element of 𝖲𝗍𝗋𝖾𝖺𝗆𝐘𝑓 =
𝖲𝗍𝗋𝖾𝖺𝗆𝐔𝑔.
Next, to calculate (𝖺𝖼𝗍𝑓 # 𝖺𝖼𝗍𝑔)(𝑢), we first map 𝖺𝖼𝗍𝑓(𝑢) to the unique solu-
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tion 𝑠𝖺𝖼𝗍𝑓(𝑢) ∈ 𝖲𝗍𝗋𝖾𝖺𝗆𝐗𝑔 of the recursion

𝑥𝑘+1 = dyn𝑔(𝖺𝖼𝗍𝑓(𝑢𝑘, 𝑥𝑘) 𝑘 ∈ ℕ (73)

such that 𝑠𝖺𝖼𝗍𝑓(𝑢)(0) = 𝗌𝗍𝑔, and then we have

(𝖺𝖼𝗍𝑓 # 𝖺𝖼𝗍𝑔)(𝑢) = 𝑠𝖺𝖼𝗍𝑓(𝑢) # ro𝑔. (74)

We calculate the left-hand side of (69). Given 𝑢 ∈ 𝖲𝗍𝗋𝖾𝖺𝗆𝐔𝑓, we map it to
the unique solution 𝑞𝑢 ∈ 𝖲𝗍𝗋𝖾𝖺𝗆𝐗𝑓#𝑔 = 𝖲𝗍𝗋𝖾𝖺𝗆 (𝐗𝑓 #⦉ 𝐗𝑔) of the recursion

𝑥𝑘+1 = dyn𝑓#𝑔(𝑢𝑘, 𝑥𝑘) 𝑘 ∈ ℕ (75)

with 𝑞𝑢(0) = 𝗌𝗍𝑓 #⟨ 𝗌𝗍𝑔. Using the definition of dyn𝑓#𝑔 and the fact that we
can write any 𝑥𝑘 ∈ 𝐗𝑓 #⦉ 𝐗𝑔 as

𝑥𝑘 = 𝑥𝑘𝑓 #⟨ 𝑥𝑘𝑔 with 𝑥𝑘𝑓 ∈ 𝐗𝑓 , 𝑥𝑘𝑔 ∈ 𝐗𝑔, (76)

we can rewrite (75) as

𝑥𝑘+1𝑓 #⟨𝑥𝑘+1𝑔 = dyn𝑓(𝑢𝑘, 𝑥𝑘𝑓)#⟨dyn𝑔(ro𝑓(𝑥𝑘𝑓), 𝑥𝑘𝑔) 𝑘 ∈ ℕ. (77)

Now observe that the sequence 𝑟𝑢(𝑘) #⟨ 𝐒𝖺𝖼𝗍𝑓(𝑢)(𝑘) solves this recursion: by
definition 𝑟𝑢 solves the recursion

𝑥𝑘+1 = dyn𝑓(𝑢𝑘, 𝑥𝑘) 𝑘 ∈ ℕ, (78)

and, recalling that 𝖺𝖼𝗍𝑓(𝑢)𝑘 = ro𝑓(𝑟𝑢(𝑘)), we see that 𝑠𝖺𝖼𝗍𝑓(𝑢) solves the
recursion

𝑥𝑘+1 = dyn𝑔(ro𝑓(𝑟𝑢(𝑘)), 𝑥𝑘) 𝑘 ∈ ℕ. (79)

Since 𝑟𝑢(0) #⟨ 𝑠𝖺𝖼𝗍𝑓(𝑢)(0) = 𝗌𝗍𝑓 #⟨ 𝗌𝗍𝑔, this implies that the unique solution 𝑞𝑢
above is precisely 𝑞𝑢(𝑘) = 𝑟𝑢(𝑘) #⟨ 𝑠𝖺𝖼𝗍𝑓(𝑢)(𝑘).
Finally, we have

𝖺𝖼𝗍𝑓#𝑔(𝑢) = 𝑞𝑢 # ro𝑓#𝑔. (80)

Evaluating at any 𝑘 ∈ ℕ we find

(𝑞𝑢 # ro𝑓#𝑔)(𝑘) = ro𝑓#𝑔(𝑞𝑢(𝑘)) (81)
= ro𝑓#𝑔(𝑟𝑢(𝑘) #⟨ 𝑠𝖺𝖼𝗍𝑓(𝑢)(𝑘)) (82)

= ro𝑔(𝑠𝖺𝖼𝗍𝑓(𝑢)(𝑘)) (83)

= (𝑠𝖺𝖼𝗍𝑓(𝑢) # ro𝑔)(𝑘). (84)

Comparing with (74), we conclude that

𝖺𝖼𝗍𝑓#𝑔(𝑢) = (𝖺𝖼𝗍𝑓 # 𝖺𝖼𝗍𝑔)(𝑢). (85)
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18.5. Semicategory actions
In this section we generalize from actions of a semigroup to actions of a semi-
category, using the example of Moore machines acting on signal sequences.
To motivate our story, let us first consider Moore machines of the form

⟨𝐔, 𝐗,𝐔, dyn, ro, 𝗌𝗍⟩ (86)

where the input and output sets are equal. In other words, we are considering
the set HomMoo(𝐔;𝐔), which is a semigroup under morphism composition.
In Section 18.4we defined a standard actionwhich associates to everymorphism𝑓
∈ HomMoo(𝐔;𝐔) a function

𝖺𝖼𝗍𝑓 ∶ 𝖲𝗍𝗋𝖾𝖺𝗆𝐔→ 𝖲𝗍𝗋𝖾𝖺𝗆𝐔. (87)

This action defines a function

𝖺𝖼𝗍� ∶ HomMoo(𝐔;𝐔)→ 𝐄𝐧𝐝(𝖲𝗍𝗋𝖾𝖺𝗆𝐔) (88)

where
𝖺𝖼𝗍�(𝑓) = 𝖺𝖼𝗍𝑓 . (89)

And this function 𝖺𝖼𝗍� is in fact a semigroup morphism, and so a semigroup
action, since we proved in Prop. 18.9 that

𝖺𝖼𝗍𝑓#𝑔 = 𝖺𝖼𝗍𝑓 # 𝖺𝖼𝗍𝑔. (90)

(Compare with Def. 11.8 of semigroup action.)
Now consider the general situation of Moore machines acting on signals. Given
any Moore machine of the general form

𝑓 = ⟨𝐔, 𝐗, 𝐘, dyn, ro, 𝗌𝗍⟩ (91)

(the input and output spaces are no longer necessarily equal) we again have an
associated function on signals

𝖺𝖼𝗍𝑓 ∶ 𝖲𝗍𝗋𝖾𝖺𝗆𝐔→ 𝖲𝗍𝗋𝖾𝖺𝗆𝐘. (92)

We can assemble this data as a family of functions (all which we call 𝖺𝖼𝗍�)

𝖺𝖼𝗍� ∶ HomMoo(𝐔;𝐘)→ Hom Set(𝖲𝗍𝗋𝖾𝖺𝗆𝐔; 𝖲𝗍𝗋𝖾𝖺𝗆𝐘), (93)

where𝐔 and 𝐘 range over all objects ofMoo. Or, if you will,

𝖺𝖼𝗍� ∶ MorMoo → Mor Set. (94)

From Prop. 18.9 we have that this function is compatible with the composition
operations inMoo and Set:

𝖺𝖼𝗍�(𝑓 # 𝑔) = 𝖺𝖼𝗍�(𝑓) # 𝖺𝖼𝗍�(𝑔). (95)

Note that the sets 𝖲𝗍𝗋𝖾𝖺𝗆𝐔 and 𝖲𝗍𝗋𝖾𝖺𝗆𝐘 involved in the right-hand side of (93)
depend on the objects 𝐔 and 𝐘 on the left-hand side. We will encode this also
with a function

𝖺𝖼𝗍∙ ∶ ObMoo → Ob Set,
𝐔 ↦ 𝖲𝗍𝗋𝖾𝖺𝗆𝐔,

(96)
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Figure 3.

in which case (93) becomes

𝖺𝖼𝗍� ∶ HomMoo(𝐔;𝐘)→ Hom Set(𝖺𝖼𝗍∙𝐔; 𝖺𝖼𝗍∙𝐘). (97)

In summary, we have reformulated Moore machine actions as consisting of a
pair of functions

𝖺𝖼𝗍� ∶ MorMoo → Mor Set and 𝖺𝖼𝗍∙ ∶ ObMoo → Ob Set (98)

which work together as in (97) and such that 𝖺𝖼𝗍� is compatible with composition
as in (95).
Now we formalize this situation as a general definition.

Definition 18.10 (Semicategory action)
A semicategory action of a semicategory C is
Constituents
1. A map 𝖺𝖼𝗍∙ ∶ ObC → Ob Set;
2. For every two objects 𝑋,𝑌 ∈ ObC, a map

𝖺𝖼𝗍� ∶ HomC(𝑋;𝑌)→ Hom Set(𝖺𝖼𝗍∙(𝑋); 𝖺𝖼𝗍∙(𝑌)). (99)

Conditions

1. For all composable morphisms 𝑓 and 𝑔,

𝖺𝖼𝗍�(𝑓 # 𝑔) = 𝖺𝖼𝗍�(𝑓) # 𝖺𝖼𝗍�(𝑔). (100)

The compatibility of the action with composition is illustrated in Fig. 3.
For reference, let us also fix the following definition.

Definition 18.11 (Standard action of Moore machines)
The standard action of Moore machines on sequences is given by

𝖺𝖼𝗍∙ ∶ ObMoo → Ob Set,
𝐔 ↦ 𝖲𝗍𝗋𝖾𝖺𝗆𝐔,

(101)

on the level of objects, and on the level of morphisms, the functions

𝖺𝖼𝗍� ∶ HomMoo(𝐔;𝐘)→ Hom Set(𝖲𝗍𝗋𝖾𝖺𝗆𝐔; 𝖲𝗍𝗋𝖾𝖺𝗆𝐘) (102)

are defined via the recursion equations

{
𝑥𝑘+1 = dyn𝑓(𝑢𝑘 #⟨ 𝑥𝑘)
𝑦𝑘 = ro𝑓(𝑥𝑘)

(103)

as in Section 18.4.
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18.6. More machines
A Moore machine outputs 1 element at each step; what if a machine was able to
output more than one or zero output? We will call theseMoremachines.
We define their dynamics and readout to be of the form

{
dyn∶ 𝐔 #⦉ 𝐗→ 𝐗,
ro∶ 𝐗→ 𝖫𝗂𝗌𝗍𝐘,

(104)

where the output set is not just 𝐘 but 𝖫𝗂𝗌𝗍𝐘, the set of finite list of elements of 𝐘.
In other words, for a given state, the machine can produce zero or more outputs
in the form of a list.
We’ll specify More machines as a tuple ⟨𝐔, 𝐗, 𝐘, dyn, ro, 𝗌𝗍⟩, like we did for
Moore machines.

Composition

Given More machines 𝑓 = ⟨𝐔𝑓 , 𝐗𝑓 , 𝐘𝑓 , dyn𝑓 , ro𝑓 , 𝗌𝗍𝑓⟩ and 𝑔 = ⟨𝐔𝑔, 𝐗𝑔, 𝐘𝑔,
dyn𝑔, ro𝑔, 𝗌𝗍𝑔⟩ with 𝐘𝑓 = 𝐔𝑔, their composition is the More machine with

𝐔𝑓#𝑔 = 𝐔𝑓 ,
𝐗𝑓#𝑔 = 𝐗𝑓 #⦉ 𝐗𝑔,
𝗌𝗍𝑓#𝑔 = 𝗌𝗍𝑓 #⟨ 𝗌𝗍𝑔,
𝐘𝑓#𝑔 = 𝐘𝑔.

(105)

The dynamics of the composite 𝑓 # 𝑔 is

dyn𝑓#𝑔 ∶ 𝐔𝑓 #⦉ 𝐗𝑓 #⦉ 𝐗𝑔 → 𝐗𝑓 #⦉ 𝐗𝑔,
𝑢 #⟨ 𝑥𝑓 #⟨ 𝑥𝑔 ↦ dyn𝑓(𝑢 #⟨ 𝑥𝑓) #⟨ dyn𝑔(𝑦𝑓[𝑛] #⟨ dyn𝑔(𝑦𝑓[𝑛 − 1] #⟨ …dyn𝑔(𝑦𝑓[1] #⟨ 𝑥𝑔) …)).

(106)

where 𝑦𝑓 = ro𝑓(𝑥𝑓) ∈ 𝖫𝗂𝗌𝗍𝐘𝑓 and 𝑛 is its length.
The readout of 𝑓 # 𝑔 is

ro𝑓#𝑔 ∶ 𝐗𝑓 #⦉ 𝐗𝑔 → 𝖫𝗂𝗌𝗍𝐘𝑔,
𝑥𝑓 #⟨ 𝑥𝑔 ↦ ro𝑔(𝑥𝑔).

(107)

Definition 18.12 (Mor)
The semicategory of More machinesMor is given by:
1. Objects: objects of ⦉ Set⦊.
2. Morphisms: Amorphism is a tuple

𝑓 = ⟨𝐔𝑓 , 𝐗𝑓 , 𝐘𝑓 , dyn𝑓 , ro𝑓 , 𝗌𝗍𝑓⟩, (108)

where:
⊳ 𝐔𝑓 ,𝐗𝑓 ,𝐘𝑓 are objects of ⦉ Set⦊;
⊳ 𝗌𝗍𝑓 ∈ 𝐗𝑓;
⊳ dyn𝑓 ∶ 𝐔𝑓 #⦉ 𝐗𝑓 → 𝐗𝑓;
⊳ ro𝑓 ∶ 𝐗𝑓 → 𝖫𝗂𝗌𝗍𝐘𝑓 .

3. Composition of morphisms: Composition is given by (106) and (107).
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Examples
Example 18.13 (Duplicator). We consider an example of a More machine 𝑑
whichwe call a duplicator. Practically, this machine takes an input, and duplicates
it. The machine is written as

⟨𝐔𝑑, 𝐗𝑑, 𝐘𝑑, dyn𝑑, ro𝑑, 𝗌𝗍𝑑⟩, (109)

where𝐔𝑑 = 𝐗𝑑 = 𝐘𝑑, and

dyn𝑑 ∶ 𝐔𝑑 #⦉ 𝐗𝑑 → 𝐗𝑑,
𝑢 #⟨ 𝑥 ↦ 𝑢,

(110)

ro𝑑 ∶ 𝐗𝑑 → 𝖫𝗂𝗌𝗍𝐘𝑑,
𝑥 ↦ [𝑥, 𝑥]𝐘𝑑 ,

(111)

and 𝗌𝗍 = ⟨ ⟩ ∈ 𝐗𝑑.

Example 18.14 (Discarder). Here is an example of a More machine 𝑒 which we
call a discarder. Practically, this machine discards every other input. The machine
is written as:

⟨𝐔𝑒, 𝐗𝑒, 𝐘𝑒, dyn𝑒, ro𝑒, 𝗌𝗍𝑒⟩, (112)

where 𝐗𝑒 = ⦉{⊥, ⊤}⦊ #⦉ 𝐔𝑒, and

dyn𝑒 ∶ 𝐔𝑒 #⦉ ⦉{⊥, ⊤}⦊ #⦉ 𝐔𝑒 → ⦉{⊥, ⊤}⦊ #⦉ 𝐔𝑒

𝑢 #⟨ ⟨⊥⟩ #⟨ 𝑥 ↦ ⟨⊤⟩ #⟨ 𝑢
𝑢 #⟨ ⟨⊤⟩ #⟨ 𝑥 ↦ ⟨⊥⟩ #⟨ 𝑢,

(113)

ro𝑒 ∶ ⦉{⊥, ⊤}⦊ #⦉ 𝐔𝑒 → 𝖫𝗂𝗌𝗍𝐘𝑒
⟨⊥⟩ #⟨ 𝑥 ↦ [ ]𝐘𝑒
⟨⊤⟩ #⟨ 𝑥 ↦ [𝑥]𝐘𝑒

(114)

and 𝗌𝗍𝑒 = ⟨⊥⟩ #⟨ ⟨𝑥⟩ ∈ 𝐗𝑒, for an arbitrary 𝑥 ∈ 𝐔𝑒.

Example 18.15 (Terminator). We describe a More machine 𝑡 which we call a
terminator. Practically, this machine terminates any input, outputting an empty
list. The machine is written as

⟨𝐔𝑡, 𝐗𝑡, 𝐘𝑡, dyn𝑡, ro𝑡, 𝗌𝗍𝑡⟩, (115)

where:
dyn𝑡 ∶ 𝐔𝑡 #⦉ 𝐗𝑡 → 𝐗𝑡,

𝑢 #⟨ 𝑥 ↦ 𝑥,
(116)

ro𝑡 ∶ 𝐗𝑡 → 𝖫𝗂𝗌𝗍𝐘𝑡,
𝐗𝑡 ↦ [ ]𝐘𝑡 ,

(117)

and 𝗌𝗍𝑡 ∈ 𝐗𝑡 can be any element.

Something incorrect or unclear or missing? Report issues on GitHub by clicking here.

https://github.com/ACT4E/ACT4E/issues/new?labels=chap:processes;body=Chapter:%20(Semi)Category actions%0ASection:%20 More machines%0AVersion:%202024-12-09%0A%0ACheck%20all%20that%20apply:%0A-%20(%20)%20Something%20incorrect%0A-%20(%20)%20Something%20not%20clear%0A-%20(%20)%20Something%20missing%0A%0APlease%20describe%20more%20in%20detail%20below.%20Feel%20free%20to%20change%20the%20title%20to%20something%20more%20informative.%0A;title=(Semi)Category actions%20/%20 More machines%20/%202024-12-09


270 18. (Semi)Category actions

18.7. LTI systems
Definition 18.16 (LTI System)
A linear time-invariant dynamical (LTI) system, in a so-called state-space rep-
resentation, is specified by real vector spaces𝐔 = ℝ𝑙 (input space), 𝐘 = ℝ𝑚

(output space), and 𝐗 = ℝ𝑛 (state space), along with a system of equations
of the form

�̇�(𝑡) = 𝐀𝐱(𝑡) + 𝐁𝐮(𝑡) (118)
𝐲(𝑡) = 𝐂𝐱(𝑡) +𝐃𝐮(𝑡), (119)

and an initial state 𝗌𝗍 ∈ 𝐗, where 𝑡 ∈ ℝ≥0, 𝐮(𝑡) ∈ 𝐔, 𝐲(𝑡) ∈ 𝐘, 𝐱(𝑡) ∈ 𝐗,
and where 𝐀, 𝐁, 𝐂, 𝐃 are real matrices of appropriate dimension.

Remark 18.17. Def. 18.16 includes the particular case of matrices with 0 dimen-
sion. For instance, in a system with 𝐔 = ℝ𝑙 and 𝐘 = ℝ𝑚, we could have 𝐀 ∈
ℝ0×0 (in other words, no state). This would imply 𝐁 ∈ ℝ0×𝑙, 𝐂 ∈ ℝ𝑚×0, and 𝐃
∈ ℝ𝑚×𝑙. Matrices with zero rows and/or zero columns multiply exactly as other
matrices. For instance, the multiplication of a ℝ0×0 matrix with a ℝ0×𝑙 matrix,
will return a ℝ0×𝑙 matrix.

We compactly refer to an LTI system by writing it as a tuple ⟨𝗌𝗍,𝐀, 𝐁, 𝐂,𝐃⟩.
The equations (118) describe the dynamics. The equations (119) describe the
output, or, one might say, the variables that are “exposed” or externally visible.
The matrix 𝐃 is called the feedthrough term.

Definition 18.18 (Proper LTI System)
We will call an LTI system ⟨𝗌𝗍,𝐀, 𝐁, 𝐂,𝐃⟩ proper if the matrix 𝐃 is the zero
matrix (understood as having the appropriate dimensions).

Remark 18.19. When using state-space LTI systems as models, it is typical that
the equations (118) are chosen using physical laws and first principles reasoning,
while the matrices 𝐂 and𝐃 in (119) are rather chosen based on what information
from our model is explicitly relevant or accessible.

Example 18.20. Consider a mass𝑚 lying on a frictionless surface, and attached
to two springs as depicted in Example 18.20.

𝑀
𝑘1 𝑘2

𝐹
𝑞1

The coordinate 𝑞(𝑡) describes position of the mass along one horizontal dimen-
sion, 𝐹 denotes a force that is applied to𝑚 in that horizontal direction, and 𝑘1
and 𝑘2 are the spring constants of the respective springs.
The dynamics of the position coordinate 𝑞 as a function of time is described by
the differential equation

(𝑘1 + 𝑘2)𝑞 +𝑚𝑞 = 𝐹. (120)
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We may rewrite this as a proper LTI system in a state-space representation by
choosing the state-variable to be

𝐱 = [𝑞(𝑡)�̇�(𝑡)] . (121)

Then

�̇� = [
0 1

−(𝑘1+𝑘2)
𝑚

0] 𝐱(𝑡) + [01]𝐹 (122)

describes the dynamics, and as output we might choose

𝐲 =
[
1 0

]
𝐱(𝑡) +

[
0
]
𝐹. (123)

Equivalent LTI systems

Definition 18.21 (Equivalence of LTI systems)
Two systems ⟨𝗌𝗍𝑓 ,𝐀𝑓 , 𝐁𝑓 , 𝐂𝑓 ,𝐃𝑓⟩ and ⟨𝗌𝗍𝑔,𝐀𝑔, 𝐁𝑔, 𝐂𝑔,𝐃𝑔⟩ are equivalent if
and only if there exists an invertible linear transformation 𝐱𝑔(𝑡) = 𝐓𝐱𝑓(𝑡)
such that

𝐀𝑔 = 𝐓𝐀𝑓𝐓−1, 𝐁𝑔 = 𝐓𝐁𝑓 , 𝐂𝑔 = 𝐂𝑓𝐓−1, 𝐃𝑔 = 𝐃𝑓 , 𝗌𝗍𝑔 = 𝐓𝗌𝗍𝑓 . (124)

𝐓 is called an equivalence transformation.

We think of equivalent LTI-systems as different ways of specifying what is essen-
tially “the same system”. What is different in each specification is only different
by a change of coordinates.

Category of LTI systems
We define a category of LTI systems LTI.

Definition 18.22 (Category LTI)
The category LTI of LTI systems is defined by:
1. Objects: natural numbers.
2. Morphisms: A morphism in LTI from 𝑙 ∈ ℕ to 𝑚 ∈ ℕ is a continuous

time LTI system ⟨𝗌𝗍,𝐀, 𝐁, 𝐂,𝐃⟩ such that 𝑙 is the dimension of the input
space, and𝑚 the dimension of the output space.

3. Composition: Given morphisms 𝑓∶ 𝑎 → 𝑏 and 𝑔∶ 𝑏 → 𝑐, described by
the LTI systems

⟨𝗌𝗍𝑓 ,𝐀𝑓 , 𝐁𝑓 , 𝐂𝑓 ,𝐃𝑓⟩
⟨𝗌𝗍𝑔,𝐀𝑔, 𝐁𝑔, 𝐂𝑔,𝐃𝑔⟩,

(125)

their composition (𝑓 #𝑔)∶ 𝑎 → 𝑐 is the LTI system ⟨𝗌𝗍,𝐀, 𝐁, 𝐂,𝐃⟩, where

𝗌𝗍 = [𝗌𝗍𝑓𝗌𝗍𝑔
] , 𝐀 = [ 𝐀𝑓 𝟎

𝐁𝑔𝐂𝑓 𝐀𝑔
] , 𝐁 = [ 𝐁𝑓

𝐁𝑔𝐃𝑓
] ,

𝐂 =
[
𝐃𝑔𝐂𝑓 𝐂𝑔

]
, 𝐃 = 𝐃𝑔𝐃𝑓 .

(126)

4. Identities: the identity for 𝑙 ∈ ℕ is the system
⟨
𝟎0×1, 𝟎0×0, 𝟎0×𝑙, 𝟎𝑚×0, 𝟎𝑚×𝑙

⟩
.

Remark 18.23. Again, all of this works withmatrices with zero rows and/or zero
columns. Let’s see practically how via a simple instance. Consider the system
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𝑓∶ 𝑎 → 𝑏 given by ⟨𝗌𝗍𝑓 ,𝐀𝑓 , 𝐁𝑓 , 𝐂𝑓 ,𝐃𝑓⟩ and the system 𝑔∶ 𝑏 → 𝑐 given by
⟨𝟎0×1, 𝟎0×0, 𝟎0×𝑏, 𝟎𝑐×0, 𝟎𝑐×𝑏⟩. Their composition 𝑓 # 𝑔∶ 𝑎 → 𝑐 is a system ⟨𝗌𝗍,𝐀,
𝐁, 𝐂,𝐃⟩ with:

𝗌𝗍 = [ 𝗌𝗍𝑓𝟎0×1] = 𝗌𝗍𝑓 .

How could we write the above equation? 𝗌𝗍𝑓 has 𝑠 rows and 1 column, and 𝟎0×1
has 0 rows and 1 column (it has to have 1 column for us to be able to write the
above block matrix), allowing us to write the expression as 𝗌𝗍𝑓 . We can now write:

𝐀 = [ 𝐀𝑓 𝟎𝑠×0
𝟎0×𝑏𝐂𝑓 𝟎0×0] = [ 𝐀𝑓 𝟎𝑠×0

𝟎0×𝑠 𝟎0×0] = [ 𝐀𝑓
𝟎0×𝑠] = 𝐀𝑓 ,

The above equality teaches us how to manipulate matrices with zero rows and/or
zero columns. First, since𝐂𝑓 has 𝑏 rows and 𝑠 columns, themultiplication𝟎0×𝑏𝐂𝑓
is well defined and gives the zero matrix with 0 rows and 𝑠 columns. Once we re-
alize this, we see that we end up with a matrix made of four blockmatrices. Given
their zero rows/columns, one can then simplify as shown. Similar arguments can
be made for the other matrices resulting from the composition.

Exercise40. Prove that LTI is indeed a category.
See solution on page 303.

Example 18.24. Consider the LTI for the spring-mass system fromExample 18.20,
and define the LTI

�̇�(𝑡) = 𝑝(𝑡) + 𝐶𝑞(𝑡)
𝐰(𝑡) = 𝑝(𝑡),

taking as input the output produced by the spring-mass system (the position of
the mass along the horizontal dimension) and transforms it by a factor 𝐶. We can
compose the two systems, obtaining the system ⟨𝗌𝗍,𝐀, 𝐁, 𝐂⟩ with

𝐀 =
⎡
⎢
⎢
⎣

0 1 0
− 𝑘1+𝑘2

𝑚
0 0

𝐶 0 1

⎤
⎥
⎥
⎦

, 𝐁 =
⎡
⎢
⎣

0
1
0

⎤
⎥
⎦
, 𝐂 =

[
0 0 1

]
.

This can be visualized more intuitively with the explicit composed dynamics:

⎡
⎢
⎣

�̇�(𝑡)
𝑞(𝑡)
�̇�(𝑡)

⎤
⎥
⎦
=
⎡
⎢
⎢
⎣

0 1 0
− 𝑘1+𝑘2

𝑚
0 0

𝐶 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎣

𝑞(𝑡)
�̇�(𝑡)
𝑝(𝑡)

⎤
⎥
⎦
+
⎡
⎢
⎣

0
1
0

⎤
⎥
⎦
𝐹

𝑤(𝑡) =
[
0 0 1

] ⎡
⎢
⎣

𝑞(𝑡)
�̇�(𝑡)
𝑝(𝑡)

⎤
⎥
⎦

Given an input force, we will get a transformed horizontal position as an output.

Standard action of LTI systems

Definition 18.25 (Category action)
A category action of a category C is
Constituents
1. A map 𝖺𝖼𝗍∙ ∶ ObC → Ob Set;
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2. For every two objects 𝑋,𝑌 ∈ ObC, a map

𝖺𝖼𝗍� ∶ HomC(𝑋;𝑌)→ Hom Set(𝖺𝖼𝗍∙(𝑋); 𝖺𝖼𝗍∙(𝑌)). (127)

Conditions

1. For all composable morphisms 𝑓 and 𝑔,

𝖺𝖼𝗍�(𝑓 # 𝑔) = 𝖺𝖼𝗍�(𝑓) # 𝖺𝖼𝗍�(𝑔). (128)

2. For all objects 𝑋 ∈ ObC,

𝖺𝖼𝗍�(id𝑋) = id𝖺𝖼𝗍∙(𝑋) (129)

Definition 18.26 (LTI standard action)
We define a standard action of LTI via:
⊳ Amap

𝖺𝖼𝗍∙ ∶ Ob LTI → Ob Set,
𝑛 ↦ 𝐶1(ℝ≥0,ℝ

𝑛).
(130)

⊳ Amap

𝖺𝖼𝗍� ∶ Hom LTI(𝑚;𝑛)→ Hom Set
(
𝐶1(ℝ≥0,ℝ

𝑚);𝐶1(ℝ≥0,ℝ
𝑛)
)

(131)

where 𝖺𝖼𝗍� takes an LTI system 𝑓∶ 𝑚 → 𝑛 given by

⟨𝗌𝗍𝑓 ,𝐀𝑓 , 𝐁𝑓 , 𝐂𝑓 ,𝐃𝑓⟩, (132)

and returns the function

𝖺𝖼𝗍�(𝑓)∶ 𝐶1(ℝ≥0,ℝ
𝑚) → 𝐶1(ℝ≥0,ℝ

𝑛),
𝐮(𝑡) ↦ 𝐂𝑓𝐬𝑓(𝑡) +𝐃𝑓𝐮(𝑡),

(133)

where 𝐬𝑓 is the unique solution of the initial value problem

{
�̇�(𝑡) = 𝐀𝑓𝐱(𝑡) + 𝐁𝑓𝐮(𝑡)
𝐱(0) = 𝗌𝗍𝑓 .

(134)

Remark 18.27. The initial value problem

{
�̇�(𝑡) = 𝐀𝐱(𝑡) + 𝐁𝐮(𝑡)
𝐱(0) = 𝗌𝗍

(135)

is a system of linear first-order non-homogenous differential equations. It does
not have constant coefficients, because the inhomogenous term 𝐁𝑓𝐮(𝑡) is not
constant (it depends on the independent variable 𝑡).
The theorem of Picard-Lindelöf guarantees that initial value problems of the form
(135) always have a unique solution. There is general formula for the solution 𝐬
of (135), namely

𝐬(𝑡) = 𝑒𝐀𝑡𝗌𝗍 + ∫
𝑡

0
𝑒𝐀(𝑡−𝜏)𝐁𝐮(𝑠)𝑑𝜏. (136)

Lemma 18.28. Def. 18.26 indeed defines a category action.
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Proof. We need to prove that

𝖺𝖼𝗍�(𝑓 # LTI 𝑔) = 𝖺𝖼𝗍�(𝑓) # Set 𝖺𝖼𝗍�(𝑔). (137)

Consider 𝑓∶ 𝑚 → 𝑛 and 𝑔∶ 𝑛 → 𝑜. We first look at the map

𝖺𝖼𝗍�(𝑓 # LTI 𝑔)∶ 𝐶1(ℝ≥0,ℝ
𝑚) → 𝐶1(ℝ≥0,ℝ

𝑜),
𝐮(𝑡) ↦ 𝐂𝑓#𝑔𝐬𝑓#𝑔(𝑡) +𝐃𝑓#𝑔𝐮(𝑡),

(138)

where 𝐬𝑓#𝑔 is the unique solution of the initial value problem

�̇�(𝑡) = 𝐀𝑓#𝑔𝐱(𝑡) + 𝐁𝑓#𝑔𝐮(𝑡),
𝐱(0) = 𝗌𝗍𝑓#𝑔,

(139)

and
𝐂𝑓#𝑔 =

[
𝐃𝑔𝐂𝑓 𝐂𝑔

]
, 𝐃 = 𝐃𝑔𝐃𝑓 . (140)

From the definition of composition of LTI systems (Def. 18.22), we know
that we can expand (139) into

�̇�(𝑡) = [�̇�𝑓(𝑡)�̇�𝑔(𝑡)
] = [ 𝐀𝑓 𝟎

𝐁𝑔𝐂𝑓 𝐀𝑔
] [𝐱𝑓(𝑡)𝐱𝑔(𝑡)

] + [ 𝐁𝑓
𝐁𝑔𝐃𝑓

]𝐮(𝑡)

𝗌𝗍 = [𝗌𝗍𝑓𝗌𝗍𝑔
] .

(141)

By instead looking at 𝖺𝖼𝗍�(𝑓) we have

𝖺𝖼𝗍�(𝑓)∶ 𝐶1(ℝ≥0,ℝ
𝑚) → 𝐶1(ℝ≥0,ℝ

𝑛),
𝐮 ↦ 𝐂𝑓𝐬𝑓 +𝐃𝑓𝐮,

(142)

where 𝐬𝑓 is the unique solution of the initial value problem

�̇�(𝑡) = 𝐀𝑓𝐱(𝑡) + 𝐁𝑓𝐮(𝑡),
𝐱(0) = 𝗌𝗍𝑓 ,

(143)

and by looking at 𝖺𝖼𝗍�(𝑔) we have

𝖺𝖼𝗍�(𝑔)∶ 𝐶1(ℝ≥0,ℝ
𝑛) → 𝐶1(ℝ≥0,ℝ

𝑜),
𝐮 ↦ 𝐂𝑔𝐬𝑔 +𝐃𝑔𝐮,

(144)

where 𝐬𝑔 is the unique solution of the initial value problem

�̇�(𝑡) = 𝐀𝑔𝐱(𝑡) + 𝐁𝑔𝐮(𝑡),
𝐱(0) = 𝗌𝗍𝑔.

(145)

Clearly, considering 𝖺𝖼𝗍�(𝑓) # 𝖺𝖼𝗍�(𝑔) is equivalent to considering 𝐮𝑔 =
𝖺𝖼𝗍�(𝑓)(𝐮𝑓). By substitution into (144) we obtain

𝖺𝖼𝗍�(𝑓) # 𝖺𝖼𝗍�(𝑔)∶ 𝐶1(ℝ≥0,ℝ
𝑚) → 𝐶1(ℝ≥0,ℝ

𝑜),

𝐮 ↦
[
𝐃𝑔𝐂𝑓 𝐂𝑔

]
[𝐬𝑓𝐬𝑔

] +𝐃𝑔𝐃𝑓𝐮,
(146)

proving the statement.

Lemma 18.29. Two equivalent systems have the same standard LTI action.
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Proof. Consider two equivalent LTI systems

⟨𝗌𝗍𝑓 ,𝐀𝑓 , 𝐁𝑓 , 𝐂𝑓 ,𝐃𝑓⟩, ⟨𝗌𝗍𝑔,𝐀𝑔, 𝐁𝑔, 𝐂𝑔,𝐃𝑔⟩. (147)

The initial value problem ⟨𝗌𝗍𝑓 ,𝐀𝑓 , 𝐁𝑓 , 𝐂𝑓 ,𝐃𝑓⟩ poses reads:

�̇�(𝑡) = 𝐀𝑓𝐱(𝑡) + 𝐁𝑓𝐮(𝑡),
𝐱(0) = 𝗌𝗍𝑓 .

(148)

Let 𝐬(𝑡) be the solution of (148). Consider the equivalence transformation 𝐫(𝑡)
= 𝐓𝐬(𝑡). Then, we have

�̇�(𝑡) = 𝐓�̇�(𝑡)
= 𝐓𝐀𝑓𝐬(𝑡) + 𝐓𝐁𝑓𝐮(𝑡)
= 𝐓𝐀𝑓𝐓−1𝐫(𝑡) + 𝐓𝐁𝑓𝐮(𝑡)
= 𝐀𝑔𝐫(𝑡) + 𝐁𝑔𝐮(𝑡),

(149)

and 𝗌𝗍𝑔 = 𝐓𝗌𝗍𝑓 . Therefore, the action of the system ⟨𝗌𝗍𝑔,𝐀𝑔, 𝐁𝑔, 𝐂𝑔,𝐃𝑔⟩ is:

𝖺𝖼𝗍�(𝑔)(𝐮(𝑡)) = 𝐂𝑔𝐫(𝑡) +𝐃𝑔𝐮(𝑡)
= 𝐂𝑓𝐓−1𝐓𝐬 +𝐃𝑓𝐮(𝑡)
= 𝐂𝑓𝐬(𝑡) +𝐃𝑓𝐮(𝑡)
= 𝖺𝖼𝗍�(𝑓)(𝐮(𝑡)).

(150)

Remark 18.30. Two LTI systems with the same LTI category action are not
necessarily equivalent.

Proof. For a simple counterexample, consider the LTI system

�̇�(𝑡) = [1 0
0 1] 𝐱(𝑡) + [10]𝐮(𝑡)

𝐲(𝑡) =
[
1 0

]
𝐱(𝑡) + 𝐮(𝑡).

(151)

The LTI category action of this system will be the same as the one of any
system

�̇�(𝑡) = [1 0
0 𝛼] 𝐱(𝑡) + [10]𝐮(𝑡)

𝐲(𝑡) =
[
1 0

]
𝐱(𝑡) + 𝐮(𝑡),

(152)

where𝛼 ∈ ℝ, because the output𝐲 generation does not care about the second
component of 𝐱. However, there is no linear, invertible transformation which
relates these systems. We note that control theory has developed tools to deal
with hidden parts of the dynamics. Examples are the notion of controllability
(ability of an actuator/input to control all states of a system) and observability
(ability to estimate all states of the system).
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278 19. Translation

19.1. Layers of abstraction
We can think of a given category C as a “compositional world”: inside C we have
objects,morphisms between them, and away to talk about composingmorphisms.
Now we will zoom out a level, and consider different categories – different worlds
– simultaneously, and how to relate them to each other.
The most basic notion of how to “map” one category to another is given by the
concept of a functor.
Just like a morphism

𝑓∶ 𝑋 → 𝑌 (1)

is an arrow between objects in a category, a functor

𝐹∶ C→ D (2)

is an arrow between two categories. In fact, we will see in the next chapters that
functors are morphisms in a category of categories.
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19.2. Semifunctors 279

19.2. Semifunctors
Definition 19.1 (Semifunctor)
Given semicategories C and D, a semifunctor 𝐹∶ C→ D from C to D is:
Constituents

1. A function
𝐹∙ ∶ ObC → ObD. (3)

2. For every pair of objects 𝑋,𝑌 ∈ ObC, a function

𝐹� ∶ HomC(𝑋;𝑌)→ HomD(𝐹∙(𝑋);𝐹∙(𝑌)). (4)

Conditions

1. The function 𝐹� is compatible with the composition operations in the
source and target category, respectively:

𝑓∶ 𝑋 →C 𝑌 𝑔∶ 𝑌 →C 𝑍 .
𝐹�(𝑓 #C 𝑔) = 𝐹�(𝑓) #D 𝐹�(𝑔) (5)

This situation is depicted graphically in Fig. 1a. It is common to overload the
notation and use 𝐹 to denote not only the whole functor, both also both of it’s
constituent functions 𝐹∙ and 𝐹�. The diagram with this overloaded “synthetic
notation” is in Fig. 1b.

𝑌

𝑋 𝑍

𝐹∙(𝑌)

𝐹∙(𝑋) 𝐹∙(𝑍)

𝐹�(𝑓) 𝐹�(𝑔)

𝐹�(𝑓 # 𝑔)

𝑓 𝑔

𝑓 # 𝑔

𝐹

C

D
(a) Functor diagram

𝑌

𝑋 𝑍

𝐹(𝑌)

𝐹(𝑋) 𝐹(𝑍)

𝐹(𝑓) 𝐹(𝑔)

𝐹(𝑓 # 𝑔)

𝑓 𝑔

𝑓 # 𝑔

𝐹

C

D
(b) Synthetic notation

Figure 1.: Commuting diagrams for semifunctors, with verbose notation (left) and synthetic notation (right).
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19.3. Functors
For categories,we have the stronger concept of functor. Categories have identities,
and functors are required to preserve the identities.

Definition 19.2 (Functor)
A functor from category C to a category D is a semifunctor 𝐹∶ C→ D that
satisfies the condition

𝐹�(id𝑋) = id𝐹∙(𝑋) (6)

for all objects 𝑋 in C.

Example 19.3 (Powerset functor). We define a functor 𝐹∶ Set→ Set which
maps each set to its power set. In other words, 𝐹∙(𝐀) = 𝖯𝗈𝗐𝐀 for any set 𝐀. On
the level of morphisms, given a function 𝑓∶ 𝐀→ 𝐁, we define

𝐹�(𝑓)∶ 𝖯𝗈𝗐𝐀→ 𝖯𝗈𝗐𝐁
𝐂↦ {𝑓(𝑐) ∣ 𝑐 ∈ 𝐂}.

(7)

Here is a concrete illustration. Consider the two sets 𝐀 = { , , } and 𝐁 =
{ , , }. Applying the functor to 𝐀 gives

𝐹∙(𝐀) = {∅, { }, { }, { }, { , }, { , }, { , }, { , , }} (8)

and applying it to 𝐁 gives

𝐹∙(𝐁) = {∅, { }, { }, { }, { , }, { , }, { , }, { , , }}. (9)

Furthermore, consider the map

𝑓∶ 𝐀→ 𝐁,
↦ ,
↦ ,
↦ .

(10)

This would for instance give 𝐹�(𝑓)({ , }) = {𝑓( ), 𝑓( )} = { , }.
Now let us check that 𝐹 so-defined really is a functor.
First let us check that it is compatiblewith composition. Consider functions𝑓∶ 𝐀→
𝐁, 𝑔∶ 𝐁→ 𝐂. On the one hand we have

𝐹(𝑓 # 𝑔)(𝐂) = {𝑔(𝑓(𝑐)) ∣ 𝑐 ∈ 𝐂}, (11)

and on the other hand

(𝐹(𝑓) # 𝐹(𝑔))(𝐂) = 𝐹(𝑔)({𝑓(𝑐) ∣ 𝑐 ∈ 𝐂})
= {𝑔(𝑑) ∣ 𝑑 ∈ {𝑓(𝑐) ∣ 𝑐 ∈ 𝐂}}
= {𝑔(𝑓(𝑐)) ∣ 𝑐 ∈ 𝐂}.

(12)

Second, let us check that 𝐹 is compatible with identity morphisms. We have

𝐹(id𝐀)(𝐂) = {id𝐀(𝑐) ∣ 𝑐 ∈ 𝐂}
= id𝐹(𝐂).

(13)

Example 19.4. There is a functor

𝖫𝗂𝗌𝗍∶ Set→ Mon (14)
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from the category of sets to the category of monoids, defined as follows.
Given a set 𝐀, the functor returns a specific monoid

𝖫𝗂𝗌𝗍(𝐀) ∶= ⟨𝖫𝗂𝗌𝗍𝐀, [ ]𝐀, #[⟩. (15)

Given a map 𝑓∶ 𝐀→ 𝐁, we have

𝖫𝗂𝗌𝗍(𝑓)∶ 𝖫𝗂𝗌𝗍𝐀 → 𝖫𝗂𝗌𝗍𝐁,
[⋯, 𝑎𝑖 ,⋯] ↦ [⋯, 𝑓(𝑎𝑖),⋯],

(16)

which applies 𝑓 entry-wise in the list. The empty list in 𝖫𝗂𝗌𝗍𝐀 is mapped to the
empty list in 𝖫𝗂𝗌𝗍𝐁. 𝖫𝗂𝗌𝗍 is a functor, because identity functions in Set aremapped
to the corresponding identity morphisms on lists, and

𝖫𝗂𝗌𝗍(𝑓 # 𝑔)([⋯, 𝑎𝑖 ,⋯]) = [⋯, (𝑓 # 𝑔)(𝑎𝑖),⋯]
= [⋯, 𝑔(𝑓(𝑎𝑖)),⋯]
= 𝖫𝗂𝗌𝗍(𝑔)([⋯, 𝑓(𝑎𝑖),⋯])
= (𝖫𝗂𝗌𝗍(𝑓) # 𝖫𝗂𝗌𝗍(𝑔))([⋯, 𝑎𝑖 ,⋯]).

(17)

Graded exercise F.2 (DifferentiationFunctor)
Consider the categoryEuc∗ from GradedExercise E.3 , aswell as the category
Vectℝ of real vector spaces studied in Graded Exercise E.2 . In this exercise
we will define a functor 𝐹∶ Euc∗ → Vectℝ corresponding to differentiation
and it is your task to check that it is in fact a functor.
𝐹 on objects: 𝐹∙(

⟨
ℝ𝑛, 𝑥

⟩
) = ℝ𝑛.

𝐹 on morphisms: given a morphism 𝑓∶
⟨
ℝ𝑛, 𝑥

⟩
→

⟨
ℝ𝑚, 𝑦

⟩
in Euc∗, the

linear map 𝐹�(𝑓) is the derivative

𝐷𝑓|𝑥 ∶ ℝ
𝑛 → ℝ𝑚, (18)

which is typically represented by the Jacobian matrix.
The intuition for the on-objects part of this functor is that

⟨
ℝ𝑛, 𝑥

⟩
is mapped

to the tangent space of “vectors starting at 𝑥”, which is isomorphic to ℝ𝑛.
On the level of morphisms, the differential of a function 𝑓 at 𝑥 maps vectors
starting at 𝑥 to vectors starting at 𝑓(𝑥).

Graded exercise F.3 (FixedPointFunctor)
We will propose a functor 𝐹∶ EndSet → Set from the category EndSet
defined in Graded Exercise E.4 to the category of sets and functions. Your
task is to check if this is a functor.
On objects: given an object ⟨𝐀, 𝜑⟩ of EndSet, we define 𝐹∙(⟨𝐀, 𝜑⟩) = Fix(𝜑),
where

Fix(𝜑) = {𝑥 ∈ 𝐀 ∣ 𝜑(𝑥) = 𝑥} (19)

is the set of fixed points of 𝜑.
On morphisms: given a morphism 𝑓∶ ⟨𝐀, 𝜑⟩→ EndSet⟨𝐁, 𝜓⟩ of EndSet, we
define

𝐹�(𝑓) = 𝑓|Fix(𝜑). (20)

In other words, we restrict 𝑓 to the subset Fix(𝜑) ⊆ 𝐀.

A functor from a category to itself is called an endofunctor. The simplest example
of an endofunctor is the identity functor.
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Identity functor

Definition 19.5 (Identity (semi)functor)
For any (semi)category C, we can define the identity (semi)functor

idC ∶ C→ C, (21)

which maps each object to itself and each morphism to itself.

Exercise41. Check that the identity functor is a functor.
See solution on page 303.

Functors generalize monoid morphisms.
We have seen that monoids can be viewed as categories, where the elements of a
monoid play the role ofmorphisms. From this point of view, a functor corresponds
to a morphism of monoids.

Functors generalize monotone maps.
Recall that a single poset 𝐏 = ⟨𝐏, ⪯𝐏⟩ can be viewed as a category C(𝐏), in which
each element of the poset is an object, and there is a morphism between two
objects 𝑥 and 𝑦 if and only if 𝑥 ⪯𝐏 𝑦 (Def. 14.16).

Lemma 19.6. A monotone map between posets 𝐏,𝐐 is the same thing as a
functor between the “posetal categories” C(𝐏) and C(𝐐).

Proof. We start by specifying the functor 𝐹 and two posetal categories C(𝐏)
and C(𝐐). We first specify the action of 𝐹 on objects (elements of a poset
considered as objects of the posetal category) and on morphisms (order
relations considered as morphisms of the posetal category). A monotone
function maps each element of a poset 𝑥 ∈ 𝐏 to 𝐹(𝑥) ∈ 𝐐, and it guarantees
that for every 𝑥, 𝑦 ∈ 𝐏, if 𝑥 ⪯𝐏 𝑦 then 𝐹(𝑥) ⪯𝐐 𝐹(𝑦). We now need to check
the two conditions that a functor must satisfy. First, consider the identity
morphism for 𝑥 ∈ 𝐏, namely 𝑥 ⪯𝐏 𝑥. The application of themap 𝐹 results in
the condition 𝐹(𝑥) ⪯𝐐 𝐹(𝑥), which is the identity morphism on 𝐐. Second,
morphisms 𝑥 ⪯𝐏 𝑦 and 𝑦 ⪯𝐏 𝑧 in 𝐏, by applying the map 𝐹 to the morphism
composition 𝑥 ⪯𝐏 𝑧 we obtain 𝐹(𝑥) ⪯𝐐 𝐹(𝑧), which is the same as the
composition of 𝐹(𝑥) ⪯𝐐 𝐹(𝑦) and 𝐹(𝑦) ⪯𝐐 𝐹(𝑧).

Functors generalize semicategory actions
Semi-functors are a generalization of the various semigroup morphisms that we
saw in the previous chapter.
In particular, they are a generalization of semicategory actions (Def. 18.10),
which we can re-define as follows.

Definition 19.7 (Semicategory actions, redefined)
A semicategory action of C is a semifunctor 𝐹∶ C→ Set.
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19.4. More examples of functors
Example 19.8 (Equivalence Classes). Consider the category EquivRel from
Def. 14.11. We define a functor

𝐹∶ EquivRel→ Set (22)

as follows.
Given an object ⟨𝐀, ∼𝐀⟩ of EquivRel (that is, a set equipped with an equivalence
relation), we define 𝐹∙(⟨𝐀, ∼𝐀⟩) = 𝐀∕∼𝐀 to be the quotient of 𝐀 by ∼𝐀.
Recall that 𝐀∕∼𝐀 is the set of equivalence classes of ∼𝐀. Its elements are the
subsets of 𝐀 which form the partition of 𝐀 induced by ∼𝐀. Each such subset is
the set of all elements of𝐀which are mutually equivalent to each other according
to ∼𝐀. For any element 𝑥 ∈ 𝐀, the equivalence class it belongs to is denoted [𝑥]
and in this case 𝑥 is called a representative of the equivalence class [𝑥].
To define 𝐹�, let 𝑓∶ ⟨𝐀, ∼𝐀⟩→ ⟨𝐁, ∼𝐁⟩ be a morphism in EquivRel. We let

𝐹�(𝑓)∶ 𝐀∕∼𝐀 → Set𝐁∕∼𝐁 , [𝑥]↦ [𝑓(𝑥)]. (23)

It may be readily checked that this function is well-defined, irrespective of the
(arbitrary) choice of element 𝑥 used to represent a given equivalence class [𝑥].

Exercise42. Prove that the functor defined in Example 19.8 is in fact a functor.
See solution on page 304.

Example 19.9 (Double dual). Let Vectℝ be the category whose objects are all
real vector spaces and whose morphisms are ℝ-linear maps. Composition is the
usual composition of linear maps.
There is an endofunctor 𝐹∶ Vectℝ → Vectℝ whose action on objects is

𝐹(𝑉) = 𝑉∗∗. (24)

(Recall that 𝑉∗∗ = {linear maps 𝑉∗ → ℝ} = Hom Vectℝ(𝑉
∗;ℝ)). The action of 𝐹

on morphisms is as follows. Given a linear map 𝑓∶ 𝑉 →𝑊, we can write

𝐹(𝑓)∶ 𝑉∗∗ →𝑊∗∗,
𝜉 ↦ [𝑙 ↦ 𝜉(𝑓 # 𝑙)].

(25)

Graded exercise F.4 (DoubleDualFunctor)
Prove that 𝐹 as defined in Example 19.9 is in fact a functor.

Example 19.10. Let G be a group. We’ve seen that we can view G as a category
with just a single object (denote that object by ⋆) and where the morphisms are
the elements of𝐆 (with composition given by the group’s composition operation).
We claim that specifying a functor G→ Set is “the same thing” as specifying a
set 𝐀 together with a (covariant) action of G on 𝐀.

Exercise43. Prove the claim made in Example 19.10.
See solution on page 304.

Graded exercise F.5 (MultiplicationWithASet)
Let 𝐒 be a fixed set. We define a functor𝐹∶ Set→ Setwhich acts on objects
by

𝐹∙(𝐀) = 𝐀 × 𝐒 (26)
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𝐴 𝑉
𝑡

𝑠

Figure 2.

and on morphisms by
𝐹�(𝑓) = 𝑓 × id𝐒. (27)

Prove that this is indeed a functor.

Graded exercise F.6 (ExponentiationWithASet)
Let 𝐒 be a fixed set. We can define a functor 𝐹∶ Set→ Set which acts on
objects by

𝐹∙(𝐀) = 𝐀𝐒. (28)

(Recall that 𝐀𝐒 denotes the set of functions from 𝐒 to 𝐀.) For the action on
morphisms, suppose we have a function 𝐹∶ 𝐀→ 𝐁. Then

𝐹�(𝑓)∶ 𝐀𝐒 → 𝐁𝐒,
𝜑 ↦ 𝜑 # 𝑓.

(29)

Prove that this does really define a functor.

Graded exercise F.7 (GraphsViaFunctors)
Consider the following category, which has two objects, 𝑉 and 𝐴, and four
morphisms: besides the identity morphisms, there are two morphisms, 𝑠
and 𝑡, from 𝐴 to 𝑉. See Fig. 2. Call this category G.
Can you explain the following statement? “Specifying a functor G→ Set is
the “same thing” as specifying a directed graph”.

Graded exercise F.8 (UpperSetsViaFunctors)
Recall that Bool denotes the category with two objects, ⊤ and ⊥, and with
precisely one non-identity morphism which goes from ⊥ to ⊤. Let 𝐏 be a
poset. View it as a category P, and let 𝐹∶ P→ Bool be a functor. In other
words, 𝐹 = 𝐹∙ is a monotone function. Prove that the set

𝐒 ∶= {𝑝 ∈ 𝐏 ∣ 𝐹(𝑝) = ⊤} ⊆ 𝐏 (30)

is an upper set.

Graded exercise F.9 (CartProdAsFunctor)
Recall that, given categories C and D, we can form the product category
C ×D. In this exercise we will use this construction in a situation where we
consider the product of the category Set with itself.
Your task in this exercise is to show that there is a functor 𝐹∶ Set × Set→
Set which is defined by the operation of “taking the cartesian product of
sets and functions”.
Concretely, given any two sets 𝐀, 𝐁, let

𝐹∙(⟨𝐀, 𝐁⟩) ∶= 𝐀 × 𝐁

(this defines 𝐹 on the level of objects) and given any two functions 𝑓∶ 𝐀→
𝐂, 𝑔∶ 𝐁→ 𝐃, let

𝐹�(⟨𝑓, 𝑔⟩) ∶= 𝑓 × 𝑔

(this defines 𝐹 on the level of morphisms).
To show that𝐹 is in fact a functor, check the two conditions in the defintion of
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a functor, namely that 𝐹 is compatible with composition and with identities.

Graded exercise F.10 (ProbabilityFunctor)
In this exercise we will define a functor 𝐹∶ Set→ Set and your task is to
check that it is in fact a functor.
𝐹 on objects: for any set 𝐀 we define 𝐹∙(𝐀) to be the set of finitely supported
probability measures on 𝐀. These are functions 𝑝∶ 𝐀 → [0, 1] with only
finitely-many non-zero values and such that these sum to 1:

∑

𝑥∈𝐀
𝑝(𝑥) = 1. (31)

𝐹 on morphisms: for any function 𝑓∶ 𝐀→ 𝐁, the function 𝐹�(𝑓)∶ 𝐹∙(𝐀)→
𝐹∙(𝐁) is defined by

𝐹�(𝑓)(𝑝)∶ 𝐁 → [0, 1],
𝑦 ↦

∑

𝑥∈𝑓−1(𝑦)

𝑝(𝑥). (32)

The following is a helpful visualization. We may think of finitely-supported
probability measures on 𝐀 as “finite normalized histograms over the el-
ements of 𝐀”, and the functor 𝐹 moves the columns of a histogram on 𝐀
“along” 𝑓 to make a histogram on 𝐁, stacking columns on top of each other
whenever they end up over the same element. (Credit: this nice description
is taken from Paolo Perrone’s Notes on category theory.)

Example 19.11. Let C be any category. There is a functor

𝐹∶ Cop × C→ Set (33)

defined on objects by
𝐹∙(⟨𝑋, 𝑌⟩) = HomC(𝑋,𝑌). (34)

To see how 𝐹 is defined on morphisms, let 𝑓op ∶ 𝑈 →Cop 𝑋 and 𝑔∶ 𝑌 →C 𝑍
be morphisms in Cop and C, respectively, and recall that 𝑓op ∶ 𝑈 →Cop 𝑋 is, by
definition, a morphism 𝑓∶ 𝑋 →C 𝑈. We define 𝐹�(

⟨
𝑓op, 𝑔

⟩
) to be the function

𝐹�(
⟨
𝑓op, 𝑔

⟩
)∶ HomC(𝑋,𝑌) → HomC(𝑈,𝑍),

𝜑 ↦ 𝑓 # 𝜑 # 𝑔.
(35)

Graded exercise F.11 (HomFunctor)
Prove that the hom-functor defined in Example 19.11 is in fact a functor.

Planning as the search for a functor

Example 19.12. Recall the category Berg introduced in Section 15.2 and define
a category Plans where objects are activities and morphisms describe activities
order constraints, illustrated in Fig. 3 (left).
For instance, there is a morphism from “mountain lodge” to “panoramic lake”,
which describes the plan of going from the lodge area to the lake area. We call
such morphisms plans. Plans can be composed via concatenation. For instance,
given a plan to go from “mountain lodge” to “panoramic lake”, and a plan to go
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from “panoramic lake” to “peak”, their composition is the plan of going from
“mountain lodge” to the “peak”, passing through the “panoramic lake”.
When we talk about “planning” in this context, we refer to the action of finding
a functor 𝐹 from Plans to Berg. The objects of Berg are tuples ⟨𝑝, 𝑣⟩, where 𝑝
represent coordinates of a specific location and 𝑣 ∈ ℝ3 represents velocities.
Morphisms inBerg are paths that connect locations. For the sake of our planning,
we can identify areas of the mountain as sets of locations. Such areas are, for
instance, the “mountain lodge”, “panoramic lake”, and the “peak” (note that the
“peak” represents an area corresponding to a single location). Given some plans
as in Fig. 3 (left), we want to find a map 𝑃 which maps each object in Plans
(activity) to an object of Berg (specific location and velocity). Similarly, it must
map each morphism in Plans (activity order constraints) to a morphism in Berg
(specific paths). This is illustrated in Fig. 3.

touch the sky

take lake pictures

rest

ℎ

𝑔

𝑓

mountain lodge

peakpeak

lakelake

𝐹�

𝐹∙

Plans Berg

Figure 3.: Planning functor.
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19.5. Categorical Databases
In this section we look at how a relational database can be modeled using the
notion of functors. This view of databases is due to Spivak [27, 28].
To model a database, we need to model two things:
1. The schema of the database is its structure. This includes which tables are

present, what fields are included in each table, and what constraints there are
among tables.

2. The data that resides in the database.
Spivak’s idea is that categories can be used for modeling the schema, not the data.
The data can be modeled as a functor.
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Oftentimes, two categories are in a special relation: one is a special-
ization of the other. There are two interesting situations.
First, a category can be a subcategory of another if it contains a subset
of the objects and morphisms of the other, in such a way that it is
closed to composition.
Second, there is a generalization called embedding: objects and mor-
phisms are different, but we can find a functor that “draws” the first
category in the second.

The Pontifical Swiss Guard is an armed forces that protects the Pope and the Apostolic Palace, serving as the militrary of Vatican City. Rectruits to the guards
must be Catholic, single males with Swiss citizenship, who have completed basic training with the Swiss Armed Forces.
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20.1. Subcategories
Definition 20.1 (Subcategory)
A sub(semi)category D of a (semi)category C is a category for which:
1. All the objects in ObD are in ObC;
2. For any two objects 𝑋,𝑌 ∈ ObD, the morphisms of D between them are

a subset of the morphisms of C:

HomD(𝑋;𝑌) ⊆ HomC(𝑋;𝑌); (1)

3. If 𝑓∶ 𝑋 → 𝑌 and 𝑔∶ 𝑌 → 𝑍 in D, then the composite 𝑓 # 𝑔 in C is in D
and represents the composite in D.

4. (Categories) If 𝑋 ∈ ObD, then the identity id𝑋 in HomC(𝑋;𝑋) is also
in HomD(𝑋;𝑋) and acts as its identity morphism.

Subcategories of Rel and Set
Two important examples of subcategory are the following.

Example 20.2 ( FinSet). FinSet is the category of finite sets and all functions
between them. It is a subcategory of the category Set of sets and functions. While
an object𝑋 ∈ Ob Set is a set with arbitrary cardinality,Ob FinSet only includes sets
which have finitelymany elements. Objects of FinSet are in Set, but the converse
is not true. Furthermore, given 𝑋,𝑌 ∈ Ob FinSet, we take Hom FinSet(𝑋;𝑌) =
Hom Set(𝑋;𝑌).

Example 20.3 ( Set and Rel). The category Set is a subcategory of Rel. To
show this, we need to prove the conditions presented in Def. 20.1.
1. In both Rel and Set, the collection of objects is all sets.
2. Given 𝑋,𝑌 ∈ Ob Set, we know that Hom Set(𝑋;𝑌) ⊆ Hom Rel(𝑋;𝑌), since

all functions between sets 𝑋,𝑌 are a particular subset of all relations be-
tween 𝑋,𝑌.

3. Let 𝑅 ⊆ 𝑋 × 𝑌 and 𝑆 ⊆ 𝑌 × 𝑍 be relations which are functions. We need to
show that their composition in Rel, expressed as 𝑅 # 𝑆 ⊆ 𝑋 × 𝑍, is again a
function. This was proven in Lemma 4.8.

4. For each 𝑋 ∈ Ob Set, the identity relation id𝑋 = {⟨𝑥, 𝑥′⟩ ∈ 𝑋 × 𝑋 ∣ 𝑥 = 𝑥′}
corresponds to the identity function id𝑋 ∶ 𝑋 → 𝑋 in Set.
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20.2. Subcategories of endomorphisms
Definition 20.4 (Drawings)
There exists a category Draw in which:
1. An object in 𝛼 ∈ ObDraw is a black-and-white drawing, that is a func-

tion 𝛼∶ ℝ2 → Bool.
2. A morphism in HomDraw(𝛼; 𝛽) between two drawings 𝛼 and 𝛽 is an

invertible map 𝑓∶ ℝ2 → ℝ2 such that 𝛼(𝑥) = 𝛽(𝑓(𝑥)).
3. The identity function at any object 𝛼 is the identity map on ℝ2.
4. Composition is given by function composition.

Exercise44. Check whether just considering
⊳ affine invertible transformations, or
⊳ rototranslations, or
⊳ scalings, or
⊳ translations, or
⊳ rotations,
as morphisms forms a subcategory of Draw.

See solution on page 304.
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20.3. Other examples of subcategories in
engineering

In engineering, it is very common to look at specific types of functions; in many
cases, the properties of a certain type of function are preserved by function com-
position, and so they form a category.

InjSet is a subcategory of Set

Example 20.5. We can define a category InjSet that has the same objects as
Set but restricts the morphisms to be injective functions (Def. 3.16). We want to
show that InjSet is a subcategory of Set. Composition and identity morphisms
are defined as in Set.
Since Ob InjSet = Ob Set, the first condition of Def. 20.1 is satisfied. Injective
functions are a particular type of functions: this satisfies the second condition.
Given 𝑋 ∈ Ob InjSet, the identity morphism id𝑋 ∈ Hom Set(𝑋;𝑋) corresponds
to the identity morphism in Hom InjSet(𝑋;𝑋): the identity function is injective.
This proves the fourth condition. To check the third condition, consider two mor-
phisms 𝑓 ∈ Hom Set(𝑋;𝑌), 𝑔 ∈ Hom Set(𝑌;𝑍) such that 𝑓 ∈ Hom InjSet(𝑋;𝑌)
and 𝑔 ∈ Hom InjSet(𝑌;𝑍). From the injectivity of 𝑓, 𝑔, we know that given 𝑥, 𝑥′
∈ 𝑋,

𝑓(𝑥) = 𝑓(𝑥′)
,

𝑥 = 𝑥′ (2)

and 𝑦, 𝑦′ ∈ 𝑋,
𝑔(𝑦) = 𝑔(𝑦′)

.
𝑦 = 𝑦′ (3)

Furthermore, we have:

(𝑓 # 𝑔)(𝑥) = (𝑓 # 𝑔)(𝑥′)
,

𝑓(𝑥) = 𝑓(𝑥′)

𝑥 = 𝑥′ (4)

which proves the third condition of Def. 20.1: the composition of injective func-
tions is injective.
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20.4. Subcategories of Berg
Recall the category Berg presented in Section 15.2. In the following, we want to
give both a positive and a negative example of subcategories related to Berg.
We start our discussion by introducing a limited version of Berg, called Berg𝛼,
which only considers paths (morphisms) in Berg, whose steepness does not
exceed the critical value 𝛼 ∈ [0, 1]. Is Berg𝛼 a subcategory of Berg? We check
the different conditions:
1. The constraint on the maximum steepness restricts the objects which are

acceptable in Berg𝛼 via the identity morphisms of Berg. Indeed, recall that
given an object ⟨𝑝, 𝑣⟩ ∈ ObBerg, the identity morphism is defined as 1⟨𝑝, 𝑣⟩ =
⟨𝛾, 0⟩, with 𝛾(0) = 𝑝 and �̇�(0) = 𝑣. The steepness is computed via 𝑣. In
particular, Berg𝛼 will only contain objects whose identity morphisms do not
exceed the steepness constraint, In other words ObBerg𝛼 ⊆ ObBerg.

2. For 𝑋,𝑌 ∈ ObBergAma, we know that paths satisfying the steepness constraint
are specific paths in Berg: HomBerg𝛼 ⊆ HomBerg.

3. Given two morphisms 𝑓, 𝑔 which can be composed in Berg𝛼, the maximum
steepness of their composition 𝑓 # 𝑔 is given by:

𝖬𝖺𝗑𝖲𝗍𝖾𝖾𝗉(𝑓 # 𝑔) = max {𝖬𝖺𝗑𝖲𝗍𝖾𝖾𝗉(𝑓),𝖬𝖺𝗑𝖲𝗍𝖾𝖾𝗉(𝑔)} < 𝛼. (5)

4. The identity morphisms in Berg which satisfy the steepness constraint are,
by definition, in Berg𝛼 and they act as identities there.

This shows that Berg𝛼 is a subcategory of Berg.
What would an example of non-subcategory of Berg be? We could try defining
a new category BergLazy, which now discriminates morphisms based on the
lengths of the paths they represent. For instance, assume that as amateur hikers,
we don’t want to consider morphisms which are more than 1 km long. By con-
catenating two paths (morphisms) of length 0.6 km in BergLazy, the resulting
composition will be 1.2 km, violating the posed constraint and hence not being
in BergLazy. This violates the third property of Def. 20.1.
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21.1 Specification verses behavior . . 296To write...

Raclette is a Swiss dish, based on heating cheese and scraping off the melted part. In Switzerland, raclette is typically served with potatoes, cornichons,
pickled onions, and Fendant wine.
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21.1. Specification verses behavior
Systems

In the following discussion we will often use the word “system”. This term here is
not a precise one; however, it is often a way of saying something like “engineering-
flavored morphism” or “system component" or “dynamical system”, but without
necessarily getting precise about which kind of things we are exactly referring to
or which (semi)categories might be involved.
Wewill think of a system as something that has input and output ports withwhich
it can interact with other systems (or its broader environment), and that a system
in some way establishes a relationship between input and output signals. This
relationship might be a deterministic, causal relationship – inputs determining
outputs – or it might be another form of lawfulness.
A typical notation to depict a system diagrammatically is to draw it as a box, with
externally extended wires indicating the input and output ports. We will usually
orient such diagrams horizontally, and assume that the left-hand wires indicate
input ports, and right-hand wires indicate output ports.

Composing systems

We assume that our concept of system is compositional: systems can be connected
together to build larger, composite systems.
An illustrative example of systems are Moore machines, which we discussed in
some length in Chapter 18. Given a Moore machine

⟨𝐔, 𝐗, 𝐘, dyn, ro, 𝗌𝗍⟩ (1)

with an input set𝐔 and an output𝐘. When the output set of onemachinematches
the input set of another, we have already seen how to compose Moore machines
in series such that the result is again a Moore machine.

System specification vs. system behavior

We will make a distinction between ways of specifying a system, and ways of
describing how a system might behave.
To see what we mean, consider the example of Moore machines. A way to specify
a Moore machine, according to our Def. 18.5, is to specify a tuple of the form
(1).
On the other hand, we saw that Moore machines can act on sequences or lists
of signals in various ways. We think of these actions as encoding “behaviors”
that a Moore machine can exhibit. The idea is that an action encodes a way
that a Moore machine “does something” – how it relates input signals to output
signals.
Strictly speaking, we will think of just the specific relation between inputs and
outputs as a behavior, and an action is a way of associating specified machines to
specified behaviors.
For example, given a machine

𝑓∶ 𝐔→ 𝐘 (2)

specified by (1), the standard action Def. 18.11 associates to it a behavior

𝖺𝖼𝗍(𝑓)∶ 𝖲𝗍𝗋𝖾𝖺𝗆𝐔→ 𝖲𝗍𝗋𝖾𝖺𝗆𝐘. (3)
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We can study specifications of machines and possible behaviors of machines each
in their own right, and we can study ways that specifications and behaviors can
be connected.
In Section 18.7 below on LTI systems, we will see an example of how a single
system might be specified in different ways.
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In this section we “zoom out” one level and describe how functors
are morphisms in a category of categories.

Hiking and climbing are favourite sport activites in Switzerland. On average, each Swiss spends 60 hours a year hiking on trails. Notably, hikes can last
multiple days: often, hikers stop for the night in one of the 152 Alps huts, offering over 9,200 bed spaces for guests.
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22.1. Functor composition
Definition 22.1 (Functor composition)
Consider categories A,B,C and functors 𝐹∶ A→ B, 𝐺∶ B→ C. Functor
composition is given by 𝐹 # 𝐺∶ A→ C, where:
⊳ Given 𝑋 ∈ ObA, we have

(𝐹∙ # 𝐺∙)(𝑋) ∶= 𝐺∙(𝐹∙(𝑋)). (1)

⊳ Given 𝑓 ∈ HomA(𝑋;𝑌), we have

(𝐹� # 𝐺�)(𝑓) ∶= 𝐺�(𝐹�(𝑓)). (2)

Lemma 22.2. The composition of functors is a functor.

Exercise45. Prove Lemma 22.2.
See solution on page 305.
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22.2. A category of categories
Given the existence of an identity functor and the ability of functors to com-
pose, we can define a category of categories Cat. In order to avoid set-theoretic
technicalities, we restrict our attention to so-called “small” categories: these are
categories whose collection of objects form a set (and not a proper class).

Definition 22.3 (Category of small categories)
There is a category, called Cat, which is constituted of
⊳ Objects: small categories;
⊳ Morphisms: functors;
⊳ Identity morphisms: identity functors;
⊳ Composition: composition of functors.

Graded exercise F.12 (CatProductCategorical)
Prove that the product category C ×D of two small categories “is” the cate-
gorical product of C and D within the category of small categories.
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22.3. Products and sums of functors
Definition 22.4 (Product of two functors)
Given functors 𝐹∶ A→ B and 𝐺∶ C→ D, their product is the functor

𝐹 × 𝐺∶ A × C→ B ×D

defined on objects by

(𝐹 × 𝐺)(⟨𝑋, 𝑌⟩) = ⟨𝐹∙(𝑋), 𝐺∙(𝑌)⟩ (3)

and on morphisms by

(𝐹 × 𝐺)(⟨𝑓, 𝑔⟩) =
⟨
𝐹�(𝑓), 𝐺�(𝑔)

⟩
. (4)

Definition 22.5 (Sum of two functors)
Given functors 𝐹∶ A→ B and 𝐺∶ C→ D, their sum is the functor

𝐹 + 𝐺∶ A+ C→ B + D

defined on objects by

(𝐹 + 𝐺)(⟨1, 𝑋⟩) = ⟨1, 𝐹∙(𝑋)⟩,
(𝐹 + 𝐺)(⟨2, 𝑌⟩) = ⟨2, 𝐺∙(𝑌)⟩,

(5)

and on morphisms by

(𝐹 + 𝐺)(⟨1, 𝑓⟩) =
⟨
1, 𝐹�(𝑓)

⟩
,

(𝐹 + 𝐺)(⟨2, 𝑔⟩) =
⟨
2, 𝐺�(𝑔)

⟩
.

(6)
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Solutions to selected exercises
Solution of Exercise 40. We start with associativity. Considermorphism 𝑓∶ 𝑙 →
𝑚 given by ⟨𝗌𝗍𝑓 ,𝐀𝑓 , 𝐁𝑓 , 𝐂𝑓 ,𝐃𝑓⟩, and 𝑔∶ 𝑚 → 𝑛 given by ⟨𝗌𝗍𝑔,𝐀𝑔, 𝐁𝑔, 𝐂𝑔,𝐃𝑔⟩,
and ℎ∶ 𝑛 → 𝑜 given by ⟨𝗌𝗍ℎ,𝐀ℎ, 𝐁ℎ, 𝐂ℎ,𝐃ℎ⟩. The morphism 𝑓 # 𝑔 is described
by the LTI

⟨𝗌𝗍𝑓,𝑔,𝐀𝑓,𝑔, 𝐁𝑓,𝑔, 𝐂𝑓,𝑔,𝐃𝑓,𝑔⟩, (7)

where

𝗌𝗍𝑓,𝑔 = [𝗌𝗍𝑓𝗌𝗍𝑔
] , 𝐀𝑓,𝑔 = [ 𝐀𝑓 𝟎

𝐁𝑔𝐂𝑓 𝐀𝑔
] , 𝐁1,2 = [ 𝐁𝑓

𝐁𝑔𝐃𝑓
] , 𝐂𝑓,𝑔 =

[
𝐃𝑔𝐂𝑓 𝐂𝑔

]
, 𝐃𝑓,𝑔 = 𝐃𝑔𝐃𝑓 . (8)

The morphism (𝑓 # 𝑔) # ℎ is described by

⟨𝗌𝗍(𝑓,𝑔),ℎ,𝐀(𝑓,𝑔),ℎ, 𝐁(𝑓,𝑔),ℎ, 𝐂(𝑓,𝑔),ℎ,𝐃(𝑓,𝑔),ℎ⟩, (9)

where:

𝗌𝗍(𝑓,𝑔),ℎ =
⎡
⎢
⎢
⎣

𝗌𝗍𝑓
𝗌𝗍𝑔
𝗌𝗍ℎ

⎤
⎥
⎥
⎦

, 𝐀(𝑓,𝑔),ℎ =
⎡
⎢
⎢
⎣

𝐀𝑓 𝟎 𝟎
𝐁𝑔𝐂𝑓 𝐀𝑔 𝟎

𝐁ℎ𝐃𝑔𝐂𝑓 𝐁ℎ𝐂𝑔 𝐀ℎ

⎤
⎥
⎥
⎦

, 𝐁(𝑓,𝑔),ℎ =
⎡
⎢
⎢
⎣

𝐁𝑓
𝐁𝑔𝐃𝑓

𝐁ℎ𝐃𝑔𝐃𝑓

⎤
⎥
⎥
⎦

,

𝐂(𝑓,𝑔),ℎ =
[
𝐃ℎ𝐃𝑔𝐂𝑓 𝐃ℎ𝐂𝑔 𝐂ℎ

]
, 𝐃(𝑓,𝑔),ℎ = 𝐃ℎ𝐃𝑔𝐃𝑓 .

(10)

On the other hand, the morphism 𝑔 # ℎ is described by

⟨𝗌𝗍𝑔,ℎ,𝐀𝑔,ℎ, 𝐁𝑔,ℎ, 𝐂𝑔,ℎ,𝐃𝑔,ℎ⟩, (11)

where:

𝗌𝗍𝑔, ℎ = [𝗌𝗍𝑔𝗌𝗍ℎ
] , 𝐀𝑔,ℎ = [ 𝐀𝑔 𝟎

𝐁ℎ𝐂𝑔 𝐀ℎ
] , 𝐁𝑔,ℎ = [ 𝐁𝑔

𝐁ℎ𝐃𝑔
] , 𝐂𝑔,ℎ =

[
𝐃ℎ𝐂𝑔 𝐂ℎ

]
, 𝐃𝑔,ℎ = 𝐃ℎ𝐃𝑔. (12)

Furthermore, the morphism 𝑓 # (𝑔 # ℎ) is described by

⟨𝗌𝗍𝑓,(𝑔,ℎ),𝐀𝑓,(𝑔,ℎ), 𝐁𝑓,(𝑔,ℎ), 𝐂𝑓,(𝑔,ℎ),𝐃𝑓,(𝑔,ℎ)⟩, (13)

where:

𝗌𝗍(𝑓,𝑔),ℎ =
⎡
⎢
⎢
⎣

𝗌𝗍𝑓
𝗌𝗍𝑔
𝗌𝗍ℎ

⎤
⎥
⎥
⎦

, 𝐀𝑓,(𝑔,ℎ) =
⎡
⎢
⎢
⎣

𝐀𝑓 𝟎 𝟎
𝐁𝑔𝐂𝑓 𝐀𝑔 𝟎

𝐁ℎ𝐃𝑔𝐂𝑓 𝐁ℎ𝐂𝑔 𝐀ℎ

⎤
⎥
⎥
⎦

, 𝐁𝑓,(𝑔,ℎ) =
⎡
⎢
⎢
⎣

𝐁𝑓
𝐁𝑔𝐃𝑓

𝐁ℎ𝐃𝑔𝐃𝑓

⎤
⎥
⎥
⎦

,

𝐂𝑓,(𝑔,ℎ) =
[
𝐃ℎ𝐃𝑔𝐂𝑓 𝐃ℎ𝐂𝑔 𝐂ℎ

]
, 𝐃𝑓,(𝑔,ℎ) = 𝐃ℎ𝐃𝑔𝐃𝑓 .

(14)

Clearly, the matrices in (10) and (14) coincide, showing associativity.
We now show unitality. Consider a morphism 𝑓∶ 𝑙 → 𝑚, described by ⟨𝗌𝗍,𝐀, 𝐁,
𝐂,𝐃⟩. The morphism id𝑙 # 𝑓 is a morphism 𝑙 → 𝑚 still given by ⟨𝗌𝗍,𝐀, 𝐁, 𝐂,𝐃⟩.
Similarly, the morphism 𝑓 # id𝑚 is a morphism 𝑙 → 𝑚, given by ⟨𝗌𝗍,𝐀, 𝐁, 𝐂,𝐃⟩.
Therefore, LTI is a category.

Solution of Exercise 41. To show that this is a valid functor, we need to show
that it preserves identities and composition:
⊳ Given any 𝑋 ∈ ObC, we have:

idC(id𝑋) = id𝑋
= ididC(𝑋)

(15)
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Solution of Exercise 44.

ACT4E ACT4E

sc1.5,1.5

Figure 1.: Example of scaling.

ACT4E

ACT4E

tra0,−1

Figure 2.: Example of translation.

ACT4E
ACT4E

rot𝜋∕4

Figure 3.: Example of rotation.

ACT4E

ACT4E

rotra𝜋∕2,−1,0

Figure 4.: Example of rototranslation.

Furthermore, given composable morphisms 𝑓, 𝑔 in C, we have:

idC(𝑓 # 𝑔) = 𝑓 # 𝑔
= idC(𝑓) # idC(𝑔).

(16)

Solution of Exercise 42.

Solution of Exercise 43.

We check the specializations one by one. In all specializations, we consider the
same objects as in Draw.
⊳ Scalings. Let 𝑠, 𝑡 ∈ ℝ. Scalings can be represented as functions of the form

sc𝑠,𝑡 ∶ ℝ
2 → ℝ2,

⟨𝑥, 𝑦⟩ ↦ ⟨𝑠𝑥, 𝑡𝑦⟩.
(17)

By just considering morphisms which are scalings, we are considering a subset
of all morphisms. Furthermore, the composition of two scalings is again a
scaling. Indeed, consider scalings sc𝑠,𝑡, sc𝑢,𝑣. We have

(sc𝑠,𝑡 # sc𝑢,𝑣)(𝑥, 𝑦) = sc𝑢,𝑣(𝑠𝑥, 𝑡𝑦)
= ⟨𝑢𝑠𝑥, 𝑣𝑡𝑦⟩
= sc𝑢𝑠,𝑣𝑡.

(18)

Finally, the identity morphism in Draw corresponds to a scaling of the form
sc1,1.

⊳ Translations. Let 𝑠, 𝑡 ∈ ℝ. Translations are functions of the form

tra𝑠,𝑡 ∶ ℝ
2 → ℝ2,

⟨𝑥, 𝑦⟩ ↦ ⟨𝑥 + 𝑠, 𝑦 + 𝑡⟩.
(19)

By just considering morphisms which are translations, we are considering a
subset of all morphisms. Furthermore, the composition of two translations is
again a translation. Indeed, consider scalings tra𝑠,𝑡, tra𝑢,𝑣. We have

(tra𝑠,𝑡 # tra𝑢,𝑣)(𝑥, 𝑦) = tra𝑢,𝑣(𝑥 + 𝑠, 𝑦 + 𝑡)
= ⟨𝑥 + 𝑠 + 𝑢, 𝑦 + 𝑡 + 𝑣⟩
= tra𝑠+𝑢,𝑡+𝑣.

(20)

Finally, the identity morphism in Draw corresponds to a translation of the
form tra0,0.

⊳ Rotations. Let 𝜃 ∈ [0, 2𝜋). Rotations are functions of the form

rot𝜃 ∶ ℝ
2 → ℝ2,

⟨𝑥, 𝑦⟩ ↦ ⟨𝑥 cos(𝜃) + 𝑦 sin(𝜃), 𝑦 cos(𝜃) − 𝑥 sin(𝜃)⟩.
(21)

By just consideringmorphismswhich are rotations,we are considering a subset
of all morphisms. Furthermore, the composition of two rotations is again a
rotation. Indeed, consider rotations rot𝜃, rot𝜙. We have

(rot𝜃 # rot𝜙)(𝑥, 𝑦) = rot(⟨𝑥 cos(𝜃) + 𝑦 sin(𝜃), 𝑦 cos(𝜃) − 𝑥 sin(𝜃)⟩)
= ⟨𝑥 cos(𝜃 + 𝜙) + 𝑦 sin(𝜃 + 𝜙), 𝑦 cos(𝜃 + 𝜙) − 𝑥 sin(𝜃 + 𝜙)⟩
= rot𝜃+𝜙.

(22)
Finally, the identity morphism in Draw corresponds to a rotation of the form
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ACT4E
ACT4E

aff𝐀,𝟎2×1

Figure 5.: Example of affine transformation

with 𝐴 = 1.5 [ cos(𝜋∕4) sin(𝜋∕4)
− sin(𝜋∕4) cos(𝜋∕4)].

rot0.
⊳ Rototranslations. Let 𝑠, 𝑡 ∈ ℝ and 𝜃 ∈ [0, 2𝜋). Rototranslations are functions
arising from the combination of rotations and translations, and are therefore
of the form:

rotra𝜃,𝑠,𝑡 ∶ ℝ
2 → ℝ2,

⟨𝑥, 𝑦⟩ ↦ ⟨𝑥 cos(𝜃) + 𝑦 sin(𝜃) + 𝑠, 𝑦 cos(𝜃) − 𝑥 sin(𝜃) + 𝑡⟩.
(23)

By just consideringmorphismswhich are rotations,we are considering a subset
of allmorphisms. Furthermore, the composition of two rototranslations is again
a rototranslation. Consider rototranslations rotra𝜃,𝑠,𝑡, rotra𝜙,𝑢,𝑣. We have:

(rotra𝜃,𝑠,𝑡 # rotra𝜙,𝑢,𝑣)(𝑥, 𝑦)
= rotra𝜙,𝑢,𝑣(𝑥 cos(𝜃) + 𝑦 sin(𝜃) + 𝑠, 𝑦 cos(𝜃) − 𝑥 sin(𝜃) + 𝑡)
= ⟨(𝑥 cos(𝜃) + 𝑦 sin(𝜃) + 𝑠) cos(𝜙) + (𝑦 cos(𝜃) − 𝑥 sin(𝜃) + 𝑡)) sin(𝜙) + 𝑢,
(𝑦 cos(𝜃) − 𝑥 sin(𝜃) + 𝑡) cos(𝜙) − (𝑥 cos(𝜃) + 𝑦 sin(𝜃) + 𝑠) sin(𝜙) + 𝑣⟩
= ⟨𝑥 cos(𝜃 + 𝜙) + 𝑦 sin(𝜃 + 𝜙) + 𝑠 cos(𝜙) + 𝑡 sin(𝜙) + 𝑢,
𝑦 cos(𝜃 + 𝜙) − 𝑥 sin(𝜃 + 𝜙) + 𝑡 cos(𝜙) − 𝑠 sin(𝜙) + 𝑣⟩
= rotra𝜃+𝜙,𝑠 cos(𝜙)+𝑡 sin(𝜙)+𝑢,𝑡 cos(𝜙)−𝑠 sin(𝜙)+𝑣(𝑥, 𝑦).

(24)
Finally, the identity morphism in Draw corresponds to a rotation of the form
rotra0,0,0.

⊳ Affine transformations. Let 𝐀 ∈ ℝ2×2 and 𝐛 ∈ ℝ2×1. Affine transforma-
tions are functions that could arise from the combination of rotations and
translations, and scalings, and are therefore of the form:

aff𝐀,𝐛 ∶ ℝ
2 → ℝ2,

⟨𝑥, 𝑦⟩ ↦ ⟨𝑎11𝑥 + 𝑎12𝑦 + 𝑏11, 𝑎21𝑥 + 𝑎22𝑦 + 𝑏21⟩,
(25)

where ∗𝑖𝑗 represents the element at the 𝑖-th row and 𝑗-th column of ∗.
Some special cases are:
• With 𝐀 = 𝟙 we obtain translations tra𝑏11,𝑏21 ;

• With 𝐛 =
[
0 0

]⊺
and 𝐴 = [𝑠 0

0 𝑡] we obtain scalings sc𝑠,𝑡;

• With 𝐛 =
[
0 0

]⊺
and 𝐴 = [ cos(𝜃) sin(𝜃)

− sin(𝜃) cos(𝜃)] we obtain rotations rot𝜃.

By just considering morphisms which are affine transformations, we are con-
sidering a subset of all morphisms. Furthermore, the composition of two affine
transformations is again an affine transformation. Clearly, the composition
of affine transformations aff𝐀,𝐛, aff𝐂,𝐝 is aff𝐂𝐀,𝐂𝐛+𝐝 Finally, the identity mor-
phism in Draw corresponds to an affine transformation of the form aff𝟙,𝟎2×1 .

Solution of Exercise 45. In the following, we want to show that functors
compose. Given categoriesA,B,C and functors 𝐹∶ A→ B,𝐺∶ B→ C, we want
to show that 𝐹 #𝐺 is a functor. To do this, we show that 𝐹 #𝐺 preserves identities
and compositions.
⊳ Given an object 𝑋 in A, we have:

(𝐹� # 𝐺�)(id𝑋) = 𝐺�(𝐹�(id𝑋))
= 𝐺�(id𝐹∙(𝑋))
= id𝐺∙(𝐹∙(𝑋)),

(26)
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where we used that 𝐹 and 𝐺 are functors (they preserve identities).
⊳ Furthermore, given composable morphisms 𝑓, 𝑔 in A, we have:

(𝐹� # 𝐺�)(𝑓 # 𝑔) = 𝐺�(𝐹�(𝑓) # 𝐹�(𝑔))
= 𝐺�(𝐹�(𝑓)) # 𝐺�(𝐹�(𝑔))
= (𝐹� # 𝐺�)(𝑓) # (𝐹� # 𝐺�)(𝑔),

(27)

where again we used that 𝐹, 𝐺 are functors (they preserve composition).
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23. Naturality 309

24. Adjunctions 325

The Sechseläuten is a traditional spring holiday in the Zurich, Switzerland, usually happening on the 3rd monday of April. The old city guilds meet in the
city center for a parade, climax of which is the burning of the “Böögg”, a snowman prepared with explosives, considered a weather oracle for the summer.
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We have seen that functors are “morphisms between categories”.
It turns out that there is an important third layer to the world of
categories: there are also “morphisms between functors”, and these
are known as natural transformations.
To represent the three layers of structure involved in the world of
categories, it is common to draw diagrams like this: Points repre-

∙ ∙ ∙

sent categories, single arrows represent functors, and double arrows
represent natural transformations.

When one thinks about Switzerland, one of the symbols that comes to mind is usually cows. Recent statistics show that Switzerland has around 1.6 million
cows (roughly one cow per five residents). The canton of Bern leads the rankings, being the one owning the most cows. Interestingly, in the canton of
Appenzell Innerrhoden, the ratio of cows and humans is close to 1:1.
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𝐹(𝑋) 𝐹(𝑌)
𝑋 𝑌

𝐺(𝑋) 𝐺(𝑌)

𝐹(𝑓)
𝑓

𝐹

𝐺 𝐺(𝑔)

𝐹(𝑋) 𝐹(𝑌)

𝑋 𝑌
𝐺(𝑋) 𝐺(𝑌)

𝐹(𝑓)

𝛼𝑋 𝛼𝑌
𝑓

𝐹

𝐺 𝐺(𝑔)

𝐹(𝑋) 𝐹(𝑌)

𝐺(𝑋) 𝐺(𝑌)

𝐹(𝑓)

𝛼𝑋 𝛼𝑌

𝐺(𝑓)
Figure 1.

𝐹(𝑋) 𝐹(𝑌) 𝐹(𝑍)

𝐺(𝑋) 𝐺(𝑌) 𝐺(𝑍)

𝐹(𝑓)

𝛼𝑋

𝐹(𝑔)

𝛼𝑌 𝛼𝑍

𝐺(𝑓) 𝐺(𝑔)
Figure 2.

23.1. Natural transformations
To formally define natural transformations, the general situation we will start
from is when we have two functors 𝐹∶ C → D and 𝐺∶ C → D, sharing the
same source and target, respectively.
A natural transformation from 𝐹 to 𝐺 is then a kind of “map” that relates the
two functors. How might one define such a thing?
First, let’s look at the situation only on the level of objects. Each object 𝑋 of C is
mapped by 𝐹 and 𝐺 to an object 𝐹(𝑋) and 𝐺(𝑋) of D, respectively. One straight-
forward way to relate 𝐹(𝑋) to 𝐺(𝑋) is to choose a morphism 𝐹(𝑋)→ 𝐺(𝑋) in D.
We call this morphism 𝛼𝑋 , using the subscript 𝑋 since 𝛼𝑋 relates the respective
images of the object 𝑋 under 𝐹 and 𝐺. If we choose such a morphism for each
object in C, then we have collection {𝛼𝑋}𝑋∈ObC of morphisms in D, indexed by
the objects of C.
Next, consider a morphism 𝑓∶ 𝑋 → 𝑌 in the category C. Under the functor 𝐹
it will be mapped to some morphism 𝐹(𝑓)∶ 𝐹(𝑋)→ 𝐹(𝑌) in D, and under the
functor 𝐺 it will be mapped to some other morphism 𝐺(𝑓)∶ 𝐺(𝑋)→ 𝐺(𝑌), also
in D.
We can think of 𝐹(𝑓)∶ 𝐹(𝑋) → 𝐹(𝑌) and 𝐺(𝑓)∶ 𝐺(𝑋) → 𝐺(𝑌) as each being
very small diagrams (directed graphs) in D. If we have already chosen mor-
phisms 𝛼𝑋 ∶ 𝐹(𝑋)→ 𝐺(𝑋) and 𝛼𝑌 ∶ 𝐹(𝑌)→ 𝐺(𝑌) in D, then these will connect
the two diagrams, as depicted in the figure to the side.
In D, this gives rise to the square diagram shown to the side. We’ll require, as a
condition on the morphisms 𝛼𝑋 and 𝛼𝑌 , that they make the diagram commuta-
tive:

𝐹(𝑓) # 𝛼𝑌 = 𝛼𝑋 # 𝐺(𝑓). (1)

Now consider not only a single morphism 𝑓∶ 𝑋 → 𝑌 in C being mapped by 𝐹
and 𝐺, respectively, but all of the category C. Under 𝐹, the category C is mapped
to a – possibly very complicated – diagram in D (a directed graph of objects and
morphism comprising the image of 𝐹), and similarly, under 𝐺, the category C is
mapped to another diagram in D (the image of 𝐺).
To relate the image of 𝐹 to the image of 𝐺 we can proceed in the same way as
above: for each object 𝑋 in C, we choose a morphism 𝛼𝑋 ∶ 𝐹(𝑋) → 𝐺(𝑋) in D.
In other words, we have a collection of morphisms (𝛼𝑋), 𝑋 ∈ ObC indexed by
the objects of C. These gives rise to lots of squares of the kind in Fig. 1, which
we will require to be commutative. It is because of this commutativity condition,
which is a condition on the collection (𝛼𝑋), 𝑋 ∈ ObC, that some mathematicians
would say that the collection (𝛼𝑋), 𝑋 ∈ ObC is a “coherent” or “natural” way to
relate the image of 𝐹 to the image of 𝐺. (This does not mean, however, that there
is at most one natural transformation between any two given functors—on the
contrary, there might be many!)
In Fig. 2 we have illustrated a situation involving three objects and twomorphisms
in C, giving rise to two squares. We have “glued” the two squares together since
they share an edge (this a more compact way of drawing them). Note that because
each of the two component squares in the diagram commute, so does the entire
diagram.

Definition 23.1 (Natural transformation)
Let C and D be categories, and let 𝐹, 𝐺∶ C → D be functors. A natural
transformation 𝛼∶ 𝐹 ⇒ 𝐺 is specified by:
Constituents
1. For each object 𝑋 ∈ ObC, a morphism 𝛼𝑋 ∶ 𝐹(𝑋) → 𝐺(𝑋) in D, called
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the 𝑋-component of 𝛼.
Conditions
1. For every morphism 𝑓∶ 𝑋 → 𝑌 in C, the components of 𝛼 must satisfy

the naturality condition

𝐹(𝑓) # 𝛼𝑌 = 𝛼𝑋 # 𝐺(𝑓). (2)

In other words, the following diagram must commute:

𝐹(𝑋) 𝐹(𝑌)

𝐺(𝑋) 𝐺(𝑌)

𝐹(𝑓)

𝛼𝑋 𝛼𝑌

𝐺(𝑓)

(3)

To reiterate: a natural transformation 𝛼 is a collection (𝛼𝑋)𝑋∈ObC of morphisms
(called the components of the natural transformation) which satisfy the naturality
conditions. The name “components” is analogous to how a vector 𝑣 = (𝑣1, ..., 𝑣𝑛)
has components or a sequence 𝑎 = (𝑎𝑛)𝑛∈ℕ has terms.
The diagrams (3) are often called naturality squares, and a natural transforma-
tion 𝛼∶ 𝐹 ⇒ 𝐺 is often depicted concisely in this manner:

C D
𝐹

𝐺

⇓𝛼
(4)

Figure 3 shows a diagram that describes the property of functors and of natural
transformations. The diagram inD is a “commuting prism”: all faces of the prism
commute.

𝐹(𝑌)

𝐹(𝑋) 𝐹(𝑍)

𝑌

𝑋 𝑍 𝐺(𝑌)

𝐺(𝑋) 𝐺(𝑍)

𝐹(𝑓) 𝐹(𝑔)

𝐺(𝑓) 𝐺(𝑔)

𝛼𝑋

𝛼𝑌

𝛼𝑍
𝑓 𝑔
𝑓 # 𝑔

𝐹

𝐺

𝛼

C

D

Figure 3.
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Examples
Example 23.2. Consider the following two functors 𝐹, 𝐺∶ Set × Set × Set→
Set. We define 𝐹 on objects by

𝐹(⟨𝐀, 𝐁, 𝐂⟩) = (𝐀 × 𝐁) × 𝐂 (5)

and define 𝐺 on objects by

𝐺(⟨𝐀, 𝐁, 𝐂⟩) = 𝐀 × (𝐁 × 𝐂). (6)

For their actions on morphisms, consider a morphism

⟨𝑓, 𝑔, ℎ⟩∶ ⟨𝐀, 𝐁, 𝐂⟩→
⟨
𝐀′, 𝐁′, 𝐂′

⟩
(7)

in Set × Set × Set. Its image under 𝐹 is

⟨⟨𝑓, 𝑔⟩, ℎ⟩∶ (𝐀 × 𝐁) × 𝐂→ (𝐀′ × 𝐁′) × 𝐂′ (8)

and its image under 𝐺 is

⟨𝑓, ⟨𝑔, ℎ⟩⟩∶ 𝐀 × (𝐁 × 𝐂)→ 𝐀′ × (𝐁′ × 𝐂′). (9)

One way to see that 𝐹 (and similarly 𝐺) is indeed a functor is to note that it is
equal to the following composition of functors

Set × Set × Set→ Set × Set→ Set,
⟨𝐀, 𝐁, 𝐂⟩↦ ⟨𝐀 × 𝐁, 𝐂⟩↦ (𝐀 × 𝐁) × 𝐂

(10)

and recall from Graded Exercise F.9 that “×” is a functor.
Now we define a natural transformation 𝛼∶ 𝐹 ⇒ 𝐺 by specifying its components
to be the functions

𝛼⟨𝐀, 𝐁, 𝐂⟩ ∶ (𝐀 × 𝐁) × 𝐂 → 𝐀 × (𝐁 × 𝐂),
⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↦ ⟨𝑥, ⟨𝑦, 𝑧⟩⟩,

(11)

indexed by triples of sets ⟨𝐀, 𝐁, 𝐂⟩.
For the family of morphisms 𝛼⟨𝐀, 𝐁, 𝐂⟩ to be a natural transformation, we need to
check that the diagrams

(𝐀 × 𝐁) × 𝐂 (𝐀′ × 𝐁′) × 𝐂′

𝐀 × (𝐁 × 𝐂) 𝐀′ × (𝐁′ × 𝐂′)

𝛼⟨𝐀, 𝐁, 𝐂⟩

⟨⟨𝑓, 𝑔⟩, ℎ⟩

𝛼⟨𝐀′, 𝐁′, 𝐂′⟩

⟨𝑓, ⟨𝑔, ℎ⟩⟩

(12)

in Set commute for all morphisms ⟨𝑓, 𝑔, ℎ⟩ in Set × Set × Set. It is easily
checked that this is true.
This natural transformation is an example of something called an associator,
which we will discuss later when we define monoidal categories. The idea here is
that the cartesian product of sets is not quite an associative operation, but almost:
instead of an “equality” symbol in the usual equation for the associative law, we
have the components of this associator natural transformation.

Example 23.3. Let 𝐹∶ Set × Set→ Set be the functor which on objects maps
any pair of sets ⟨𝐀, 𝐁⟩ to their cartesian product𝐀×𝐁. On functions, it maps any
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pair of functions ⟨𝑓, 𝑔⟩ to their cartesian product 𝑓 × 𝑔.
Consider another functor 𝐺∶ Set × Set→ Set which on objects maps any pair
of sets ⟨𝐀, 𝐁⟩ to their cartesian product 𝐁 ×𝐀 (and similarly for morphisms). In
other words, 𝐺 is very similar to 𝐹, however it is different in that, when forming
the cartesian product, the order of the factors is swapped.
There is a natural transformation 𝛼∶ 𝐹 ⇒ 𝐺 which expresses explicitly the
relationship between 𝐹 and 𝐺. Its components are these functions:

𝛼⟨𝐀, 𝐁⟩ ∶ 𝐀 × 𝐁 → 𝐁 ×𝐀,
⟨𝑥, 𝑦⟩ ↦ ⟨𝑦, 𝑥⟩.

(13)

Graded exercise G.1 (NaturalBraiding)
Consider the functor 𝐹∶ Set × Set → Set defined on objects and mor-
phisms by

⟨𝐀, 𝐁⟩↦ 𝐀 × 𝐁 ⟨𝑓, 𝑔⟩↦ 𝑓 × 𝑔, (14)

and consider as well the similar (but different!) functor𝐺∶ Set× Set→ Set
defined on objects and morphisms by

⟨𝐀, 𝐁⟩↦ 𝐁 ×𝐀 ⟨𝑓, 𝑔⟩↦ 𝑔 × 𝑓. (15)

Now consider, for each ordered pair of sets ⟨𝐀, 𝐁⟩, the function

𝖻𝗋⟨𝐀, 𝐁⟩ ∶ 𝐀 × 𝐁 → 𝐁 ×𝐀,
⟨𝑥, 𝑦⟩ ↦ ⟨𝑦, 𝑥⟩.

(16)

Your task is to prove that the family of functions {𝖻𝗋⟨𝐀, 𝐁⟩}⟨𝐀, 𝐁⟩ defines a
natural transformation 𝖻𝗋 ∶ 𝐹 ⇒ 𝐺.

Example 23.4. Consider the powerset functor 𝖯𝗈𝗐 from Example 19.3. As a
reminder, the powerset functor 𝖯𝗈𝗐maps a set 𝐀 to its powerset 𝖯𝗈𝗐(𝐀), and
a function 𝑓∶ 𝐀→ 𝐁 to the function 𝖯𝗈𝗐(𝑓)∶ 𝖯𝗈𝗐(𝐀)→ 𝖯𝗈𝗐(𝐁) which sends
each subset of 𝐀 to its image under 𝑓, which is a subset of 𝐁.
There is a natural transformation 𝛼∶ id Set ⇒ 𝖯𝗈𝗐 whose components are the
functions

𝛼𝐀 ∶ 𝐀→ 𝖯𝗈𝗐(𝐀)
𝑎 ↦ {𝑎}.

(17)

In other words, the natural transformation embeds each element of 𝐀 into the
power set 𝖯𝗈𝗐(𝐀). To check that this is a natural transformation, consider an
arbitrary function between sets 𝑓∶ 𝐀→ 𝐁. On the one hand,

(𝛼𝐀 # 𝖯𝗈𝗐(𝑓))(𝑎) = 𝖯𝗈𝗐(𝑓)({𝑎}) = {𝑓(𝑎)}, (18)

while on the other hand

(𝑓 # 𝛼𝐁)(𝑎) = 𝛼𝐁(𝑓(𝑎)) = {𝑓(𝑎)}. (19)

Thus, the condition for 𝛼 to be a natural transformation is satisfied.

Graded exercise G.2 (ListUnitNatural)
Recall the list functor 𝖫𝗂𝗌𝗍∶ Set→ Set which, on objects, assigns to each
set 𝐀 the set 𝖫𝗂𝗌𝗍(𝐀) of finite lists in elements of 𝐀, and to each function
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314 23. Naturality

𝑓∶ 𝐀→ 𝐁 it assigns the induced function

𝖫𝗂𝗌𝗍(𝑓)∶ 𝖫𝗂𝗌𝗍𝐀 → 𝖫𝗂𝗌𝗍𝐁,
[⋯, 𝑎𝑖 ,⋯] ↦ [⋯, 𝑓(𝑎𝑖),⋯].

(20)

(You do not need to prove that this is a functor; we take that fact as given in
this exercise.)
Consider now the family of functions {𝛼𝐀}𝐀 defined by

𝛼𝐀 ∶ 𝐀 → 𝖫𝗂𝗌𝗍𝐀,
𝑥 ↦ [𝑥]𝐀.

(21)

In other words, the function 𝛼𝐀 maps each element 𝑥 of 𝐀 to a list of length
1 whose single entry is the element 𝑥. Does this family of functions define a
natural transformation? Prove your answer.
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23.2. Morphisms in a category of Functors
We have seen that natural transformations between two functors 𝐹, 𝐺∶ C→ D
map objects in C to morphisms in D, and map morphisms in C to commuta-
tive diagrams. This is quite similar to the effect of functors on category objects
and moprhisms. What if there were a category where objects are functors, and
morphisms are natural transformations?

Vertical Composition
As for any category, we would need to define the morphism composition law and
the identity morphisms. The former would look like this:

C D

𝐹

𝐻

𝐺
⇓𝛼

⇓𝛽

morphism
,,,,,,,,,,,→
composition

C D

𝐹

𝐻

⇓𝛼 # 𝛽

(22)
Due to its diagrammatic form, we call this type of composition vertical composi-
tion.

Definition 23.5 (Vertical Composition of natural transformations)
Let C,D be categories and let 𝐹, 𝐺,𝐻∶ C → D be functors from C to D.
Suppose we are given natural transformations

𝛼∶ 𝐹 ⇒ 𝐺, (23)

𝛽∶ 𝐺 ⇒ 𝐻. (24)

Their (vertical) composition 𝛼 # 𝛽 is the natural transformation

𝛼 # 𝛽∶ 𝐹 ⇒ 𝐻 (25)

defined in components by

(𝛼 # 𝛽)𝑋 ∶= 𝛼𝑋 # 𝛽𝑋 ∀ 𝑋 ∈ ObC. (26)

Definition 23.6 (Identity natural transformation)
Let C,D be categories and let 𝐹∶ C→ D be a functor. The identity natural
transformation at 𝐹 is the natural transformation id𝐹 ∶ 𝐹 ⇒ 𝐹 defined in
components by

(id𝐹)𝑋 ∶= id𝐹(𝑋) ∀ 𝑋 ∈ ObC. (27)

Definition 23.7
Let C,D be categories. The category [C,D] of functors from C to D is given
by
1. Objects: functors C→ D.
2. Morphisms: natural transformations between functors C→ D.
3. Composition: (vertical) composition of natural transformations.
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316 23. Naturality

4. Identities: identity natural transformations.

Natural isomorphisms

Definition 23.8 (Natural isomorphism)
A natural transformation 𝛼∶ 𝐹 ⇒ 𝐺 is called a natural isomorphism if each
component morphism 𝛼𝑋 in D is an isomorphism.

Lemma 23.9. Let C,D be categories and let 𝐹, 𝐺∶ C→ D be functors. A natural
transformation 𝛼∶ 𝐹 ⇒ 𝐺 is an isomorphism in the category of functors [C,D]
if and only if 𝛼 is a natural isomorphism.

Horizontal Composition
Suppose we have three categores: C,D and E with functors 𝐹1, 𝐹2 ∶ C → D
and 𝐺1, 𝐺2 ∶ D → E and finally two natural transformations 𝛼∶ 𝐹1 ⇒ 𝐹2
and 𝛽∶ 𝐺1 ⇒ 𝐺2. We would then have the following situation.

A B C

𝐹1

𝐺1

⇓𝛼

𝐹2

𝐺2

⇓𝛽 (28)

This looks suspiciously composable.

Definition 23.10 (Horizontal Composition of natural transformations)
Let C,D,E be categories and let 𝐹1, 𝐹2 ∶ C → D and 𝐺1, 𝐺2 ∶ D → E be
functors. Suppose we are given the natural transformations

𝛼∶ 𝐹1 ⇒ 𝐺1, (29)

𝛽∶ 𝐹2 ⇒ 𝐺2. (30)

Then their horizontal composition is given by the natural transformation

𝛼 ∗ 𝛽∶ (𝐹1 # 𝐺1) ⇒ (𝐺1 # 𝐺2) (31)

defined in components by

(𝛼 ∗ 𝛽)𝑋 ∶= 𝛼𝑋 ∗ 𝛽𝑋 ∀ 𝑋 ∈ ObC (32)

as the composition

(𝛼 ∗ 𝛽)𝑋 ∶ (𝐹2(𝐹1(𝑋))) ⇒ (𝐺2(𝐹1(𝑋))) ⇒ (𝐺2(𝐺1(𝑋))) (33)

Interchange Law
The following statement is quite powerful. Although perhaps obvious-looking, it
allows us to presume associativity of natural transformations.

Proposition 23.11 (Interchange). Let C,D,E be categories, 𝐹1, 𝐺1, 𝐻1 ∶ C→ D,
𝐹2, 𝐺2, 𝐻2 ∶ D→ E be functors and 𝛼1 ∶ 𝐹1 ⇒ 𝐺1, 𝛼2 ∶ 𝐹2 ⇒ 𝐺2, 𝛽1 ∶ 𝐺1 ⇒ 𝐻1,
𝛽2 ∶ 𝐺2 ⇒ 𝐻2 be natural transformations. Then,

(𝛼1 # 𝛽1) ∗ (𝛼2 # 𝛽2) = (𝛼1 ∗ 𝛼2) # (𝛽1 ∗ 𝛽2) (34)

You are reading a draft compiled on 2024-12-09 11:28:28Z



23.2. Morphisms in a category of Functors 317

Proof. Consider the casewherewehave categoriesC,D,E,with functors𝐹1, 𝐺1 ∶ C→
D and 𝐹2, 𝐺2 ∶ D→ E relating them. We can thus have the following four
diagrams:

A B

𝐹1

𝐺1

⇓𝛼1 B C

𝐹2

𝐺2

⇓𝛼2 (35)

A B

𝐺1

𝐻1

⇓𝛽1 B C

𝐺2

𝐻2

⇓𝛽2 (36)

We are now faced with the choice of either vertically composing first, or
horizontally composing. By vertically composing, we get

A B

𝐹1

𝐻1

⇓𝛼1 # 𝛽1 B C

𝐹2

𝐻2

⇓𝛼2 # 𝛽2 (37)

Subsequently applying horizontal composition yields

A C

𝐹1 # 𝐹2

𝐻1 #𝐻2

⇓ (𝛼1 # 𝛽1) ∗ (𝛼2 # 𝛽2) (38)

Otherwise, we apply horizontal composition first:

C D

𝐹1 # 𝐹2

𝐻1 #𝐻2

𝐺1 # 𝐺2

⇓𝛼1 # 𝛼2

⇓𝛽1 # 𝛽2

(39)

ths proving that vertical and horizontal composition are interchangeable.

Remark 23.12. The proof is also interesting to do by observing the commuting
squares, and putting them together.

Whiskering

Two special cases of horizontal composition are known as “left-whiskering” and
“right-whiskering”.
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Definition 23.13 (Right Whiskering)
Let C,D and E be categories, 𝐹, 𝐺 ∶ C → D be functors from C to D, 𝐻 ∶
D→ E be a functor fromD to E and 𝛼 ∶ 𝐹 ⇒ 𝐺 be a natural transformation
from 𝐹 to 𝐺.
The right whiskering of𝐻 and 𝛼 is given by the natural transformation

𝐻𝛼 ∶ (𝐹 #𝐻) ⇒ (𝐺 #𝐻) (40)

Definition 23.14 (Left Whiskering)
Let C,D and E be categories, 𝐹, 𝐺 ∶ C → D be functors from C to D, 𝐻 ∶
B→ C be a functor from B to C and 𝛽 ∶ 𝐹 ⇒ 𝐺 be a natural transformation
from 𝐹 to 𝐺.
The left whiskering of 𝛽 and𝐻 is given by the natural transformation

𝛽𝐻 ∶ (𝐻 # 𝐹) ⇒ (𝐻 # 𝐺) (41)
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Figure 4.: The schema of an alumni database.
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23.3. Data migration
Now that we have seen some definitions and toy examples, let’s look at an (toy)
example a real-world application. As mentioned in Categorical Databases (see
19.5 for the full context), we can model instances of databases as functors from
the category of the architecture of the database to the category of sets.

An alumni database The architecture of the database in our example might
be encoded by a category with four objects and three non-identity morphisms,
as depicted in Fig. 4. The object 𝑆 stands for Student, 𝐷 stands for Discipline, 𝑁
stands for Name, and 𝑌 stands for Year. Call this category C. A database in-
stance 𝐹∶ C→ Set entails specifying a set 𝐹(𝑆) of all student IDs, a set 𝐹(𝐷) of
university disciplines such as mechanical engineering, civil engineering, applied
mathematics, pure mathematics, etc. It also entails defining functions for each
of the arrows in C. For example, 𝐹(studied)∶ 𝐹(𝑆)→ 𝐹(𝐷) is the function that
assigns to each student ID the name of the discipline that that student studied.

Updating the database For simplicity, we focus on two aspects of the data:
student ID numbers and the disciplines of study. We assume that the university
updates its alumni database once a year. This means, for example, adding the
graduates of that year to the total list of graduates.
Tomodel the situation, let𝐹∶ C→ Set be the database instance for the year 2021,
and let 𝐺∶ C→ Set be the database instance for the year 2022. For concreteness,
suppose the student IDs are in some standardized format, for example a code of the
kind 17-371-802, where each of the three parts of the code are calculated/assigned
by some rule (e.g., the “17” here stands for 2017, the year the student registered
with the university, etc.) .
Since new students register to the university each year, the set 𝐹(𝑆) of all student
IDs registered up to the end of 2020 is a subset of the set 𝐺(𝑆) of student IDs up to
the end of 2022. This means there is an inclusion function 𝛼𝑆 ∶ 𝐹(𝑆)→ 𝐺(𝑆).
Now suppose that in 2022 the university decides to simplify the way it attributes
disciplines to students in the database.
For instance, instead of the discipline names 𝐹(𝐷) = {mechanical engineering,
civil engineering, applied physics, theoretical physics, pure math, applied math},
the new discipline names are just

𝐺(𝐷) = {engineering, physics,math}. (42)

In order to implement these changes,we use a function 𝛼𝐷 ∶ 𝐹(𝐷)→ 𝐺(𝐷)which
maps the old discipline names to the corresponding new ones in an obvious
way:

𝛼𝐷(civil engineering) = engineering, 𝛼𝐷(applied physics) = physics, etc. (43)

The functions 𝛼𝑆 and 𝛼𝐷 allow us to check whether the new database instance𝐺
relates coherently with the older database instance 𝐹. Concretely, we want that if
a student ID in 𝐺(𝑆) is inherited from 𝐹(𝑆) – in other words, if it is in the image
of 𝛼𝑆 – then we want that its associated discipline in the database instance 𝐺 is
the same as if we first computed the student’s discipline in the older database
instance 𝐹, and then mapped it to 𝐺 using the function 𝛼𝐷 .
This can be formulated succinctly by saying that we want the diagram in figure
Fig. 5 to commute.
What we have defined is a collection of morphisms: for each object 𝑋 in C, we
have a morphism 𝛼𝑋 ∶ 𝐹(𝑋) → 𝐺(𝑋) that obeys the commutativity property
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corresponding to the diagram. Such transformations appear in many places and
are formalized by the notion of natural transformations.
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23.4. More examples
Example 23.15. Consider the category Vectℝ whose objects are real vector
spaces and whose morphisms are linear maps. (For convenience, in the following
we sometimes omit reference to the ground field.) Recall that the dual of a vector
space 𝑉 is the vector space describing all linear maps from 𝑉 to ℝ:

𝑉∗ ∶= Hom Vectℝ(𝑉;ℝ), (44)

Also, recall that if 𝑓∶ 𝑉 →𝑊 is a linear map, then its dual is the linear map 𝑓∗
∶ 𝑊∗ → 𝑉∗ which maps any 𝜉 ∈𝑊∗ to the element of 𝑉∗ given by

𝑓∗(𝜉)∶ 𝑉 → ℝ, 𝑣 ↦ 𝜉(𝑓(𝑣)). (45)

Applying the above duality construction twice to a vector space or a linear map
gives their double dual. It turns out that this is a functorial operation. That is,
there is a functor

Double dual∶ Vectℝ → Vectℝ (46)

that maps every vector space and every linear map to its double dual.
Furthermore, for any vector space 𝑉, there is a “canonical” or “natural” map

𝛼𝑉 ∶ 𝑉 ⇒ 𝑉∗∗ (47)

defined by
𝛼𝑉(𝑣)(𝑙) = 𝑙(𝑣), 𝑣 ∈ 𝑉, 𝑙 ∈ 𝑉∗. (48)

These form the components of a natural transformation from the identity functor
on Vectℝ to the double dual functor.

Vectℝ Vectℝ

id

Double dual

𝛼

(49)

Example 23.16. Fix a set 𝐒. There are functors 𝐹, 𝐺 ∶ Setop× Set→ Setwhose
respective actions on objects are

𝐹∙ ∶ ⟨𝐀, 𝐁⟩↦ Hom Set(𝐀 × 𝐒,𝐁) (50)

and
𝐺∙ ∶ ⟨𝐀, 𝐁⟩↦ Hom Set(𝐀,𝐁𝐒). (51)

These functors may be understood as built up using compositions of functors of
the kind discussed in Graded Exercise F.5,Graded Exercise F.6 andExample 19.11.
Recall that we can “curry” any function 𝑓 ∶ 𝐀× 𝐒→ 𝐁 to get a function �̂�∶ 𝐀→
𝐁𝐒, where �̂�(𝑥)may be thought of as a partial evaluation of 𝑓.
There is a natural transformation 𝛼∶ 𝐹 ⇒ 𝐺 whose components are the functions

𝛼⟨𝐀, 𝐁⟩ ∶ Hom Set(𝐀 × 𝐒,𝐁)→ Hom Set(𝐀,𝐁𝐒), 𝑓 ↦ �̂�, (52)

where �̂� is the “curried” version of 𝑓.

Graded exercise G.3 (NatTrafosGraphs)
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This exercise builds on Graded Exercise F.7. There, we defined a category G
which has precisely two objects and four morphisms, see Fig. 6 (the two
identity morphisms are not drawn). The task there was to understand how
specifying a functor from this category 𝐶𝑎𝑡𝑆𝑦𝑚𝑏𝑜𝑙𝐺 into the category of
sets is “the same thing” as specifying a directed graph.
Now consider two functors 𝐹1, 𝐹2 ∶ G → Set. Spell out what it means to
have a natural transformation 𝛼∶ 𝐹1 ⇒ 𝐹2. What does this correspond to
in the language of directed graphs?

Graded exercise G.4 (UpperSetsNatTrafos)
This exercise builds on Graded Exercise F.8. There we fixed a poset 𝐏, viewed
it as a category P, and saw that functors P→ Bool encode upper sets in 𝐏.
Suppose we have two functors 𝐹1, 𝐹2 ∶ P → Bool. What does a natural
transformation𝛼∶ 𝐹1 ⇒ 𝐹2 correspond to in terms of the upper sets encoded
by 𝐹1 and 𝐹2, respectively?

Graded exercise G.5 (DoubleDualNatTrafo)
This exercise builds on Graded Exercise F.4. Consider the category Vectℝ
whose objects are real vector spaces and whose morphisms are linear maps.
For any vector space 𝑉, there is a “canonical” or “natural” map

𝛼𝑉 ∶ 𝑉 ⇒ 𝑉∗∗ (53)

defined by
𝛼𝑉(𝑣)(𝑙) = 𝑙(𝑣), 𝑣 ∈ 𝑉, 𝑙 ∈ 𝑉∗. (54)

Your tasks in this exercise:
1. Check that the operation of “taking the double dual” (see (46) above)

defines a functor.
2. Verify that these components define a natural transformation from the

identity functor on Vectℝ to the double dual functor.

Vectℝ Vectℝ

id

Double dual

𝛼

(55)

Graded exercise G.6 (NaturalCurry)
Fix a set 𝐒. There are functors 𝐹, 𝐺 ∶ Setop × Set→ Set whose respective
actions on objects are

𝐹∙ ∶ ⟨𝐀, 𝐁⟩↦ Hom Set(𝐀 × 𝐒,𝐁) (56)

and
𝐺∙ ∶ ⟨𝐀, 𝐁⟩↦ Hom Set(𝐀,𝐁𝐒). (57)

On morphisms, 𝐹 acts as follows. Given a morphism
⟨
𝑓op, 𝑔

⟩
∶ ⟨𝐀, 𝐁⟩ →⟨

𝐀′, 𝐁′
⟩
in Setop × Set, the function

𝐹(
⟨
𝑓op, 𝑔

⟩
)∶ Hom Set(𝐀 × 𝐒,𝐁)→ Hom Set(𝐀′ × 𝐒,𝐁′)
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takes any function 𝜑∶ 𝐀 × 𝐒→ 𝐁 and maps it to the function

⟨𝑓, id𝐒⟩ # 𝜑 # 𝑔∶ 𝐀′ × 𝐒→ 𝐁′. (58)

Let us also define the action of 𝐺 on morphisms. Given again a morphism⟨
𝑓op, 𝑔

⟩
∶ ⟨𝐀, 𝐁⟩→

⟨
𝐀′, 𝐁′

⟩
in Setop × Set, the function

𝐺(
⟨
𝑓op, 𝑔

⟩
)∶ Hom Set(𝐀,𝐁𝐒)→ Hom Set(𝐀′,𝐁′𝐒)

takes any function 𝜑∶ 𝐀→ 𝐁𝐒 and maps it to the function

𝑓 # 𝜑 # 𝑔∗ ∶ 𝐀′ → 𝐁′𝐒 (59)

where 𝑔∗ is the function

𝑔∗ ∶ 𝐁
𝐒 → 𝐁′𝐒, 𝜓 ↦ 𝜓 # 𝑔. (60)

Now, recall that we can “curry” any function 𝑓 ∶ 𝐀×𝐒→ 𝐁 to get a function
𝑓∶ 𝐀→ 𝐁𝐒, where 𝑓(𝑥)may be thought of as a partial evaluation of 𝑓.
Your task in this exercise: show that the functions

𝛼⟨𝐀, 𝐁⟩ ∶ Hom Set(𝐀 × 𝐒,𝐁)→ Hom Set(𝐀,𝐁𝐒), 𝑓 ↦ 𝑓, (61)

where 𝑓 is the “curried” version of 𝑓, are the components of a natural trans-
formation 𝛼∶ 𝐹 ⇒ 𝐺.
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The Battle of Surfaces was a men’s tennis exhibition match that was held on May 2, 2007, between the Swiss Roger Federer and Rafael Nadal, respectively
number 1 and 2 in the world in men’s singles. Federer preferred grass—he was 5 years unbeaten on that terrain. Nadal preferred clay—he was 3 years
unbeaten. To check who would win when averaging out the terrain, the match was played on a unique court with a clay surface on one side of the net and
grass on the other.
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24.1. Formal concept analysis
Formal concept analysis (FCA) is a mathematical theory which formalizes the
relationships, and in particular hierarchies, that appear when we consider a set of
things – these are called objects in FCA – together with a set of attributes that these
things may or may not have. (We will use the word “things” instead of “objects”,
because we are already using the word “objects” in the category-theory sense.)
The most basic set-up for formal concept analysis is to start with a triple ⟨𝐆,𝐌, 𝐼⟩,
where 𝐆 is a set of things (“G” stands for the German word “Gegenstände”),𝐌 is
a set of attributes (“M” stands for the German word “Merkmale”), and 𝐼 ⊆ 𝐆×𝐌
is a relation that encodes which objects are associated with which attributes (“I”
stands for the German word “Inzidenz”). The triple ⟨𝐆,𝐌, 𝐼⟩ is called a formal
context.
Here is a (very simplified) example in the context of “private means of transporta-
tion”. We consider the set of things to be the following means of transportation

𝐆 = {classic car, hybrid car, electric car, classic bike, hybrid bike, electric scooter, skateboard},
(1)

and we consider the set of attributes

𝐌 = {fast, electric, gas,muscle, cheap}, (2)

which describe aspects such how the means of transportation are powered, their
relative cost, or if they can go fast enough to move on a highway, for example. We
define the relation 𝐼 ⊆ 𝐆 ×𝐌 via the following table

fast electric gas muscle cheap
classic car × ×
hybrid car × × ×
electric car × ×
classic bike × ×
hybrid bike × ×

electric scooter × ×
skateboard × ×

where a cross “×” indicates when a thing and an attribute are associated with
each other.

Induced monotone maps

For each element 𝑥 of 𝐆, we can consider the set 𝐼♯({𝑥}) of attributes that are
associated with 𝑥. This corresponds to reading off in the the above table where
there are crosses “×” in the row labeled by 𝑥. For example

𝐼♯({hybrid car}) = {fast, electric, gas}. (3)

More generally, given a subset 𝐀 ⊆ 𝐆, can can consider the largest set 𝐼♯(𝐀) of
attributes which all elements of 𝐀 have in common. For example

𝐼♯({hybrid car, electric car}) = {fast, electric}. (4)

Here, “gas” is not an element of 𝐼♯({hybrid car, electric car}) because “gas” is
associated with hybrid car but not with electric car.
Similarly,

𝐼♯({classic car, hybrid car, electric car}) = {fast}. (5)
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Also, we have, for example,

𝐼♯({classic car, classic bike}) = ∅ (6)

because “classic car” and “classic bike” have no attributes from the set 𝐌 in
common. In general we have

𝐼♯(𝐀) =
⋂

𝑥∈𝐀
𝐼♯({𝑥}). (7)

and the operation “𝐼♯” defines a function

𝐼♯ ∶ 𝖯𝗈𝗐𝐆→ 𝖯𝗈𝗐𝐌. (8)

Observe that the larger 𝐀 is, the smaller 𝐼♯(𝐀) will be. Formulated more mathe-
matically, we have

𝐀 ⊆ 𝐀′ ⟹ 𝐼♯(𝐀) ⊇ 𝐼♯(𝐀′). (9)

Another way of saying this is to say that 𝐼♯ is a monotone map of posets

𝐼♯ ∶ ⟨𝖯𝗈𝗐𝐆, ⊆⟩→ ⟨𝖯𝗈𝗐𝐌, ⊇⟩. (10)

Or, equivalently, we can say that 𝐼♯ is a monotone map

𝐼♯ ∶ ⟨𝖯𝗈𝗐𝐆, ⊆⟩→ ⟨𝖯𝗈𝗐𝐌, ⊆⟩op. (11)

Note that we can also define a similar map in the other direction: there is a
function

𝐼♭ ∶ 𝖯𝗈𝗐𝐌→ 𝖯𝗈𝗐𝐆 (12)

defined such that for any subset 𝐁 ⊆ 𝐌, the set 𝐼♭(𝐁) is the largest set of ele-
ments of 𝐆 such that the attributes in 𝐁 apply to all of the elements of 𝐼♭(𝐁). For
example,

𝐼♭({muscle, cheap}) = {classic bike, skateboard}. (13)

The map 𝐼♭ is also order-reversing with respect to inclusion of sets: if we start
with a larger set of attributes, then set of things that these all apply to will be
smaller. Thus we have a monotone map

𝐼♭ ∶ ⟨𝖯𝗈𝗐𝐌, ⊆⟩op → ⟨𝖯𝗈𝗐𝐆, ⊆⟩. (14)

We will also want to use its opposite, the monotone map

𝐼op♭ ∶ ⟨𝖯𝗈𝗐𝐌, ⊆⟩→ ⟨𝖯𝗈𝗐𝐆, ⊆⟩op. (15)

In the following, we will try to keep track of when there is an superscript “(−)op”;
however sometimes it will be convenient to use the notations 𝐼♯ and 𝐼♭ both for
these maps and their opposites (in particular, on the level of objects they are the
same function).
A key observation is that 𝐼♯ and 𝐼♭ are “complementary” in the following sense.
For any 𝐀 ⊆ 𝐆 and any 𝐁 ⊆𝐌 we have

𝐼♯(𝐀) ⊇ 𝐁 ⇔ 𝐀 ⊆ 𝐼♭(𝐁). (16)

This equivalence formalizes the (nearly tautological-seeming) statement that a
set 𝐁 is contained in the largest set of attributes which apply to all members of 𝐀
(meaning: the attributes𝐁 apply to all elements of𝐀) if, and only if,𝐀 is contained
in the largest set of things to which all attributes 𝐁 apply (again meaning: the
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attributes 𝐁 apply to all elements of 𝐀).
Despite seeming tautological, we can use the equivalence (16) to make non-trivial
observations. One consequence of (16) is that the monotone maps

𝐼♯ # 𝐼♭ ∶ ⟨𝖯𝗈𝗐𝐆, ⊆⟩→ ⟨𝖯𝗈𝗐𝐆, ⊆⟩ (17)

and
𝐼op♭ # 𝐼op♯ ∶ ⟨𝖯𝗈𝗐𝐌, ⊆⟩→ ⟨𝖯𝗈𝗐𝐌, ⊆⟩. (18)

are examples of what are called a closure operator and interior operator, respec-
tively.

Closure and interior operators

Definition 24.1
Let 𝐏 = ⟨𝐏, ⪯⟩ be poset. A closure operator on 𝐏 is
Constituents
1. a monotone map 𝑓∶ 𝐏→ 𝐏;
Conditions
1. Extensivity: 𝑥 ⪯ 𝑓(𝑥) ∀𝑥 ∈ 𝐏;
2. Idempotence: 𝑓(𝑓(𝑥)) = 𝑓(𝑥) ∀𝑥 ∈ 𝐏.

Definition 24.2
Let 𝐏 = ⟨𝐏, ⪯⟩ be poset. An interior operator on 𝐏 is
Constituents
1. a monotone map 𝑓∶ 𝐏→ 𝐏;
Conditions
1. Intensivity: 𝑓(𝑥) ⪯ 𝑥 ∀𝑥 ∈ 𝐏;
2. Idempotence: 𝑓(𝑓(𝑥)) = 𝑓(𝑥) ∀𝑥 ∈ 𝐏.

The notions of closure and interior operator are dual in the following sense.

Lemma 24.3. If 𝑓∶ 𝐏→ 𝐏 is a closure (interior) operator, then 𝑓op ∶ 𝐏op → 𝐏op
is an interior (closure) operator.

In this section, for simplicity, we will workmainly in terms of closure operators.

Lemma 24.4. The monotone maps

𝐼♯ # 𝐼♭ ∶ ⟨𝖯𝗈𝗐𝐆, ⊆⟩→ ⟨𝖯𝗈𝗐𝐆, ⊆⟩ (19)

and
𝐼op♭ # 𝐼op♯ ∶ ⟨𝖯𝗈𝗐𝐌, ⊆⟩→ ⟨𝖯𝗈𝗐𝐌, ⊆⟩. (20)

are closure operators.

Proof. Let’s check that 𝐼♯#𝐼♭ ∶ ⟨𝖯𝗈𝗐𝐆, ⊆⟩→ ⟨𝖯𝗈𝗐𝐆, ⊆⟩ is a closure operator,
using (16). We omit the proof for 𝐼op♭ # 𝐼op♯ , which may be done analogously.
To show the first condition in the definition of closure operator, fix a set of
things𝐀 ⊆ 𝐆. In the situation of (16), choose𝐁 = 𝐼♯(𝐀). Since 𝐼♯(𝐀) ⊇ 𝐼♯(𝐀)
is true, (16) implies that 𝐀 ⊆ 𝐼♭(𝐼♯(𝐀)) = (𝐼♯ # 𝐼♭)(𝐀).
Now let’s consider the second condition. Applying the monotone map 𝐼♯ # 𝐼♭
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to the relation 𝐀 ⊆ (𝐼♯ # 𝐼♭)(𝐀), we have

(𝐼♯ # 𝐼♭)(𝐀) ⊆ (𝐼♯ # 𝐼♭ # 𝐼♯ # 𝐼♭)(𝐀). (21)

Thus we are finished when we show the inclusion in the other direction. By
the first condition, we know that

𝐼♯(𝐀) ⊆ 𝐼♯(𝐼♭(𝐼♯(𝐀))) = (𝐼♯ # 𝐼♭ # 𝐼♯)(𝐀). (22)

Applying the order-reversing map 𝐼♭ to both sides of this inclusion then
gives

(𝐼♯ # 𝐼♭)(𝐀) ⊇ (𝐼♯ # 𝐼♭ # 𝐼♯ # 𝐼♭)(𝐀) (23)

as desired.

Closure and interior operators arise in various contexts in mathematics. Often we
are interested in the elements which are in the images of these operators. These
are called closed elements and open elements, respectively. We will use the term
fixed-points to refer to both of these cases without needing to specify whether we
are working with a closure or an interior operator.

Definition 24.5
Let 𝐏 = ⟨𝐏, ⪯⟩ be a poset, 𝑓∶ 𝐏 → 𝐏 a monotone map, and 𝑥 ∈ 𝐏 an
arbitrary element of 𝐏.
If 𝑓 is a closure (interior) operator, then 𝑓(𝑥) ∈ 𝐏 is called the closure
(interior) of 𝑥, and 𝑥 is called closed (open) if 𝑓(𝑥) = 𝑥. In both cases, when
𝑓(𝑥) = 𝑥, we say that 𝑥 is a fixed-point of 𝑓.
The set of fixed-points of 𝑓 will be denoted 𝐏𝑓 , or by 𝐏fix when the operator
𝑓 in question is clear.

Remark 24.6. Note that if 𝑓∶ 𝐏→ 𝐏 is a closure or interior operator, then the
set of fixed points 𝐏fix coincides with the image of 𝑓.
On the one hand, any element 𝑦 of the form 𝑦 = 𝑓(𝑥) is a fixed-point, because

𝑓(𝑓(𝑥)) = 𝑓(𝑥) (24)

by the idempotence property.
On the other hand, if 𝑦 ∈ 𝐏 is a fixed point, then by definition 𝑦 = 𝑓(𝑦) is in the
image of 𝑓.

Remark 24.7. If 𝑥 is a fixed-point of a closure/interior operator 𝑓∶ 𝐏→ 𝐏, then
𝑥 is also a fixed-point of 𝑓op ∶ 𝐏op → 𝐏op.

Returning now to formal concept analysis, let’s look at closures and closed ele-
ments for the closure operators

𝐼♯ # 𝐼♭ ∶ ⟨𝖯𝗈𝗐𝐆, ⊆⟩→ ⟨𝖯𝗈𝗐𝐆, ⊆⟩

and
𝐼op♭ # 𝐼op♯ ∶ ⟨𝖯𝗈𝗐𝐌, ⊆⟩→ ⟨𝖯𝗈𝗐𝐌, ⊆⟩

in terms of our simple example.
For example, let

𝐀 = {classic car, electric car}. (25)

Then
𝐼♯(𝐀) = {fast} (26)
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330 24. Adjunctions

and
𝐼♭(𝐼♯(𝐀)) = 𝐼♭({fast}) = {classic car, hybrid car, electric car}. (27)

So 𝐀 = {classic car, electric car} is not a closed element of ⟨𝖯𝗈𝗐𝐆, ⊆⟩. Its closure
contains the element “hybrid car” which is not in 𝐀.
Or consider

𝐁 = {electric,muscle}. (28)

Then
𝐼♭(𝐁) = {hybrid bike} (29)

and
𝐼♯(𝐼♭(𝐁)) = 𝐼♯({hybrid bike}) = {electric,muscle} = 𝐁. (30)

We find here that {hybrid bike} is a closed element of ⟨𝖯𝗈𝗐𝐌, ⊆⟩.
In general, given a set𝐀 of things, its closure (𝐼♯ # 𝐼♭)(𝐀) is the largest set of things
that share the attributes in 𝐼♯(𝐀). And 𝐼♯(𝐀) is the largest set of attributes shared
by 𝐀. Thus we may say:
“(𝐼♯ # 𝐼♭)(𝐀) is the maximal set of things that share the same attributes as are shared
by 𝐀. ”
Or, put another way, taking the closure of 𝐀 is a way of enlarging 𝐀 without
decreasing the set of associated shared attributes. Closing 𝐀 is adding those
things to 𝐀 that come “for free” in the sense that, by adding them, we are not
losing shared attributes.
A similar point of view of course also applies to closing sets of attributes with
respect to the closure operator 𝐼♭ # 𝐼♯.

Concepts

Definition 24.8
Let ⟨𝐆,𝐌, 𝐼⟩ be a formal context in the sense of formal concept analysis. A
concept is a pair ⟨𝐀, 𝐁⟩ ∈ 𝖯𝗈𝗐𝐆 × 𝖯𝗈𝗐𝐌 such that

𝐼♯(𝐀) = 𝐁 and 𝐼♭(𝐁) = 𝐀. (31)

For a concept ⟨𝐀, 𝐁⟩, the set 𝐀 of things is called the extent of the concept,
and the set 𝐁 of attributes is called the intent of the concept.
We denote the set of all concepts for the context ⟨𝐆,𝐌, 𝐼⟩ by ℬ⟨𝐆,𝐌, 𝐼⟩.
(Here “B” comes from the German term “Begriffe”.)

The set ℬ⟨𝐆,𝐌, 𝐼⟩ of concepts for a formal context has a natural partial order
structure. We set

⟨𝐀1, 𝐁1⟩ ⪯ ⟨𝐀2, 𝐁2⟩ (32)

if𝐀1 ⊆ 𝐀2 and 𝐁1 ⊇ 𝐁2. (In fact, by the definition of a concept, if one of the latter
inclusions holds, then so must the other, so we only need to require one of them.)
When (32) holds, we say that ⟨𝐀1, 𝐁1⟩ is a subconcept of ⟨𝐀2, 𝐁2⟩

Lemma24.9. If ⟨𝐀, 𝐁⟩ is a concept, then𝐀 and𝐁 are closed elements of ⟨𝖯𝗈𝗐𝐆, ⊆⟩
and ⟨𝖯𝗈𝗐𝐌, ⊆⟩, respectively.

Proof. For 𝐀 we have
𝐼♭(𝐼♯(𝐀)) = 𝐼♭(𝐁) = 𝐀 (33)

using both the equations (31). The case for 𝐁 is analogous.
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Lemma 24.10. If 𝐀 ∈ ⟨𝖯𝗈𝗐𝐆, ⊆⟩ is closed, then 𝐼♯(𝐀) is closed and
⟨
𝐀, 𝐼♯(𝐀)

⟩

is a concept.
Similarly, if 𝐁 ∈ ⟨𝖯𝗈𝗐𝐌, ⊆⟩ is closed, then 𝐼♭(𝐁) is closed and ⟨𝐼♭(𝐁), 𝐁)⟩ is a
concept.

Proof. We show only the first statement. We have

(𝐼♭ # 𝐼♯)(𝐼♯(𝐀)) = 𝐼♯(𝐼♭(𝐼♯(𝐀))) = 𝐼♯((𝐼♯ # 𝐼♭)(𝐀)) = 𝐼♯(𝐀), (34)

so 𝐼♯(𝐀) is closed. That ⟨𝐀, 𝐼♭(𝐀)⟩ is a concept is clear, since 𝐼♭(𝐼♯(𝐀)) =
𝐀.

Lemma 24.11. The posets of fixed points ⟨𝖯𝗈𝗐𝐆fix, ⊆⟩ and ⟨𝖯𝗈𝗐𝐌fix, ⊆⟩op are
isomorphic via the restrictions of 𝐼♯ and 𝐼♭, and each is isomorphic to the poset
⟨ℬ⟨𝐆,𝐌, 𝐼⟩, ⪯⟩ via its projections onto its first and second factors, respectively.

Proof. This follows from Lemma 24.9, Lemma 24.10, and the definition of
the ordering on ⟨ℬ⟨𝐆,𝐌, 𝐼⟩, ⪯⟩.
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24.2. Galois connections
Definition 24.12 (Monotone Galois Connection)
A (monotone) Galois connection between posets 𝐏 and 𝐐 is a pair of mono-
tone maps 𝑓∶ 𝐏→ 𝐐 and 𝑔∶ 𝐐→ 𝐏 such that for all 𝑝 ∈ 𝐏, 𝑞 ∈ 𝐐:

𝑓(𝑝) ⪯𝐐 𝑞
.

𝑝 ⪯𝐏 𝑔(𝑞) (35)

In this case 𝑓 is called the left adjoint (or lower adjoint) and 𝑔 is called the
right adjoint (or upper adjoint). We use the short-hand notation 𝑓 ⊣ 𝑔 to say
that 𝑓 and 𝑔 form a Galois connection, or we draw a globular diagram like
so:

𝐏 𝐐

𝑓

𝑔

⊣
(36)

Lemma 24.13. Monotone maps 𝑓∶ 𝐏 → 𝐐 and 𝑔∶ 𝐐 → 𝐏 form a Galois
connection if and only if the following hold:
1. 𝑝 ⪯𝐏 𝑔(𝑓(𝑝)) ∀𝑝 ∈ 𝐏;
2. 𝑓(𝑔(𝑞)) ⪯𝐐 𝑞 ∀𝑞 ∈ 𝐐.

Definition 24.14 (Antitone Galois Connection)
An antitone Galois connection between 𝐏 and 𝐐 is a pair of antitone maps
𝑓∶ 𝐏→ 𝐐 and 𝑔∶ 𝐐→ 𝐏 such that for all 𝑝 ∈ 𝐏, 𝑞 ∈ 𝐐:

𝑞 ⪯𝐐 𝑓(𝑝)
.

𝑝 ⪯𝐏 𝑔(𝑞) (37)

Remark 24.15. The underlying function of an antitone map 𝑓∶ 𝐏→ 𝐐 defines
a monotone map 𝑓∶ 𝐏→ 𝐐op (or a monotone map 𝑓∶ 𝐏op → 𝐐). Every antitone
Galois connection𝑓∶ 𝐏→ 𝐐 and 𝑔∶ 𝐐→ 𝐏 defines aGalois connection𝑓∶ 𝐏→
𝐐op and 𝑔∶ 𝐐op → 𝐏.

Because of the above remark, and because we prefer to work with monotone
maps (since they are morphisms of posets), we will mainly focus on (monotone)
Galois connections. However, it is useful to be aware of the antitone definition,
since it is sometimes used in the literature and sometimes more natural in the
context of certain examples.

Lemma 24.16. Antitone maps 𝑓∶ 𝐏 → 𝐐 and 𝑔∶ 𝐐 → 𝐏 form an antitone
Galois connection if and only if the following hold:
1. 𝑝 ⪯𝐏 𝑔(𝑓(𝑝)) ∀𝑝 ∈ 𝐏;
2. 𝑞 ⪯𝐐 𝑓(𝑔(𝑞)) ∀𝑞 ∈ 𝐐.
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Examples

Induced closure and interior operators
Lemma 24.17. If 𝑓∶ 𝐏→ 𝐐 and 𝑔∶ 𝐐→ 𝐏 form a Galois connection, then

𝑓 # 𝑔∶ 𝐏→ 𝐏 (38)

is a closure operator and
𝑔 # 𝑓∶ 𝐐→ 𝐐 (39)

is an interior operator.
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24.3. Adjunctions: hom-set definition
In this section we give a definition of adjunction which can be viewed as an
analogy with the following situation in linear algebra. Suppose 𝑉 and 𝑊 are
finite-dimensional real vector spaces, equipped with inner products (−,−)𝑉
and (−,−)𝑊 , respectively. The adjoint of a linear map 𝐹∶ 𝑉 →𝑊 is a linear map
𝐹∗ ∶ 𝑊 → 𝑉 such that

(𝐹𝑣,𝑤)𝑊 = (𝑣, 𝐹∗𝑤)𝑉 , ∀𝑣 ∈ 𝑉,𝑤 ∈𝑊. (40)

Definition 24.18 (Adjunction, Version 1)
LetC andD be categories. An adjunction fromC toD is given by the following
data:
1. A functor 𝐿∶ C→ D, called the left adjoint;
2. A functor 𝑅∶ D→ C, called the right adjoint;
3. A natural isomorphism 𝜏 ∶ HomD(𝐿−;−) ⇒ HomC(−;𝑅−) between

functors Cop ×D→ Set.
We use the notation 𝐿 ⊣ 𝑅 to indicate that 𝐿 and 𝑅 form an adjunction,
with 𝐿 the left adjoint and 𝑅 the right adjoint.
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24.4. Adjunctions: (co)unit definition
Recall from Def. 34.1: in a category C, a morphism 𝑓∶ 𝑋 → 𝑌 is an isomorphism
if there exists a morphism 𝑔∶ 𝑋 → 𝑌 such that

𝑓 # 𝑔 = id𝑋 and 𝑔 # 𝑓 = id𝑌 . (41)

Now let’s think about this definition in the case where C is the category Cat of
categories. We will consider weakenings of the notion of isomorphism in this
setting, and thiswill lead to a second (but equivalent) definition of adjunction. The
precise relationship between the two definitions will be spelled out Section 24.7.
The idea of “weakening” the notion of isomorphism of categories is as follows.
Given functors

C D
𝐿

𝑅

(42)

instead of requiring the equations

idC = 𝐿 # 𝑅 and 𝑅 # 𝐿 = idD, (43)

we replace the equality symbols with 2-morphisms, in this way:

idC
un
⟹ 𝐿 # 𝑅 and 𝑅 # 𝐿

co
⟹ idD. (44)

The last two relationships can also be depicted in the following more geometric
manner:

D

C C

𝐿 𝑅

idC

un

, C

D D

𝑅 𝐿

idD

co

. (45)

Definition 24.19 (Equivalence of categories)
Let C and D be categories. An equivalence of categories between C and D is
the following data:
1. A functor 𝐿∶ C→ D;
2. A functor 𝑅∶ D→ C;
3. Natural isomorphisms un∶ idC ⇒ 𝐿 # 𝑅 and co∶ 𝑅 # 𝐿 ⇒ idD.

Definition 24.20 (Adjunction, Version 2)
LetC andD be categories. An adjunction fromC toD is given by the following
data, satisfying the following conditions.
Data:
1. A functor 𝐿∶ C→ D (the left adjoint);
2. A functor 𝑅∶ D→ C (the right adjoint);
3. Two natural transformations un∶ idC ⇒ 𝐿 # 𝑅 and co∶ 𝑅 # 𝐿 ⇒ idD
Conditions:
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1. For all objects 𝑋 of C, it holds that

𝐿un𝑋 # co𝐿𝑋 = id𝐿𝑋 and un𝑅𝑌 # 𝑅co𝑌 = id𝑅𝑌 , (46)

which means that the following diagrams commute:

𝐿𝑋 𝐿𝑅𝐿𝑋 𝑅𝑌 𝑅𝐿𝑅𝑌

𝐿𝑋 𝑅𝑌

𝐿un𝑋

co𝐿𝑋
id𝐿𝑋 id𝑅𝑌

un𝑅𝑌

𝑅co𝑌

(47)

The natural transformations un and co are called the unit and counit of the
adjunction.

Definition 24.21 (Adjoint equivalence)
An adjunction is called an adjoint equivalence if the unit and counit are
natural isomorphisms.

Remark 24.22. The conditions (triangle identities) from Def. 24.20 are “hidden”
in Def. 24.18 in the condition that 𝜏 be a natural isomorphism. In Section 24.7
we spell out how the two definitions are related.
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24.5. Example of a “Product-Hom” adjunction
We will consider an adjunction between the category Set and itself which is a
basic representative of a certain “type” of adjunction that appears all over mathe-
matics. This type of adjunction might be called a “Product-Hom” adjunction.
Fix a set 𝐁 and consider the functors 𝐹 and 𝐺 which act as follows. Given a
set 𝐀,

𝐹(𝐀) = 𝐁 ×𝐀 (48)

and
𝐺(𝐀) = Hom Set(𝐁;𝐀) =∶ 𝐀𝐁. (49)

Given a morphism 𝑓∶ 𝐀→ 𝐀′,

𝐹(𝑓) = id𝐁 × 𝑓 (50)

and
𝐺(𝑓)∶ 𝐀𝐁 → 𝐀′𝐁

𝑔 ↦ 𝑔 # 𝑓.
(51)

These functors are part of an adjunction

Set Set

𝐁 × −

(−)𝐁

⊣

(52)

In terms of Def. 24.18, there is a natural isomorphism

𝜏∶ Hom Set(𝐹(−); −)⟹ Hom Set(−;𝐺(−)) (53)

whose component at ⟨𝐀, 𝐂⟩ is the isomorphism

𝜏𝐀,𝐂 ∶ Hom Set(𝐁 ×𝐀;𝐂)→ Hom Set
(
𝐀;𝐂𝐁

)
(54)

given by “partial evaluation”. Namely, given 𝑓∶ 𝐁 × 𝐀 → 𝐂, this is mapped
by 𝜏𝐀,𝐂 to the function 𝜏𝑓∶ 𝐀→ 𝐂𝐁, 𝑎 ↦ 𝑓(−, 𝑎).
In terms of Def. 24.20, the component at 𝐀 of the unit and co-unit, respectively,
are

un𝐀 ∶ 𝐀→ (𝐁 ×𝐀)𝐁

𝑎 ↦ (𝑏 ↦ ⟨𝑎, 𝑏⟩)
(55)

and
co𝐀 ∶ 𝐁 × (𝐀𝐁)→ 𝐀

⟨𝑏, 𝑓⟩↦ 𝑓(𝑏)
(56)
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24.6. Example of a “Free-Forgetful” adjunction
Another “type” of adjunction that appears frequently can be called a “Free-
Forgetful” adjunction. Such adjunctions are composed of a “free functor” and a
“forgetful functor”. These terms are informal, but the idea is as follows.
A free functor C → D typically takes an object 𝑋 of C and “freely” adds some
structure to it. “Free” means that only those structures and conditions are added
that are absolutely necessary to make𝑋 an object of D, and otherwise the functor
does not impose any constraints or relations.
Conversely, a “forgetful functor” usually starts from an object 𝑌 on D which has
some structure, and “forgets” some of this structure, which results in us being
able to view 𝑌 as an object in C.

Example 24.23. Any real vector space is built from an underlying set, together
with extra structure given by operations (vector addition and scalar multiplica-
tion). There is a forgetful functor

Vectℝ → Set (57)

which maps any vector space to its underlying set of vectors. On the other hand,
there is a “free” functor

Set→ Vectℝ. (58)

Given a set 𝐀, we can build the “free real vector space generated by 𝐀”. To do
this, we think of the elements of 𝐀 as basis vectors, and we build a vector space
by taking formal finite ℝ-linear combinations of them.

In the following we consider an example in detail where we “freely” generate a
category from a directed graph.

Example 24.24. LetGrph be the category of directed graphs and Cat the category
of (small) categories.
There is a functor 𝐹∶ Grph → Cat which turns any directed graph 𝐷 =
⟨𝑉, 𝐸, 𝑠, 𝑡⟩ into a category whose objects are the vertices𝑉 and whose morphisms
are finite directed paths between vertices. This is called the free category generated
by the graph 𝐷 (Section 13.6).
There is also a functor 𝐺∶ Cat→ Grph which turns a category C into a graph
where the set of vertices is ObC and there is a directed edge between vertices for
every morphism in C between the corresponding vertices.
Let’s first describe this adjunction via Def. 24.18. The natural isomorphism

𝜏∶ Hom Cat(𝐹(−); −) ⇒ HomGrph(−;𝐺(−)) (59)

is the one whose component at ⟨𝐷, C⟩ is the isomorphism

𝜏𝐷,C ∶ Hom Cat(𝐹(𝐷);C) ⇒ HomGrph(𝐷;𝐺(C)) (60)

which assigns to any functor 𝐹∶ 𝐹(𝐷) → C the morphism of graphs 𝐷∶ 𝐺(C)
given by restricting 𝐹 to 𝐷 and only keeping track of its action on vertices and
edges (in other words, we ignore its compositional properties and think of it just
as a graph morphism).
Now let’s consider this adjunction from the perspective of Def. 24.20. The com-
ponent at 𝐷 of the counit is the morphism of graphs

un𝐷 ∶ 𝐷 → 𝐺(𝐹(𝐷)) (61)

which includes 𝐷 into the graph 𝐺(𝐹(𝐷)). The latter has an edge from the source
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to the target of every finite path in 𝐷. The paths of length zero are what corre-
sponded to identity morphisms in 𝐹(𝐷), and the paths of length one constitute a
copy of 𝐷 inside 𝐺(𝐹(𝐷)).
What does the unit look like? Its component at C is a functor

coC ∶ 𝐹(𝐺(C))→ C. (62)

The category 𝐹(𝐺(C)) is larger than C: starting with C, the graph 𝐺(C) will
contain edges for all the morphisms in C, but it will forget their compositional
interlinking. In particular, for example, it will forget which loops denote identity
morphisms (in other words, which morphisms act neutrally) and, more generally,
it will forget when different compositions of morphism give the same result.
In 𝐹(𝐺(C)), then, morphism compositions that might have given the same result
inCwill now be distinct. The functor coC in a sense “remembers” those relations
that were true in C and it “implements” them by “projecting” 𝐹(𝐺(C)) back to C.
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24.7. Relating the two definitions
We start first with the “hom-set definition” of adjunction, and show how to obtain
the “(co)unit definition”. Given an adjunction 𝐹 ⊣ 𝐺 from a category C to a
category D, we have, by Def. 24.18 a natural isomorphism 𝜏 with components

𝜏𝑋,𝑌 ∶ HomD(𝐹(𝑋);𝑌)→ HomC(𝑋;𝐺(𝑌)). (63)

From this data we can construct the unit and counit of the adjunction as fol-
lows.
Given an object 𝑋 of C, we define

𝜂𝑍 ∶ 𝑋 → 𝐺(𝐹(𝑋)) (64)

to be the image under 𝜏𝑋,𝐹(𝑋) of id𝐹(𝑋) ∈ HomD(𝐹(𝑋);𝐹(𝑋)).
Given an object 𝑌 of D, we define

𝜀𝑌 ∶ 𝐹(𝐺(𝑌))→ 𝑌 (65)

to the image under 𝜏−1𝐺(𝑌),𝑌 of id𝐺(𝑌) ∈ HomD(𝐺(𝑌);𝐺(𝑌)).

Exercise46. Show that if we define 𝜂 and 𝜀 in terms of their components as above,
then they do indeed define natural transformations

𝜂∶ idC ⇒ 𝐹 # 𝐺 (66)

and
𝜀∶ 𝐺 # 𝐹 ⇒ idD (67)

respectively. In other words, check the naturality conditions for 𝜂 and 𝜀.
See solution on page 341.

Exercise47. Show that 𝜂 and 𝜀, as defined above, satisfy the triangle identities
stated in Def. 24.20.

See solution on page 341.
Now let’s start with the “(co)unit definition” of adjunction and see how to obtain
the “hom-set definition”.
Given the unit 𝜂 and counit 𝜀, we can construct the components 𝜏𝑋,𝑌 of the
natural transformation 𝜏 as follows. Given 𝑓 ∈ HomD(𝐹(𝑋), 𝑌), we define

𝜏𝑋,𝑌(𝑓) = 𝜂𝑋 # 𝐺(𝑓). (68)

Similarly, given 𝑔 ∈ HomC(𝑋,𝐺(𝑌)), the inverse component is given by

𝜏−1𝑋,𝑌(𝑔) = 𝐹(𝑔) # 𝜀𝑌 . (69)

Exercise48. Show that 𝜏𝑋,𝑌 and 𝜏−1𝑋,𝑌 are indeed functions which are inverses of
each other.

See solution on page 341.

Exercise49. Show that the functions 𝜏𝑋,𝑌 do assemble to a natural transformation

𝜏∶ HomD(𝐹(−),−) ⇒ HomC−𝐺(−) (70)

between functors C op ×D→ Set.
See solution on page 341.
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Solutions to selected exercises
Solution of Exercise 46.

Solution is missing.

Solution of Exercise 47.

Solution is missing.

Solution of Exercise 48.

Solution is missing.

Solution of Exercise 49.

Solution is missing.
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346 25. Parallel composition

25.1. Modeling parallelism
We have talked a lot about composition, and considered many examples. How-
ever, the types of compositions we studied were, so far, mostly of the “in series
composition” kind. For instance, we considered the series composition of travel
routes (Example 15.1) and trekking routes (Section 15.2), functions (Section 3.4)
and relations (Section 4.2), engineering component dependencies (Section 15.4)
and Moore machines (Section 18.1), etc.
In this chapter, we will consider composition both in series and in parallel. For
example, given functions 𝑓∶ 𝐀→ 𝐁 and 𝑔∶ 𝐁→ 𝐂, because the target set of the
function 𝑓 matches the source set of 𝑔 they may be composed in series to obtain
a function 𝑓 # 𝑔∶ 𝐀 → 𝐂. On the other hand, any two functions 𝑓1 ∶ 𝐀 → 𝐁
and 𝑓2 ∶ 𝐂→ 𝐃may be composed “in parallel” by taking their cartesian product:
we obtain the function 𝑓1 × 𝑓2 ∶ 𝐀×𝐂→ 𝐁×𝐃. This parallel composition of 𝑓1
and 𝑓2 does not rely on any match-up of target and source sets, but it does rely
on the “additional structure” provided by the cartesian product.
Such “additional structure” will be formalized in this chapter using the notion of
amonoidal structure.
Composing components in parallel is of course a very familiar notion in engineer-
ing, and the mathematical concepts we develop here will, in particular, model
parallel composition in this engineering sense. In the context of co-design of
complex systems, for example, we have seen that series composition corresponds
to relating the functionalities of one component to the required resources of a
next component.
Parallel composition, on the other hand, will correspond to taking two com-
ponents and thinking of them as a single component whose functionality and
resource space are given by the cartesian products of the respective constituent
functionality and resource spaces of the original two components.
In general, a monoidal structure will be a notion of “product” and “neutral el-
ement” that a category may be equipped with, in which case such is called a
monoidal category. One thing that could potentially be confusing at this point is
the following. At the beginning of this book, we studied monoids as a basic kind
of algebraic gadget whose composition operation (also called multiplication) was
generalized to the series composition encoded in the definition of a category. In
this chapter, we will also use the basic pattern of a monoid as inspiration, but
now for parallel composition! Thus, parallel composition is also “monoid-like”,
and hence the namemonoidal structure.

Types of stacking operations
There are various properties that we can consider for categories equipped with
an operation of parallel composition. This leads to a number of definitions; here
is a short overview.
1. Stacking category: a category in which it is possible to stack two morphisms.
2. Functorial stacking category: a stacking category in which the stacking opera-

tion is a functor.
3. Associative stacking category: a functorial stacking category in which the

stacking operation is associative (either strictly, or up to isomorphism).
4. Monoidal category: an associative stacking category in which there is a special

object, called the monoidal unit, which is neutral for the stacking operation.
5. Symmetricmonoidal category: a monoidal category equippedwith a symmetric
way to "cross wires".
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𝑓1⊗⊗⊗ 𝑓2
𝑋1⊗⊗⊗𝑋2 𝑌1⊗⊗⊗𝑌2

Figure 1.: Stacked morphisms

𝑓1

𝑓2

𝑋1⊗⊗⊗𝑋2 𝑌1⊗⊗⊗𝑌2

𝑋1 𝑌1

𝑋2 𝑌2

𝑓1⊗⊗⊗ 𝑓2

Figure 2.: Stacking string diagrams

25.2. Stacking categories
So far we have seen how we can compose morphisms “horizontally”:

𝑓∶ 𝑋 → 𝑌 𝑔∶ 𝑌 → 𝑍
.

𝑓 # 𝑔∶ 𝑋 → 𝑍 (1)

There are other notions of composition that allow us to compose morphisms by
“stacking them vertically”. Given two morphisms

𝑓∶ 𝑋 → 𝑌, (2)
𝑔∶ 𝑍 → 𝑈, (3)

we will obtain by parallel stacking a morphism

(𝑓⊗⊗⊗ 𝑔)∶ (𝑋⊗⊗⊗ 𝑍)→ (𝑌⊗⊗⊗𝑈), (4)

where “⊗⊗⊗” and “⊗⊗⊗” are operations to be defined. Note that while in the case of
sequential composition there was a compatibility condition to be defined, as the
target of the first morphism must be the source of the second morphism, here
instead we can stack arbitrary morphisms.
We also expect to be able to stack any number of morphisms. Having a collection
of morphisms

𝑓𝑖 ∶ 𝑋𝑖 → 𝑌𝑖 , 1 ≤ 𝑖 ≤ 𝑛, (5)

we expect to be able to obtain the composed morphism

(⊗⊗⊗𝑛
𝑖=1𝑓𝑖)∶ (⊗⊗⊗

𝑛
𝑖=1𝑋𝑖)→ (⊗⊗⊗𝑛

𝑖=1𝑌𝑖). (6)

Definition 25.1 (Stacking category)
A stacking category is a categoryCwith the following additional constituents
and properties.
Constituents
⊳ A stacking operation⊗⊗⊗∶ ObC × ObC → ObC.
⊳ A stacking operation⊗⊗⊗∶ MorC ×MorC → MorC.
Conditions
⊳ The two operations⊗⊗⊗ and⊗⊗⊗ are compatible in the sense that

𝑓1 ∶ 𝑋1 → 𝑌1 𝑓2 ∶ 𝑋2 → 𝑌2 .
𝑓1⊗⊗⊗ 𝑓2 ∶ 𝑋1⊗⊗⊗𝑋2 → 𝑌1⊗⊗⊗𝑌2 (7)

In Fig. 1 we have depicted a string diagram of two stacked morphisms. Alter-
natively, in Fig. 2 we depict the stacking of the string diagrams for 𝑓1 and 𝑓2,
respectively, by stacking their diagrams vertically and drawing a box around
them, merging their respective input and output terminals. The outer box de-
notes 𝑓1⊗⊗⊗ 𝑓2; we think of Fig. 1 as a “black-boxed” version of Fig. 2.

Example 25.2. The cartesian product of sets and functions

𝐀⊗⊗⊗ 𝐁 = 𝐀 × 𝐁 𝑓⊗⊗⊗ 𝑔 = 𝑓 × 𝑔 (8)

defines a stacking operation on the category Set. Indeed, by the definition of the
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𝑓1

𝑓2

𝑓3

(𝑋1⊗⊗⊗𝑋2)⊗⊗⊗𝑋3 (𝑌1⊗⊗⊗𝑌2)⊗⊗⊗𝑌3

𝑋1 𝑌1

𝑋2 𝑌2

𝑋3 𝑌3

(𝑓1⊗⊗⊗ 𝑓2)⊗⊗⊗ 𝑓3

(a) One way of stacking three morphisms

𝑓1

𝑓2

𝑓3

𝑋1⊗⊗⊗ (𝑋2⊗⊗⊗𝑋3) 𝑌1⊗⊗⊗ (𝑌2⊗⊗⊗𝑌3)

𝑋1 𝑌1

𝑋2 𝑌2

𝑋3 𝑌3

𝑓1⊗⊗⊗ (𝑓2⊗⊗⊗ 𝑓3)

(b) Another way of stacking three morphisms

Figure 3.: Stacking three morphisms.

cartesian product of functions, the two stacking layers are compatible:

𝑓∶ 𝐀→ 𝐂 𝑔∶ 𝐁→ 𝐃
.

𝑓 × 𝑔∶ 𝐀 × 𝐁 → 𝐂 ×𝐃
⟨𝑎, 𝑐⟩ ↦ ⟨𝑓(𝑎), 𝑔(𝑐)⟩

(9)

Example 25.3. The sum of sets and functions

𝐀⊗⊗⊗ 𝐁 = 𝐀+ 𝐁 𝑓⊗⊗⊗ 𝑔 = 𝑓 + 𝑔 (10)

also defines a stacking operation on the category Set.

Example 25.4. The category of real matrices admits a stacking operation defined
by summing dimensions

𝑛⊗⊗⊗𝑚 = 𝑛 +𝑚 (11)

and combining block matrices like this:

𝐀⊗⊗⊗ 𝐁 = [𝐀 𝟎
𝟎 𝐁] . (12)

Example 25.5. The category DP of design problems admits a stacking operation
which is defined on objects by taking the product of posets,

𝐏⊗⊗⊗𝐐 = 𝐏 ×𝐐, (13)

and on morphisms it is defined by

𝐝∶ 𝐏 op ×𝐑→ Bool 𝐞∶ 𝐐 op × 𝐒→ Bool,
.

𝐝⊗⊗⊗ 𝐞∶ (𝐏⊗⊗⊗𝐐)op × (𝐑⊗⊗⊗ 𝐒) → Bool
⟨⟨𝑎, 𝑐⟩, ⟨𝑏, 𝑑⟩⟩ ↦ 𝐝(𝑎, 𝑐) ∧ 𝐞(𝑐, 𝑑)

(14)

Example 25.6. The following defines a stacking operation for the category LTI
of LTI systems. On objects the stacking is just addition on the natural numbers
(which represent dimensions of input and output spaces):

⊗⊗⊗∶ Ob LTI × Ob LTI → Ob LTI,
⟨𝑙, 𝑚⟩ ↦ 𝑙 +𝑚.

(15)
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On morphisms, the stacking is*

𝑓∶ 𝑙 → LTI 𝑚 𝑔∶ 𝑛 → LTI 𝑜 .
𝑓⊗⊗⊗ 𝑔 = ⟨𝗌𝗍,𝐀, 𝐁, 𝐂,𝐃⟩∶ 𝑙 + 𝑛 → LTI 𝑚 + 𝑜 (16)

with

𝗌𝗍 = [𝗌𝗍𝑓𝗌𝗍𝑔
] , 𝐀 = [𝐀𝑓 𝟎

𝟎 𝐀𝑔
] , 𝐁 = [𝐁𝑓 𝟎

𝟎 𝐁𝑔
] , (17)

𝐂 = [𝐂𝑓 𝟎
𝟎 𝐂𝑔

] , 𝐃 = [𝐃𝑓 𝟎
𝟎 𝐃𝑔

] . (18)

* For the control engineers out there: the resulting LTI system will have a Relative Gain Array (RGA)
matrix corresponding to the identity matrix.

Something incorrect or unclear or missing? Report issues on GitHub by clicking here.

https://github.com/ACT4E/ACT4E/issues/new?labels=chap:parallelism;body=Chapter:%20Parallel composition%0ASection:%20 Stacking categories%0AVersion:%202024-12-09%0A%0ACheck%20all%20that%20apply:%0A-%20(%20)%20Something%20incorrect%0A-%20(%20)%20Something%20not%20clear%0A-%20(%20)%20Something%20missing%0A%0APlease%20describe%20more%20in%20detail%20below.%20Feel%20free%20to%20change%20the%20title%20to%20something%20more%20informative.%0A;title=Parallel composition%20/%20 Stacking categories%20/%202024-12-09


350 25. Parallel composition

25.3. Functorial stacking categories
Definition 25.7 (Functorial stacking category)
A functorial stacking category is a stacking category where the two stacking
operations⊗⊗⊗ and⊗⊗⊗ are the two components of a functor

⊗⊗⊗∶ C × C→ C. (19)

In infix notation, this means that

(𝑓 # ℎ)⊗⊗⊗ (𝑔 # 𝑖) = (𝑓⊗⊗⊗ 𝑔) # (ℎ⊗⊗⊗ 𝑖) (20)

for all morphisms 𝑓, 𝑔, ℎ and 𝑖 (where respectively 𝑓 and ℎ, and 𝑔 and 𝑖 are
composable), and that

id𝑋 ⊗⊗⊗ id𝑌 = id𝑋⊗⊗⊗𝑌 (21)

for all objects 𝑋, 𝑌 of C.

This describes a sort of commutativity property: we can either first compose
horizontally and then vertically, or vice versa; either way, we obtain the same
resul (Fig. 4).

Example 25.8. The cartesian product of sets and functions is a functorial stacking
operation. Suppose we are given functions 𝑓, 𝑔, ℎ and 𝑖 (where respectively 𝑓 and
ℎ, and 𝑔 and 𝑖 are composable). On the one hand,

((𝑓 # 𝑔) × (ℎ # 𝑘))(⟨𝑎, 𝑏⟩) = ⟨(𝑓 # 𝑔)(𝑎), (ℎ # 𝑘)(𝑏)⟩ (22)
= ⟨𝑔(𝑓(𝑎)), 𝑘(ℎ(𝑏))⟩ (23)

while on the other hand,

((𝑓 × ℎ) # (𝑔 × 𝑘))(⟨𝑎, 𝑏⟩) = (𝑔 × 𝑘)((𝑓 × ℎ)(⟨𝑎, 𝑏⟩)) (24)
= (𝑔 × 𝑘)(⟨𝑓(𝑎), ℎ(𝑏)⟩) (25)
= ⟨𝑔(𝑓(𝑎)), 𝑘(ℎ(𝑏))⟩ (26)

Example 25.9. The sum of sets and functions is a functorial stacking operation.

Example 25.10. Consider the stacking operation defined previously for the
category of real matrices. It is functorial stacking:

(𝐀 # 𝐁)⊗⊗⊗ (𝐂 #𝐃) = (𝐁𝐀)⊗⊗⊗ (𝐃𝐂) (27)

= [𝐁𝐀 𝟎
𝟎 𝐃𝐂] (28)

(𝐀⊗⊗⊗ 𝐂) # (𝐁⊗⊗⊗𝐃) = [𝐀 𝟎
𝟎 𝐂] # [𝐁 𝟎

𝟎 𝐃] (29)

= [𝐁 𝟎
𝟎 𝐃] [

𝐀 𝟎
𝟎 𝐂] (30)

= [𝐁𝐀 𝟎
𝟎 𝐃𝐂] (31)

Example 25.11. The stacking operation previously defined for the category DP
of design problems is functorial.
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(𝑓⊗⊗⊗ 𝑔) # (ℎ⊗⊗⊗ 𝑖)

𝑓 ℎ

𝑔 𝑖

⊗⊗⊗ ⊗⊗⊗

𝑌𝑋 𝑉

𝑍 𝑊𝑈

=

𝑓 ℎ

𝑔 𝑖

⊗⊗⊗

𝑌𝑋 𝑉

𝑍 𝑊𝑈

(𝑓 # ℎ)⊗⊗⊗ (𝑔 # 𝑖)

Figure 4.: Commutation of stacking and composi-
tion in a functorial stacking semicategory.

Stacking for LTI is almost functorial

Example 25.12. We want to show that LTI, equipped with the defined stacking
operations, is almost a functorial stacking semicategory, but not quite. Given
morphisms 𝑓∶ 𝑙 → 𝑚, ℎ∶ 𝑚 → 𝑛, 𝑔∶ 𝑜 → 𝑝, 𝑖∶ 𝑝 → 𝑞, we would need to have

(𝑓 # ℎ)⊗⊗⊗ (𝑔 # 𝑖) = (𝑓⊗⊗⊗ 𝑔) # (ℎ⊗⊗⊗ 𝑖).

This, however, is not true. Let’s see this by looking at the first matrix component
of the LTI system. On one hand we have:

𝐀(𝑓#ℎ)⊗⊗⊗(𝑔#𝑖) =
⎡
⎢
⎢
⎢
⎣

𝐀𝑓 𝟎 𝟎 𝟎
𝐁ℎ𝐂𝑓 𝐀ℎ 𝟎 𝟎
𝟎 𝟎 𝐀𝑔 𝟎
𝟎 𝟎 𝐁𝑖𝐂𝑔 𝐀𝑖

⎤
⎥
⎥
⎥
⎦

. (32)

On the other hand we have:

𝐀(𝑓⊗⊗⊗𝑔)#(ℎ⊗⊗⊗𝑖) =
⎡
⎢
⎢
⎢
⎣

𝐀𝑓 𝟎 𝟎 𝟎
𝟎 𝐀𝑔 𝟎 𝟎

𝐁ℎ𝐂𝑓 𝟎 𝐀ℎ 𝟎
𝟎 𝐁𝑖𝐂𝑔 𝟎 𝐀𝑖

⎤
⎥
⎥
⎥
⎦

. (33)

These two are different, and will therefore describe different systems. However,
the two matrices just differ by two permutations, which can be expressed via an
invertible linear transformation 𝐓 as follows:

𝐀(𝑓⊗⊗⊗𝑔)#(ℎ⊗⊗⊗𝑖) =
⎡
⎢
⎢
⎢
⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥
⎥
⎥
⎦⏟⎴⎴⎴⏟⎴⎴⎴⏟

𝐓

⋅𝐀(𝑓#ℎ)⊗⊗⊗(𝑔#𝑖) ⋅
⎡
⎢
⎢
⎢
⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥
⎥
⎥
⎦

. (34)

It turns out that (𝑓 # ℎ)⊗⊗⊗ (𝑔 # 𝑖) and (𝑓 ⊗⊗⊗ 𝑔) # (ℎ ⊗⊗⊗ 𝑖) are equivalent systems
(Def. 18.21), even though they are not equal. In particular, although LTI is not a
functorial stacking semicategory, by Lemma 18.29 (𝑓 # ℎ)⊗⊗⊗ (𝑔 # 𝑖) and (𝑓⊗⊗⊗ 𝑔) #
(ℎ⊗⊗⊗𝑖) have the same action, and hence LTI is, in one sense, “morally” functorial.

Graded exercise H.1 (StackingLTI)
Consider the category of finite-dimensional linear time-invariant systems
defined in Def. 18.22 with the stacking defined above.
Your task: supposing that morphisms 𝑓∶ 𝑙 → 𝑚, ℎ∶ 𝑚 → 𝑛, 𝑔∶ 𝑜 →
𝑝, 𝑖∶ 𝑝 → 𝑞 are given, compute the matrices

𝐀(𝑓#ℎ)⊗⊗⊗(𝑔#𝑖) (35)

and
𝐀(𝑓⊗⊗⊗𝑔)#(ℎ⊗⊗⊗𝑖) (36)

associatedwith themorphisms (𝑓#ℎ)⊗⊗⊗(𝑔#𝑖) and (𝑓⊗⊗⊗𝑔)#(ℎ⊗⊗⊗𝑖), respectively.

A very non-functorial stacking

We describe here a category that will serve as an example of a stacking category
that is not functorial.
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𝑓 𝑌𝑋

(a) Amorphism 𝑓∶ 𝑋 →Eff 𝑌 in Eff .

𝗋𝖾𝗉(𝑓) 𝑌𝑋

(b) Its representation in ⦉ Set⦊ as a morphism
𝗋𝖾𝗉(𝑓)∶ ⦉𝑋, ⦊→⦉ Set⦊ ⦉𝑌, ⦊.

Figure 5.

𝑓 𝑔𝑌𝑋 𝑍

(a) Composition in Eff .

𝗋𝖾𝗉(𝑓) 𝗋𝖾𝗉(𝑔) 𝑍𝑋 𝑌

(b) Its representation in ⦉ Set⦊.

Figure 6.

There are two types of computation: on the one hand, “functional”, or “pure”, or
“free of side effects”, and on the other hand there is effectful computation.
In functional programming, functions in the programming language are “pure"
and are very much like mathematical functions: they need an input and produce
and output. And they don’t interfere with other functions.
Effectful procedures, instead, can “change the world”: for example, printing a
page, sending an email, or placing an order of pizza. The order in which effectful
procedures are evaluated might change the result. For example, the result of the
sequence of operations
1. Order a pizza;
2. Cancel the last order;
is different from the result of the sequence of operations
1. Cancel the last order;
2. Order a pizza;
A very elegant way to treat side effects mathematically is using linear types [31].
We will mention those in a successive part on linear logic. For now, we stick to a
simple treatment.
We are going to define a category Eff . The idea is to add another variable that
represents “the world” that can be affected. An effectful function

𝑓∶ 𝑋 →Eff 𝑌, (37)

which could have some unknown side effects on the world, can be represented
by a pure function

𝗋𝖾𝗉(𝑓)∶ 𝑋 × → Set 𝑌 × , (38)

or, in other words, as a morphism

𝗋𝖾𝗉(𝑓)∶ ⦉𝑋, ⦊→⦉ Set⦊ ⦉𝑌, ⦊, (39)

where is the set of all possible worlds (Fig. 5).
The second input to 𝗋𝖾𝗉(𝑓) is the state of the world before the execution of the
function. The second output of 𝗋𝖾𝗉(𝑓) is the state of the world after the execution
of the function.
We can now interconnect different effectful functions, with some precautions.
We cannot “split the world”, by creating a function of type → × . We will
re-state this formally when we get to linear logic.
We can extend usual function composition to composition of effectful functions as
in Fig. 6. The second effectful function operates on the world after it was possibly
modified by the first effectful function.
We have all the ingredients to define the category Eff of effectful computation.

Definition 25.13 (Category of effectful procedures Eff)
Fix a set of all possible worlds. The categoryEff is defined by the following:
⊳ Objects: same as the objects of ⦉ Set⦊;
⊳ Morphisms: a morphism 𝑓∶ 𝑋 →Eff 𝑌 is a function

𝗋𝖾𝗉(𝑓)∶ ⦉𝑋, ⦊→⦉ Set⦊ ⦉𝑌, ⦊. (40)

⊳ Composition: The composition of 𝑓∶ 𝑋 →Eff 𝑌 and 𝑔∶ 𝑌 →Eff 𝑍 is the
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𝑓

𝑔

⊗⊗⊗

𝑌𝑋

𝑍𝑈

(a) Stacking in Eff

𝗋𝖾𝗉(𝑓)

𝗋𝖾𝗉(𝑔)

𝑌𝑋

𝑍𝑈

(b) Its representation in ⦉ Set⦊

Figure 7.

morphism 𝑓 # 𝑔∶ 𝑋 →Eff 𝑍 with 𝗋𝖾𝗉(𝑓 # 𝑔) given by

𝗋𝖾𝗉(𝑓 #Eff 𝑔) = 𝗋𝖾𝗉(𝑓) #⦉ Set⦊ 𝗋𝖾𝗉(𝑔) (41)

as illustrated in Fig. 6.
⊳ Identities: for any object 𝑋, its identity morphism id𝑋 ∶ 𝑋 →Eff 𝑋 is the
identity function

⦉𝑋, ⦊→⦉ Set⦊ ⦉𝑋, ⦊. (42)

We can now make Eff into a stacking category by deciding how to evaluate a
stack of functions. We define this in the way shown in Fig. 7.

Lemma 25.14. Eff is not a functorial stacking semicategory.

Proof. In general, we have

(𝑓⊗⊗⊗ 𝑔) # (ℎ⊗⊗⊗ 𝑖) ≠ (𝑓 # ℎ)⊗⊗⊗ (𝑔 # 𝑖). (43)

This is shown graphically in Fig. 8.

𝗋𝖾𝗉(𝑓) 𝗋𝖾𝗉(ℎ)

𝗋𝖾𝗉(𝑔) 𝗋𝖾𝗉(𝑖)

𝑌𝑋

𝑈
𝑍

𝑉

𝑊

(a) (𝑓⊗⊗⊗ 𝑔) # (ℎ⊗⊗⊗ 𝑖)

𝗋𝖾𝗉(𝑓) 𝗋𝖾𝗉(ℎ)

𝗋𝖾𝗉(𝑔) 𝗋𝖾𝗉(𝑖)

𝑌𝑋

𝑈
𝑍

𝑉

𝑊

(b) (𝑓 # ℎ)⊗⊗⊗ (𝑔 # 𝑖)

Figure 8.: Proof that Eff is not a functorial stacking category by showing that the two morphisms above have different representations in ⦉ Set⦊.
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𝑓1

𝑓2

𝑓3

𝑋1 𝑌1

𝑋2 𝑌2

𝑋3 𝑌3

Figure 9.: Associative stacking of three mor-
phisms, in one order.

𝑓1

𝑓2

𝑓3

𝑋1 𝑌1

𝑋2 𝑌2

𝑋3 𝑌3

Figure 10.: Associative stacking of three mor-
phisms, in another order.

𝑓1

𝑓2

𝑓3

𝑋1 𝑌1

𝑋2 𝑌2

𝑋3 𝑌3

𝑓1⊗⊗⊗ 𝑓2⊗⊗⊗ 𝑓3

Figure 11.:Our string diagram notation for a triple
stack.

25.4. Associative stacking categories
Definition 25.15 (Strict associative stacking category)
An strict associative stacking category is
Constituents
1. a functorial stacking category ⟨C, ⊗⊗⊗⟩;
Conditions
1. the two composite functors ((−)⊗⊗⊗ (−))⊗⊗⊗ (−) and (−)⊗⊗⊗ ((−)⊗⊗⊗ (−)) are

equal as functors C × C × C→ C.

Definition 25.16 (Associative stacking category)
An associative stacking category is a
Constituents
1. functorial stacking category ⟨C, ⊗⊗⊗⟩;
2. a natural isomorphism

𝖺𝗌∶ ((−)⊗⊗⊗ (−))⊗⊗⊗ (−) ⇒ (−)⊗⊗⊗ ((−)⊗⊗⊗ (−)) (44)

Conditions
1. Pentagon identities: for all𝑋,𝑌, 𝑍,𝑈 ∈ ObC, the following diagrammust

commute

(𝑋⊗⊗⊗𝑌)⊗⊗⊗ (𝑍 ⊗⊗⊗𝑈)

((𝑋⊗⊗⊗𝑌)⊗⊗⊗𝑍)⊗⊗⊗𝑈 (𝑋⊗⊗⊗ (𝑌⊗⊗⊗ (𝑍 ⊗⊗⊗𝑈)))

(𝑋⊗⊗⊗ (𝑌⊗⊗⊗ 𝑍))⊗⊗⊗𝑈 𝑋⊗⊗⊗ ((𝑌⊗⊗⊗ 𝑍)⊗⊗⊗𝑈)

𝖺𝗌𝑋,𝑌,𝑍⊗⊗⊗𝑈

𝖺𝗌𝑋,𝑌,𝑍 ⊗⊗⊗ id𝑈

𝖺𝗌𝑋⊗⊗⊗𝑌,𝑍,𝑈

𝖺𝗌𝑋,𝑌⊗⊗⊗𝑍,𝑈

id𝑋 ⊗⊗⊗ 𝖺𝗌𝑌,𝑍,𝑈

(45)

If a semicategory is associative stacking, then the two ways of stacking three
morphisms – as depicted in Fig. 3a and Fig. 3b, respectively – give the same result.
For associative stacking semicategories we will use a simpler diagrammatic
notation, where the diagrams in Fig. 3a and Fig. 3b instead look like the ones in
Fig. 9 and Fig. 10. Since these two diagrams depict that same morphism, when
it is convenient we will also simply depict them as in Fig. 11 (and similarly for
any number of stacked morphisms). In particular, in an associative stacking
semicategory, and stacking of two morphisms will be depicted as in Fig. 12.

Figure 12.: Associative stacking of two mor-
phisms.

𝑓1

𝑓2

𝑋1 𝑌1

𝑋2 𝑌2

Remark 25.17. In an associative stacking semicategory it follows that we can
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stack any number of morphisms without needing to bracket using parentheses:

𝑓𝑖 ∶ 𝑋𝑖 → 𝑌𝑖 , 1 ≤ 𝑖 ≤ 𝑛,
.

⊗⊗⊗𝑛
𝑖=1𝑓𝑖 ∶ ⊗⊗⊗𝑛

𝑖=1 𝑋𝑖 →⊗⊗⊗𝑛
𝑖=1𝑌𝑖 . (46)

Example 25.18. We let the integers ℤ to be the set of objects of an associative
stacking semicategory, and we say that there exists a unique morphism 𝑋 → 𝑌 if
and only if 𝑋 ≤ 𝑌. (We have already seen that this forms a semicategory; in fact,
a category.) As our stacking operation for objects we set

𝑋⊗⊗⊗𝑌 ∶= max(𝑋,𝑌) (47)

and for stacking morphisms we say that if 𝑓∶ 𝑋 → 𝑌 and 𝑔∶ 𝑍 → 𝑈 exist, then
there exists a unique morphism

𝑓⊗⊗⊗ 𝑔∶ 𝑋⊗⊗⊗ 𝑍 → 𝑌⊗⊗⊗𝑈 (48)

which corresponds to (and is consistent with) the inequality

max(𝑋, 𝑍) ≤ max(𝑌,𝑈). (49)

Example 25.19. Let 𝐀 be a non-empty set and consider a semicategory where
the collection of objects is 𝖫𝗂𝗌𝗍𝐀, the set of non-empty lists of elements of 𝐀. We
can define a pre-order on 𝖫𝗂𝗌𝗍𝐀 by setting, for any lists 𝑋,𝑌,

𝑋 ≤ 𝑌 ∶= length(𝑋) ≤ length(𝑌). (50)

Then we view this pre-order as a semicategory, and define the following stacking
operations. Given lists 𝑋,𝑌, let 𝑋 ⊗⊗⊗ 𝑌 be the concatenation of 𝑋 and 𝑌, and
given morphisms 𝑓∶ 𝑋 → 𝑌 and 𝑔∶ 𝑍 → 𝑈 representing inequalities, we let
𝑓⊗⊗⊗ 𝑔∶ 𝑋⊗⊗⊗ 𝑍 → 𝑌⊗⊗⊗𝑈 represent the inequality

length(𝑋⊗⊗⊗ 𝑍) ≤ length(𝑌⊗⊗⊗𝑈). (51)

One-object associative stacking semicategories

Consider a special kind of a stacking semicategory ⟨C, ⊗⊗⊗,⊗⊗⊗⟩ where the semicat-
egory C has only one object (call it 𝑋, say).
In this special case, we have⊗⊗⊗𝑛

𝑖=1𝑋𝑖 = 𝑋 for any 𝑛 ∈ ℕ. The only hom-set is
HomC(𝑋,𝑋) and this is equipped with the stacking operation

⊗⊗⊗∶ HomC(𝑋,𝑋) ×HomC(𝑋,𝑋)→ HomC(𝑋,𝑋) (52)

which makes HomC(𝑋,𝑋) into a semigroup. In other words, this means that an
associative stacking semicategory with one object may equivalently be described
as set together with two operations – serial composition and stacking – that equip
said set with two semigroup structures.

Example 25.20. The integers ℤ, equipped with addition and multiplication
as serial composition and stacking respectively, specify an associative stacking
category with one object. Alternatively, we may also choose multiplication as our
serial composition, and addition as our stacking.
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356 25. Parallel composition

Design problems
Example 25.21. As long as the propulsion and life support systems below do
not interact, we can simply tensor the two design problems representing these
systems into one, big co-design problem (Fig. 13).

Figure 13.: Example of tensor of design problems.

propulsion
system

life support

mass
volume

mass
energy

g.w.

CO2

thrust

O2

clean water

≡

propulsion
system
⊗

life support

mass1

volume

mass2
energy

g.w.

CO2

thrust

O2

clean water

You are reading a draft compiled on 2024-12-09 11:28:28Z



25.5. Monoidal categories 357

25.5. Monoidal categories
Strict monoidal categories

Definition 25.22 (Strict monoidal category)
A strict monoidal category is
Constituents

1. a strict associative stacking category ⟨C, ⊗⊗⊗⟩,
2. an object 𝟏 ∈ ObC, called themonoidal unit;
Conditions

1. for any object 𝑋 of C,

𝑋⊗⊗⊗ 𝟏 = 𝑋 and 𝟏⊗⊗⊗𝑋 = 𝑋; (53)

2. for any morphism 𝑓∶ 𝑋 → 𝑌,

𝑓⊗⊗⊗ id𝟏 = 𝑓 and id𝟏⊗⊗⊗ 𝑓 = 𝑓. (54)

Example 25.23. Consider the associative stacking category from Example 25.18,
where objects are integers and stacking of objects is taking their maximum. There
is no possible monoidal unit here: it would have to be a neutral element for the
operation “max”, but such does not exist for ℤ. However, we could modify this
example, and replace ℤ with a bounded set of numbers, such as ℕ. Then the
smallest number inℕ, namely 0, serves a neutral element for “max” and provides
a monoidal unit 𝟏.

Example 25.24. Consider the associative stacking category from Example 25.19.
A monoidal unit would need to be a neutral element for list concatenation. This
would be the empty list. In Example 25.19 we specified that objects are only
non-empty lists, hence we do not have a strict monoidal semicategory. However,
this example can the be easily adjusted to include also the empty list, in which
case we do obtain a strict monoidal semicategory.

Example 25.25. LTI, equipped with previously described stacking operations
and an appropriate unit, is a strict monoidal stacking category. The unit is given
by the object 0, and its identity morphism is given by the LTI system

id𝟏 =
⟨
𝟎0×1, 𝟎0×0, 𝟎0×0, 𝟎0×0, 𝟎0×0

⟩
.

On the side of objects, clearly 𝑙+0 = 0+ 𝑙 = 𝑙 for any object 𝑙 ∈ Ob LTI. Consider
𝑓∶ 𝑙 → 𝑚. On the side of morphisms we have:

𝑓⊗⊗⊗ id𝟏 = ⟨[ 𝗌𝗍
𝟎0×1] , [

𝐀 𝟎
𝟎 𝟎0×0] , [

𝐁 𝟎
𝟎 𝟎0×0] , [

𝐂 𝟎
𝟎 𝟎0×0] , [

𝐃 𝟎
𝟎 𝟎0×0]⟩

= ⟨𝗌𝗍,𝐀, 𝐁, 𝐂,𝐃⟩

Similarly:

id𝟏⊗⊗⊗ 𝑓 = ⟨[𝟎
0×1

𝗌𝗍 ] , [
𝟎0×0 𝟎
𝟎 𝐀] , [

𝟎0×0 𝟎
𝟎 𝐁] , [

𝟎0×0 𝟎
𝟎 𝐂] , [

𝟎0×0 𝟎
𝟎 𝐃]⟩

= ⟨𝗌𝗍,𝐀, 𝐁, 𝐂,𝐃⟩
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358 25. Parallel composition

Graded exercise H.2 (StringDiagrams)
The following is a string diagram which can represent a composition of
morphisms (having certain types) in any given monoidal category ⟨C, ⊗⊗⊗, 𝟏⟩
(We read the diagram left-to-right for series composition, and top-to-bottom
for parallel composition). The resulting morphism described by the total
diagram – call it ℎ – is one of the type ℎ ∶ 𝑋 → 𝑍.

𝑓
𝑔

𝑌

𝑋
𝑍

In each part of this exercise, we will specify a monoidal category and specific
objects and morphisms to plug into the variables 𝑋,𝑌, 𝑍 and 𝑓, 𝑔 in this
diagram. Your task is to compute the respective resulting morphism ℎ as
dictated by the diagram.

1. In this part, let ⟨C, ⊗⊗⊗, 𝟏⟩ be the monoidal category where C is the cat-
egory Set of sets and functions,⊗⊗⊗ is the cartesian product of sets and
functions, and 𝟏 is a chosen 1-element set that we denote by 𝟏. In the
string diagram above, let 𝑋 = ℤ, 𝑌 = ℕ, and 𝑍 = ℤ. Furthermore, let

𝑓∶ 𝟏→ 𝑌 (55)

be the function with 𝑓(∙) = 5, and let

𝑔∶ ℕ ×ℤ → ℤ,
⟨𝑦, 𝑥⟩ ↦ 𝑦 + 𝑥.

(56)

Compute the composite morphism ℎ described by the string diagram in
this case.

2. In this part, let ⟨C, ⊗⊗⊗, 𝟏⟩ be the monoidal category where C is the cat-
egory Rel of sets and relations,⊗⊗⊗ is the cartesian product of sets and
relations, and 𝟏 is a chosen 1-element set that we again denote by 𝟏. In the
string diagram, let 𝑋 = ℤ, 𝑌 = ℤ, and 𝑍 = ℤ. Furthermore, let 𝑓∶ 𝟏→
ℤ be the relation

𝑓 = {⟨∙, 𝑦⟩ ∈ 𝟏 ×ℤ ∣ 𝑦 is an even number} (57)

and let 𝑔∶ ℤ ×ℤ→ ℤ be the relation

𝑔 = {⟨⟨𝑦, 𝑥⟩, 𝑧⟩ ∈ (ℤ ×ℤ) ×ℤ ∣ 𝑦 = 𝑥 = 𝑧}. (58)

Compute the composite morphism ℎ described by the string diagram in
this case.

3. In this part, let ⟨C, ⊗⊗⊗, 𝟏⟩ be themonoidal category whereC is the category
of real vector spaces and real linear maps,⊗⊗⊗ is the direct sum, and 𝟏 is
the 0-dimensional real vector space {0}. In the string diagram, let 𝑋 =
𝑌 = 𝑍 = ℝ3. Furthermore, let

𝑓∶ {0}→ ℝ3 (59)
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25.5. Monoidal categories 359

be the linear function with 𝑓(0) = 0, and let

𝑔∶ ℝ3 ⊕ℝ3 → ℝ3,
⟨𝑦, 𝑥⟩ ↦ 𝑦 + 𝑥.

(60)

Compute the composite morphism ℎ described by the string diagram in
this case.

Monoidal categories

Definition 25.26 (Monoidal category)
Amonoidal category is
Constituents
1. a strict associative stacking category ⟨C, ⊗⊗⊗⟩,.
2. An object 𝟏 ∈ ObC, called themonoidal unit.
3. A natural isomorphism, called the associator, whose components are of

the type

𝖺𝗌𝑋,𝑌,𝑍 ∶ (𝑋⊗⊗⊗𝑌)⊗⊗⊗𝑍
≅
,→ 𝑋⊗⊗⊗ (𝑌⊗⊗⊗ 𝑍) 𝑋,𝑌, 𝑍 ∈ ObC. (61)

4. A natural isomorphism, called the left unitor, whose components are of
the type

𝗅𝗎𝑋 ∶ 𝟏⊗⊗⊗𝑋
≅
,→ 𝑋 𝑋 ∈ ObC. (62)

5. A natural isomorphism, called the right unitor, whose components are
of the type

𝗋𝗎𝑋 ∶ 𝑋⊗⊗⊗ 𝟏
≅
,→ 𝑋 𝑋 ∈ ObC. (63)

Conditions
For all 𝑋,𝑌, 𝑍,𝑈 ∈ ObC, the following diagrams must commute:
1. Pentagon identities.

(𝑋⊗⊗⊗𝑌)⊗⊗⊗ (𝑍 ⊗⊗⊗𝑈)

((𝑋⊗⊗⊗𝑌)⊗⊗⊗𝑍)⊗⊗⊗𝑈 (𝑋⊗⊗⊗ (𝑌⊗⊗⊗ (𝑍 ⊗⊗⊗𝑈)))

(𝑋⊗⊗⊗ (𝑌⊗⊗⊗ 𝑍))⊗⊗⊗𝑈 𝑋⊗⊗⊗ ((𝑌⊗⊗⊗ 𝑍)⊗⊗⊗𝑈)

𝖺𝗌𝑋,𝑌,𝑍⊗⊗⊗𝑈

𝖺𝗌𝑋,𝑌,𝑍 ⊗⊗⊗ id𝑈

𝖺𝗌𝑋⊗⊗⊗𝑌,𝑍,𝑈

𝖺𝗌𝑋,𝑌⊗⊗⊗𝑍,𝑈

id𝑋 ⊗⊗⊗ 𝖺𝗌𝑌,𝑍,𝑈

(64)
2. Triangle identities.

(𝑋⊗⊗⊗ 𝟏)⊗⊗⊗𝑌 𝑋⊗⊗⊗ (𝟏⊗⊗⊗𝑌)

𝑋⊗⊗⊗𝑌

𝖺𝗌𝑋,𝟏,𝑌

𝗋𝗎𝑋 ⊗⊗⊗ id𝑌 id𝑋 ⊗⊗⊗ 𝗅𝗎𝑌
(65)

A category equipped with a monoidal structure is called a monoidal cate-
gory. If the components of the associator, left unitor, and right unitor are all
equalities, one calls the category strict monoidal.
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360 25. Parallel composition

Remark 25.27. Note that in the constituents listed in Def. 25.26 we specified
natural isomorphisms 𝖺𝗌, 𝗅𝗎, and 𝗋𝗎 simply in terms of their components. You
may be wondering: which functors are the respective source and target of these
natural transformations? Since it is a mouthful to write, this information is often
left to be inferred from the components given. Let us quickly illustrate how to
see, from the components, which functors are involved. Take, for example, the
left unitor. Its components are

𝗅𝗎𝑋 ∶ 𝟏⊗⊗⊗𝑋
≅
,→ 𝑋 𝑋 ∈ ObC, (66)

so, if 𝐹 and 𝐺 denote the functors which are the source and target of 𝗅𝗎, the
functor 𝐹 must act on objects by 𝐹(𝑋) = 𝟏⊗⊗⊗ 𝑋 and 𝐺 must act by 𝐺(𝑋) = 𝑋.
The “obvious” or “canonical” choice then (given that we are considering any
monoidal category) is that 𝐺 is the identity functor and that 𝐹 is the functor
which acts on morphisms by mapping 𝑓∶ 𝑋 → 𝑌 to

id𝟏⊗⊗⊗ 𝑓∶ 𝟏⊗⊗⊗𝑋 → 𝟏⊗⊗⊗𝑌. (67)

Note that the components of the left unitor 𝗅𝗎 are indexed by one variable 𝑋
∈ ObC, while the associator 𝖺𝗌 is indexed by three variables! The associator is
therefore a natural transformation between two functors of the type

C × C × C→ C. (68)

Can you guess which functors of this type are meant in Def. 25.26 to be the source
and target of 𝖺𝗌?

Example 25.28. We digest the definition of monoidal category with an explana-
tory example. We consider the structure ⟨ Set, ×, 𝟏⟩ and show that it indeed forms
a monoidal category. First, we specify how the monoidal product ( cartesian
product here) acts on objects and morphisms in Set (it is a functor). Given 𝐀,𝐁
∈ Ob Set, 𝐀 × 𝐁 is the cartesian product of sets, and given 𝑓∶ 𝐀→ 𝐀′, 𝑔∶ 𝐁→
𝐁′, we have:

(𝑓 × 𝑔)∶ 𝐀 × 𝐁→ 𝐀′ × 𝐁′

⟨𝑎, 𝑏⟩↦ ⟨𝑓(𝑎), 𝑔(𝑏)⟩.
(69)

Furthermore, given any 𝐀,𝐁,𝐂 ∈ Ob Set, we specify the associator 𝖺𝗌𝐀,𝐁,𝐂:

𝖺𝗌𝐀,𝐁,𝐂 ∶ (𝐀 × 𝐁) × 𝐂→ 𝐀 × (𝐁 × 𝐂)
⟨⟨𝑎, 𝑏⟩, 𝑐⟩↦ ⟨𝑎, ⟨𝑏, 𝑐⟩⟩

(70)

This defines an isomorphism (I can go “back and forth”, by switching the tu-
ple separation). We now need to check whether 𝖺𝗌 is natural. We check this
graphically, using the commutative diagram in Fig. 14.

Figure 14.

⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ⟨𝑎, ⟨𝑏, 𝑐⟩⟩

(𝐀 × 𝐁) × 𝐂 𝐀 × (𝐁 × 𝐂)

(𝐀′ × 𝐁′) × 𝐂′ 𝐀′ × (𝐁′ × 𝐂′)

⟨⟨𝑓(𝑎), 𝑔(𝑏)⟩, ℎ(𝑐)⟩ ⟨𝑓(𝑎), ⟨𝑔(𝑏), ℎ(𝑐)⟩⟩

𝖺𝗌𝐀,𝐁,𝐂

(𝑓 × 𝑔) × ℎ 𝑓 × (𝑔 × ℎ)

𝖺𝗌𝐀′,𝐁′,𝐂′
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25.5. Monoidal categories 361

Given an object 𝐀 ∈ Ob Set, the unitor 𝗅𝗎𝐀 is given by:

𝗅𝗎𝐀 ∶ 𝟏 ×𝐀→ 𝐀
⟨∙, 𝑎⟩↦ 𝑎.

(71)

Again, this defines an isomorphism. Consider a morphism 𝑓∶ 𝐀→ 𝐀′. We now
prove naturality graphically (Fig. 15).

⟨∙, 𝑎⟩ 𝑎

𝟏 ×𝐀 𝐀

𝟏 ×𝐀′ 𝐀′

⟨∙, 𝑓(𝑎)⟩ 𝑓(𝑎)

𝗅𝗎𝐀

id𝟏 × 𝑓 𝑓

𝗅𝗎𝐀′

Figure 15.

Analogously, given an object 𝐀 ∈ Ob Set, the unitor isomorphism 𝗋𝗎𝐀 is given by:

𝗋𝗎𝐀 ∶ 𝐀 × 𝟏→ 𝐀
⟨𝑎, ∙⟩↦ 𝑎.

(72)

The proof for naturality is analogous to the one of 𝗅𝗎𝐀. We now need to check
whether the triangle and pentagon identities are satisfied. We start by the triangle.
Given 𝐀,𝐁 ∈ Ob Set, the proof is displayed in Fig. 16.

⟨⟨𝑎, ∙⟩, 𝑏⟩ ⟨𝑎, ⟨∙, 𝑏⟩⟩

(𝐀 × 𝟏) × 𝐁 𝐀 × (𝟏 × 𝐁)

𝐀 × 𝐁

⟨𝑎, 𝑏⟩

𝖺𝗌𝐀,𝟏,𝐁

𝗋𝗎𝐀 × id𝐁 id𝐀 × 𝗅𝗎𝐁

Figure 16.

We now prove the pentagon identity. Given 𝐀,𝐁,𝐂,𝐃 ∈ Ob Set, the proof is
reported in Fig. 17.

Example 25.29. The category Vectℝ is can be equipped with a monoidal struc-
ture where the monoidal product is the tensor product of real vector spaces. It
can also be equipped with a different monoidal structure where the monoidal
product is the direct sum of real vector spaces.

Example 25.30 (Robot configurations). Consider ℝ2, discretized as a two-dim-
ensional grid, representing locations (cells) which a robot can reach. The config-
uration space of the robot is ℝ2 × Θ, where Θ = [0, 2𝜋). A specific configuration
⟨𝑥, 𝑦, 𝜃⟩ is characterized at each time by the position of the robot 𝑥, 𝑦 ∈ ℝ and its
orientation 𝜃 ∈ Θ. The action space of the robot is𝒜 = {𝗌𝗍𝖺𝗒,←,→, ↑, ↓}. This is
a category, where each configuration of the robot is an object, and morphisms are
robot actions which change configurations. Each configuration has the identity
morphism which does not change it (𝗌𝗍𝖺𝗒). Composition of morphisms is given
by concatenation of actions (Fig. 18). Assuming the existence of multiple robots
𝑟𝑖 = ⟨𝑥𝑖 , 𝑦𝑖 , 𝜃𝑖⟩, it is possible to define a product 𝑟𝑖⊗⊗⊗ 𝑟𝑗 , which is to be intended
as “we have a robot at configuration 𝑟𝑖 and another one at configuration 𝑟𝑗”.
Something incorrect or unclear or missing? Report issues on GitHub by clicking here.

https://github.com/ACT4E/ACT4E/issues/new?labels=chap:parallelism;body=Chapter:%20Parallel composition%0ASection:%20 Monoidal categories%0AVersion:%202024-12-09%0A%0ACheck%20all%20that%20apply:%0A-%20(%20)%20Something%20incorrect%0A-%20(%20)%20Something%20not%20clear%0A-%20(%20)%20Something%20missing%0A%0APlease%20describe%20more%20in%20detail%20below.%20Feel%20free%20to%20change%20the%20title%20to%20something%20more%20informative.%0A;title=Parallel composition%20/%20 Monoidal categories%20/%202024-12-09


362 25. Parallel composition

⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩

(𝐀 × 𝐁) × (𝐂 ×𝐃)

⟨⟨⟨𝑎, 𝑏⟩, 𝑐⟩, 𝑑⟩ ((𝐀 × 𝐁) × 𝐂) ×𝐃 (𝐀 × (𝐁 × (𝐂 ×𝐃))) ⟨𝑎, ⟨𝑏, ⟨𝑐, 𝑑⟩⟩⟩

(𝐀 × (𝐁 × 𝐂)) ×𝐃 𝐀 × ((𝐁 × 𝐂) ×𝐃)

⟨⟨𝑎, ⟨𝑏, 𝑐⟩⟩, 𝑑⟩ ⟨𝑎, ⟨⟨𝑏, 𝑐⟩, 𝑑⟩⟩

𝖺𝗌𝐀,𝐁,𝐂×𝐃

𝖺𝗌𝐀,𝐁,𝐂 × id𝐃

𝖺𝗌𝐀×𝐁,𝐂,𝐃

𝖺𝗌𝐀,𝐁×𝐂,𝐃

id𝐀 × 𝖺𝗌𝐁,𝐂,𝐃

Figure 17.

However, this cannot be a proper monoidal product, because two robots can-
not have the same configuration (physically, they cannot lie on each other), and
hence 𝑟𝑖⊗⊗⊗ 𝑟𝑖 does not exist. By assuming that two robots could share the same
configuration, this would be a valid monoidal product.

Figure 18.: Example of the robot category.

Graded exercise H.3 (VectTensorMonStructure)
What are straightforward choices of monoidal unit, associator, and left/right
unitors which, together with the tensor product as monoidal product, equip
Vectℝ with a monoidal structure?
In this exercise, simply write down how you think each of these pieces of
data would be defined – it is not asked that you prove that they do indeed
form a monoidal structure (that would be much more involved).

Graded exercise H.4 (MonoidalProductVectDirectSum)
Let C denote the category of real vector spaces. Given real vector spaces 𝑋 =
⟨𝐗, +𝑋 , ⋅𝑋⟩ and 𝑌 = ⟨𝐘, +𝑌 , ⋅𝑌⟩, their direct sum𝑋⊕𝑌 is defined as follows.
The underlying set of 𝑋⊕𝑌 is the cartesian product𝐗×𝐘 of the underlying
sets of 𝑋 and 𝑌. For 𝑋 ⊕ 𝑌, vector addition is defined (using infix notation)
by

⟨𝑥1, 𝑦1⟩ + ⟨𝑥2, 𝑦2⟩ ∶= ⟨𝑥1 +𝑋 𝑥2, 𝑦1 +𝑌 𝑦2⟩ 𝑥1, 𝑥2 ∈ 𝐗; 𝑦1, 𝑦2 ∈ 𝐘;
(73)

and scalar multiplication is defined (using infix notation) by

𝜆 ⋅ ⟨𝑥, 𝑦⟩ ∶= ⟨𝜆 ⋅𝑋 𝑥, 𝜆 ⋅𝑌 𝑦⟩, 𝜆 ∈ ℝ; 𝑥 ∈ 𝐗; 𝑦 ∈ 𝐘. (74)

There is a monoidal structure ⟨⊗⊗⊗, 𝟏, 𝖺𝗌, 𝗅𝗎, 𝗋𝗎⟩ on C where the monoidal
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product⊗⊗⊗, on objects, is the direct sum of real vector spaces. Your tasks:
1. Guess what the definition of⊗⊗⊗ on morphisms is, and check that⊗⊗⊗ really

does define a functor.
2. Guess what the definitions of the monoidal unit, associator, and the uni-

tors are for this monoidal product. Are the components of the associator
and unitors really isomorphisms in C? Justify, briefly, why.

3. Check that the left-unitor is indeed a natural transformation. What are
the functors that it maps between?

4. Check the coherence condition in the definition of a monoidal category
that involves the unitors.
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364 25. Parallel composition

25.6. Monoidal functors
Definition 25.31 (Strong monoidal functor)
Let ⟨C, ⊗⊗⊗C, 𝟏C⟩ and ⟨D, ⊗⊗⊗D, 𝟏D⟩ be monoidal categories.
A strong monoidal functor between C and D is
Constituents
1. A functor

𝐹∶ C→ D; (75)

2. A natural isomorphism 𝜇

𝜇𝑋,𝑌 ∶ 𝐹(𝑋)⊗⊗⊗D 𝐹(𝑌)→ 𝐹(𝑋⊗⊗⊗C 𝑌), ∀𝑋,𝑌 ∈ C, (76)

3. An isomorphism
𝑢∶ 𝟏D → 𝐹(𝟏C); (77)

Conditions

1. Associativity: For all objects 𝑋,𝑌, 𝑍 ∈ C, there are associators 𝖺𝗌C and 𝖺𝗌D
such that the diagram in Fig. 19a commutes.

2. Unitality: For all 𝑋 ∈ C, there exist left and right unitors 𝗅𝗎C and 𝗋𝗎C, the
diagram in Fig. 19b commutes.
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(𝐹(𝑋)⊗⊗⊗D 𝐹(𝑌))⊗⊗⊗D 𝐹(𝑍) 𝐹(𝑋)⊗⊗⊗D (𝐹(𝑌)⊗⊗⊗D 𝐹(𝑍))

𝐹(𝑋⊗⊗⊗C 𝑌)⊗⊗⊗D 𝐹(𝑍) 𝐹(𝑋)⊗⊗⊗D 𝐹(𝑌⊗⊗⊗C 𝑍)

𝐹((𝑋⊗⊗⊗C 𝑌)⊗⊗⊗C 𝑍) 𝐹(𝑋⊗⊗⊗C (𝑌⊗⊗⊗C 𝑍))

𝖺𝗌D𝐹(𝑋),𝐹(𝑌),𝐹(𝑍)

𝜇𝑋,𝑌 ⊗⊗⊗D id(𝐹(𝑍)) id(𝐹(𝑋))⊗⊗⊗D 𝜇𝑌,𝑍

𝜇𝑋⊗⊗⊗D𝑌,𝑍 𝜇𝑋,𝑌⊗⊗⊗D𝑍

𝐹(𝖺𝗌C𝑋,𝑌,𝑍)

(a) Natural associativity

𝟏D⊗⊗⊗D 𝐹(𝑋) 𝐹(𝟏C)⊗⊗⊗D 𝐹(𝑋)

𝐹(𝑋) 𝐹(𝟏C⊗⊗⊗C 𝑋)

𝑢⊗⊗⊗D id𝐹(𝑋)

𝗅𝗎D 𝜇𝟏C,𝑋

𝐹(𝗅𝗎C𝑋)

𝐹(𝑋)⊗⊗⊗D 𝟏D 𝐹(𝑋)⊗⊗⊗D 𝐹(𝟏C)

𝐹(𝑋) 𝐹(𝑋⊗⊗⊗C 𝟏C)

𝗋𝗎D

id𝐹(𝑋)⊗⊗⊗D 𝑢

𝜇𝑋,𝟏C

𝐹(𝗋𝗎C𝑋)

(b) Natural unitality

Figure 19.: Commuting diagrams using in Def. 25.31
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25.7. Strictification
Lemma 25.32. ⦉ Set⦊ is associative stacking using the structure that arises from
tuple concatenation.

Proof. For the stacking operation on objects⊗⊗⊗ we use the operation #⦉ de-
fined in Section 18.2 which was referred to as the “multiplication in ⦉ Set⦊”:

⦉𝐀1, …,𝐀𝑚⦊⊗⊗⊗ ⦉𝐁1, …, 𝐁𝑛⦊ ∶= ⦉𝐀1, …,𝐀𝑚⦊ #⦉ ⦉𝐁1, …, 𝐁𝑛⦊ (78)

= ⦉𝐀1, …,𝐀𝑚, 𝐁1, …, 𝐁𝑛⦊. (79)

It was shown there that this operation is associative.
As for⊗⊗⊗, we define it as follows:

𝑓∶ 𝐀→⦉ Set⦊ 𝐁 𝑔∶ 𝐂→⦉ Set⦊ 𝐃
.

(𝑓⊗⊗⊗ 𝑔)∶ 𝐀 #⦉ 𝐂 →⦉ Set⦊ 𝐁 #⦉ 𝐃
𝑥 #⟨ 𝑧 ↦ 𝑓(𝑥) #⟨ 𝑔(𝑧)

(80)

The two operations ⊗⊗⊗,⊗⊗⊗ so defined satisfy the compatibility conditions
required by Def. 25.41.
To show associativity, consider three morphisms

𝑓∶ 𝐀→⦉ Set⦊ 𝐁, 𝑔∶ 𝐂→⦉ Set⦊ 𝐃, ℎ∶ 𝐄→⦉ Set⦊ 𝐅. (81)

We compute 𝑓⊗⊗⊗ (𝑔⊗⊗⊗ℎ) and (𝑓⊗⊗⊗𝑔)⊗⊗⊗ℎ following the recipe (80) to obtain

(𝑓⊗⊗⊗ 𝑔)⊗⊗⊗ ℎ∶
(
𝐀 #⦉ 𝐂

)
#⦉ 𝐄 →⦉ Set⦊

(
𝐁 #⦉ 𝐃

)
#⦉ 𝐅,

(
𝑥 #⟨ 𝑧

)
#⟨ 𝑣 ↦

(
𝑓(𝑥) #⟨ 𝑔(𝑧)

)
#⟨ ℎ(𝑣),

(82)

𝑓⊗⊗⊗ (𝑔⊗⊗⊗ ℎ)∶ 𝐀 #⦉
(
𝐂 #⦉ 𝐄

)
→⦉ Set⦊ 𝐁 #⦉

(
𝐃 #⦉ 𝐅

)
,

𝑥 #⟨
(
𝑧 #⟨ 𝑣

)
↦ 𝑓(𝑥) #⟨

(
𝑔(𝑧) #⟨ ℎ(𝑣)

)
.

(83)

Notice that the operations #⦉ and #⟨ are associative; therefore, we can remove
all the light parentheses that appear in the formulas. This implies that both
functions are equal to

𝑓⊗⊗⊗ 𝑔⊗⊗⊗ ℎ∶ 𝐀 #⦉ 𝐂 #⦉ 𝐄 →⦉ Set⦊ 𝐁 #⦉ 𝐃 #⦉ 𝐅,
𝑥 #⟨ 𝑧 #⟨ 𝑣 ↦ 𝑓(𝑥) #⟨ 𝑔(𝑧) #⟨ ℎ(𝑣).

(84)

The category ⦉ Pos⦊

We define a category analogous to ⦉ Set⦊, but its objects are “tuple posets”.
Given posets 𝐏1,… ,𝐏𝑛 we define the poset

⦉𝐏1, …, 𝐏𝑛⦊ ∶=
⟨
⦉𝐏1, …, 𝐏𝑛⦊, ⪯⦉𝐏1, …, 𝐏𝑛⦊

⟩
, (85)

where ⦉𝐏1, …, 𝐏𝑛⦊ is a set of tuples, and we use the product order:

⟨𝑥1, …, 𝑥𝑛⟩ ⪯⦉𝐏1, …, 𝐏𝑛⦊ ⟨𝑦1, …, 𝑦𝑛⟩
.

𝑥𝑖 ⪯𝐏𝑖 𝑦𝑖 for all 𝑖 ∈ {1, …, 𝑛} (86)
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Definition 25.33 (The category ⦉ Pos⦊)
The category ⦉ Pos⦊ is the subcategory of Pos where the objects are tuple
posets, posets of the form

⦉𝐏1, …, 𝐏𝑛⦊ =
⟨
⦉𝐏1, …, 𝐏𝑛⦊, ⪯⦉𝐏1, …, 𝐏𝑛⦊

⟩
. (87)

Lemma 25.34. ⦉ Pos⦊ is associative stacking using the structure induced by
tuple concatenation.

Proof. Analogously to what we did for ⦉ Set⦊, we can define amultiplication
operation⊗⊗⊗ in ⦉ Pos⦊.
Given two objects 𝐏 = ⦉𝐏1, …, 𝐏𝑛⦊ and 𝐐 = ⦉𝐐1, …,𝐐𝑛⦊, we define

⦉𝐏1, …, 𝐏𝑛⦊⊗⊗⊗ ⦉𝐐1, …,𝐐𝑛⦊ ∶= ⦉𝐏1, …, 𝐏𝑛,𝐐1, …,𝐐𝑛⦊. (88)

For the multiplication on morphisms, we define

𝑓∶ 𝐏→ 𝐐 𝑓∶ 𝐑→ 𝐒
.

(𝑓⊗⊗⊗ 𝑔)∶ 𝐏⊗⊗⊗𝐑 → 𝐐⊗⊗⊗ 𝐒
𝑝 #⟨ 𝑟 ↦ 𝑓(𝑝) #⟨ 𝑔(𝑟)

(89)

We need to check that the expression 𝑓(𝑝) #⟨ 𝑔(𝑟) is monotone. This can be
easily seen because the order on 𝐐⊗⊗⊗ 𝐒 is akin to a product order. The proof
for associativity of⊗⊗⊗ is the same as in the proof of ⦉ Set⦊ (Lemma 25.32).

The category ⦉ Rel⦊
We define a category ⦉ Rel⦊ where the objects are sets of tuples (as in ⦉ Set⦊).

Definition 25.35 (The category ⦉ Rel⦊)
The category ⦉ Rel⦊ is the subcategory of Rel where the objects are tuples
sets (objects of ⦉ Set⦊).

Lemma 25.36. ⦉ Rel⦊ is associative stacking with the structure induced by
tuple concatenation.

Proof. The multiplication⊗⊗⊗ is #⦉, the same as the one defined for ⦉ Set⦊.
The multiplication⊗⊗⊗ is defined as follows:

𝑅 ⊆ 𝐀 × 𝐁 𝑆 ⊆ 𝐂 ×𝐃

(𝑅⊗⊗⊗ 𝑆) ⊆
(
𝐀 #⦉ 𝐂

)
×
(
𝐁 #⦉ 𝐃

)
(90)

where
(𝑅⊗⊗⊗ 𝑆) =

{⟨
𝑎 #⟨ 𝑐, 𝑏 #⟨ 𝑑

⟩
∣ (𝑎𝑅𝑏) ∧ (𝑐 𝑆𝑑)

}
. (91)

The rest of the proof is left as an exercise.

Exercise50. Consider the stacking operations on objects and on morphisms
introduced in this section. Prove that ⦉ Rel⦊ is associative stacking.

See solution on page 401.
subsectionThe category ⦉ DP⦊
Analogously, we define the category ⦉ DP⦊.
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Definition 25.37 (The category ⦉ DP⦊)
The category ⦉ DP⦊ is the subcategory of DP where the objects are posets
of tuple posets (objects of ⦉ Pos⦊).

Lemma 25.38. ⦉ DP⦊ is associative stacking using the structure induced by
tuple concatenation.

Proof. For the stacking operation⊗⊗⊗ on objects, we use⊗⊗⊗⦉ DP⦊ ∶=⊗⊗⊗⦉ Pos⦊. For stacking morphisms, we define⊗⊗⊗ by

𝐝∶ 𝐏 op ×𝐑→ Bool 𝐞∶ 𝐐 op × 𝐒→ Bool,
.

𝐝⊗⊗⊗ 𝐞∶ (𝐏⊗⊗⊗𝐐)op × (𝐑⊗⊗⊗ 𝐒) → Bool
⟨
𝑎∗ #⟨ 𝑐∗, 𝑏 #⟨ 𝑑

⟩
↦ 𝐝(𝑎∗, 𝑐) ∧ 𝐞(𝑐∗, 𝑑)

(92)

Note that this is a valid definition of a design problem because the expression 𝐝(𝑎∗, 𝑐) ∧ 𝐞(𝑐∗, 𝑑) is monotone, as may
readily be checked.
To show associativity, consider three DPs

𝐝∶ 𝐏 op ×𝐑→ Pos Bool, 𝐞∶ 𝐐 op × 𝐒→ Pos Bool, 𝐠∶ 𝐓 op ×𝐔→ Pos Bool. (93)

We compute (𝐝⊗⊗⊗ 𝐞)⊗⊗⊗ 𝐠 and 𝐝⊗⊗⊗ (𝐞⊗⊗⊗ 𝐠) according to the recipe in (92):

(𝐝⊗⊗⊗ 𝐞)⊗⊗⊗ 𝐠∶ ((𝐏⊗⊗⊗𝐐)⊗⊗⊗ 𝐓)op × ((𝐑⊗⊗⊗ 𝐒)⊗⊗⊗𝐔) → Pos Bool,⟨(
𝑎∗ #⟨ 𝑐∗

)
#⟨ 𝑒∗,

(
𝑏 #⟨ 𝑑

)
#⟨ 𝑓

⟩
↦ (𝐝(𝑎∗, 𝑐) ∧ 𝐞(𝑐∗, 𝑑)) ∧ 𝐠(𝑒∗, 𝑓),

(94)

𝐝⊗⊗⊗ (𝐞⊗⊗⊗ 𝐠)∶ (𝐏⊗⊗⊗ (𝐐⊗⊗⊗ 𝐓))op × (𝐑⊗⊗⊗ (𝐒⊗⊗⊗𝐔)) → Pos Bool,⟨
𝑎∗ #⟨

(
𝑐∗ #⟨ 𝑒∗)

)
, 𝑏 #⟨

(
𝑑 #⟨ 𝑓

)⟩
↦ 𝐝(𝑎∗, 𝑐) ∧ (𝐞(𝑐∗, 𝑑) ∧ 𝐠(𝑒∗, 𝑓)).

(95)

Because the operations⊗⊗⊗ and ∧ are associative, we can erase all the light parentheses in the formulas, and we find that
(𝐝⊗⊗⊗ 𝐞)⊗⊗⊗ 𝐠 and 𝐝⊗⊗⊗ (𝐞⊗⊗⊗ 𝐠) are equal to the design problem

𝐝⊗⊗⊗ 𝐞⊗⊗⊗ 𝐠∶ (𝐏⊗⊗⊗𝐐⊗⊗⊗ 𝐓)op × (𝐑⊗⊗⊗ 𝐒⊗⊗⊗𝐔) → Pos Bool,⟨
𝑎∗ #⟨ 𝑐∗ #⟨ 𝑒∗, 𝑏 #⟨ 𝑑 #⟨ 𝑓

⟩
↦ 𝐝(𝑎∗, 𝑐) ∧ 𝐞(𝑐∗, 𝑑) ∧ 𝐠(𝑒∗, 𝑓).

(96)

Example 25.39 (⦉ Set⦊ is a functorial stacking semicategory). We want to show
that ⦉ Set⦊ is a functorial stacking semicategory.
Consider four morphisms

𝑓∶ 𝐀→ 𝐁, ℎ∶ 𝐁→ 𝐂,
𝑔∶ 𝐃→ 𝐄, 𝑖∶ 𝐄→ 𝐅.

(97)

We want to show that

(𝑓⊗⊗⊗ 𝑔) # (ℎ⊗⊗⊗ 𝑖) = (𝑓 # ℎ)⊗⊗⊗ (𝑔 # 𝑖), (98)

We show this by showing that, for any 𝑎 #⟨ 𝑑 ∈ 𝐀 #⦉ 𝐃:

((𝑓⊗⊗⊗ 𝑔) # (ℎ⊗⊗⊗ 𝑖))(𝑎 #⟨ 𝑑) = (ℎ⊗⊗⊗ 𝑖)(𝑓(𝑎) #⟨ 𝑔(𝑑))
= ℎ(𝑓(𝑎)) #⟨ 𝑖(𝑔(𝑑))
= (𝑓 # ℎ)(𝑎) #⟨ (𝑔 # 𝑖)(𝑑)
= ((𝑓 # ℎ)⊗⊗⊗ (𝑔 # 𝑖))(𝑎 #⟨ 𝑑).

(99)
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Exercise51. Prove that ⦉ Pos⦊ is a functorial stacking category. Hint: You have
to define the functor⊗⊗⊗ and check that it satisfies the two equations in Def. 25.7.

See solution on page 401.

Graded exercise H.5 (RelFunStack)
Prove that the structure defined in Exercise 50 makes ⦉ Rel⦊ a functorial
stacking semicategory.

Lemma 25.40 (⦉ DP⦊ is a functorial stacking semicategory). ⦉ DP⦊, equipped
with the aforementioned stacking operations on objects and morphisms, is func-
torial stacking semicategory.

Proof. Consider
𝐝∶ 𝐏 op ×𝐑→ Pos Bool
𝐞∶ 𝐐 op × 𝐒→ Pos Bool
𝐠∶ 𝐑 op × 𝐓→ Pos Bool
𝐡∶ 𝐒 op ×𝐔→ Pos Bool

(100)

We want to prove that

(𝐝 # 𝐠)⊗⊗⊗ (𝐞 # 𝐡) = (𝐝⊗⊗⊗ 𝐞) # (𝐠⊗⊗⊗ 𝐡). (101)

We start from the left-hand side. We have

(𝐝 # 𝐠)(𝑝∗, 𝑡) =
⋁

𝑟∈𝐑
𝐝(𝑝∗, 𝑟) ∧ 𝐠(𝑟∗, 𝑡) (102)

and
(𝐞 # 𝐡)(𝑞∗, 𝑢) =

⋁

𝑠∈𝐒
𝐞(𝑞∗, 𝑠) ∧ 𝐡(𝑠∗𝑢) (103)

Therefore, we know

((𝐝 # 𝐠)⊗⊗⊗ (𝐞 # 𝐡))((𝑝 #⟨ 𝑞)∗, 𝑡 #⟨ 𝑢)

=
⋁

𝑟∈𝐑
𝐝(𝑝∗, 𝑟) ∧ 𝐠(𝑟∗, 𝑡) ∧

⋁

𝑠∈𝐒
𝐞(𝑞∗, 𝑠) ∧ 𝐡(𝑠∗, 𝑢). (104)

On the other hand, we have

(𝐝⊗⊗⊗ 𝐞)((𝑝 #⟨ 𝑞)∗, 𝑟 #⟨ 𝑠) = 𝐝(𝑝∗, 𝑟) ∧ 𝐞(𝑞∗, 𝑠) (105)

and
(𝐠⊗⊗⊗ 𝐡)((𝑟 #⟨ 𝑠)∗, 𝑡 #⟨ 𝑢) = 𝐠(𝑟∗, 𝑡) ∧ 𝐡(𝑠∗, 𝑢) (106)

Therefore, we know

((𝐝⊗⊗⊗ 𝐞) # (𝐠⊗⊗⊗ 𝐡))((𝑝 #⟨ 𝑞)∗, 𝑡 #⟨ 𝑢)

=
⋁

𝑟#⟨𝑠∈⦉𝐑, 𝐒⦊
(𝐝⊗⊗⊗ 𝐞)((𝑝 #⟨ 𝑞)∗, 𝑟 #⟨ 𝑠) ∧ (𝐠⊗⊗⊗ 𝐡)((𝑟 #⟨ 𝑠)∗, 𝑡 #⟨ 𝑢)

=
⋁

𝑟#⟨𝑠∈⦉𝐑, 𝐒⦊
𝐝(𝑝∗, 𝑟) ∧ 𝐞(𝑞∗, 𝑠) ∧ 𝐠(𝑟∗, 𝑡) ∧ 𝐡(𝑠∗, 𝑢)

=
⋁

𝑟∈𝐑
𝐝(𝑝∗, 𝑟) ∧ 𝐠(𝑟∗, 𝑡) ∧

⋁

𝑠∈𝐒
𝐞(𝑞∗, 𝑠) ∧ 𝐡(𝑠∗, 𝑢),

(107)

proving the statement for any posets 𝐏,𝐐,𝐑, 𝐒,𝐓,𝐔 (and hence, also for
posets of tuples).

Something incorrect or unclear or missing? Report issues on GitHub by clicking here.
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25.8. The case of semicategories
Stacking

Definition 25.41 (Stacking semicategory)
A stacking semicategory is a semicategory C with the following additional
constituents and properties.
Constituents
⊳ A stacking operation⊗⊗⊗∶ ObC × ObC → ObC.
⊳ A stacking operation⊗⊗⊗∶ MorC ×MorC → MorC.
Conditions
⊳ The two operations⊗⊗⊗ and⊗⊗⊗ are compatible in the sense that

𝑓1 ∶ 𝑋1 → 𝑌1 𝑓2 ∶ 𝑋2 → 𝑌2 .
𝑓1⊗⊗⊗ 𝑓2 ∶ 𝑋1⊗⊗⊗𝑋2 → 𝑌1⊗⊗⊗𝑌2 (108)

Functorial stacking

Definition 25.42 (Functorial stacking semicategory)
A functorial stacking semicategory is a stacking semicategory where the two
stacking operations⊗⊗⊗ and⊗⊗⊗ are the two components of a functor

⊗⊗⊗∶ C × C→ C. (109)

In infix notation, this means that

(𝑓 # ℎ)⊗⊗⊗ (𝑔 # 𝑖) = (𝑓⊗⊗⊗ 𝑔) # (ℎ⊗⊗⊗ 𝑖) (110)

for all morphisms 𝑓, 𝑔, ℎ, and 𝑖 (where respectively 𝑓 and ℎ, and 𝑔 and 𝑖 are
composable), and that

id𝑋 ⊗⊗⊗ id𝑌 = id𝑋⊗⊗⊗𝑌 (111)

for all objects 𝑋, 𝑌 of C, whenever all three of these identity morphisms
exist.

Example 25.43. We want to show thatMoo, equipped with the defined stacking
operations, is almost a functorial stacking semicategory, but not quite. Consider
four Moore machines:

𝑓∶ 𝐔𝑓 → 𝐘𝑓 , 𝑔∶ 𝐔𝑔 → 𝐘𝑔, ℎ∶ 𝐘𝑓 → 𝐘ℎ, 𝑖∶ 𝐘𝑔 → 𝐘𝑖 .

We want to check if the equation

(𝑓 # ℎ)⊗⊗⊗ (𝑔 # 𝑖) = (𝑓⊗⊗⊗ 𝑔) # (ℎ⊗⊗⊗ 𝑖)

holds. Let’s start from the left-hand side. First, we have:

𝑓 # ℎ =
⟨
𝐔𝑓 , 𝐗𝑓 #⦉ 𝐗ℎ, 𝐘ℎ, dyn𝑓#ℎ, ro𝑓#ℎ, 𝗌𝗍𝑓 #⟨ 𝗌𝗍ℎ

⟩
,

𝑔 # 𝑖 =
⟨
𝐔𝑔, 𝐗𝑔 #⦉ 𝐗𝑖 , 𝐘𝑖 , dyn𝑔#𝑖 , ro𝑔#𝑖 , 𝗌𝗍𝑔 #⟨ 𝗌𝗍𝑖

⟩
,

with

dyn𝑓#ℎ ∶ 𝐔𝑓 #⦉ 𝐗𝑓 #⦉ 𝐗ℎ → 𝐗𝑓 #⦉ 𝐗ℎ,
𝑢𝑓 #⟨ 𝑥𝑓 #⟨ 𝑥ℎ ↦ dyn𝑓(𝑢𝑓 #⟨ 𝑥𝑓) #⟨ dynℎ(ro𝑓(𝑥𝑓) #⟨ 𝑥ℎ),
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dyn𝑔#𝑖 ∶ 𝐔𝑔 #⦉ 𝐗𝑔 #⦉ 𝐗𝑖 → 𝐗𝑔 #⦉ 𝐗𝑖 ,

𝑢𝑔 #⟨ 𝑥𝑔 #⟨ 𝑥𝑖 ↦ dyn𝑔(𝑢𝑔 #⟨ 𝑥𝑔) #⟨ dyn𝑖(ro𝑔(𝑥𝑔) #⟨ 𝑥𝑖),

ro𝑓#ℎ ∶ 𝐗𝑓 #⦉ 𝐗ℎ → 𝐘ℎ,
𝑥𝑓 #⟨ 𝑥ℎ ↦ roℎ(𝑥ℎ),

and
ro𝑔#𝑖 ∶ 𝐗𝑔 #⦉ 𝐗𝑖 → 𝐘𝑖 ,

𝑥𝑔 #⟨ 𝑥𝑖 ↦ ro𝑖(𝑥𝑖).

Furthermore:

(𝑓 # ℎ)⊗⊗⊗ (𝑔 # 𝑖) =
⟨
𝐔𝑓 #⦉ 𝐔𝑔, 𝐗𝑓 #⦉ 𝐗ℎ #⦉ 𝐗𝑔 #⦉ 𝐗𝑖 , 𝐘ℎ #⦉ 𝐘𝑖 , dyn(𝑓#ℎ)⊗⊗⊗(𝑔#𝑖), ro(𝑓#ℎ)⊗⊗⊗(𝑔#𝑖), 𝗌𝗍𝑓 #⟨ 𝗌𝗍ℎ #⟨ 𝗌𝗍𝑔 #⟨ 𝗌𝗍𝑖

⟩
,

with

dyn(𝑓#ℎ)⊗⊗⊗(𝑔#𝑖) ∶ 𝐔𝑓 #⦉ 𝐔𝑔 #⦉ 𝐗𝑓 #⦉ 𝐗ℎ #⦉ 𝐗𝑔 #⦉ 𝐗𝑖 → 𝐗ℎ #⦉ 𝐗𝑔 #⦉ 𝐗𝑖 ,
𝑢𝑓 #⟨ 𝑢𝑔 #⟨ 𝑥𝑓 #⟨ 𝑥ℎ #⟨ 𝑥𝑔 #⟨ 𝑥𝑖 ↦ dyn𝑓#ℎ(𝑢𝑓 #⟨ 𝑥𝑓 #⟨ 𝑥ℎ) #⟨ dyn𝑔#𝑖(𝑢𝑔 #⟨ 𝑥𝑔 #⟨ 𝑥𝑖)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
(1)

,

where

(1) = dyn𝑓(𝑢𝑓 #⟨ 𝑥𝑓) #⟨ dynℎ(ro𝑓(𝑥𝑓) #⟨ 𝑥ℎ) #⟨ dyn𝑔(𝑢𝑔 #⟨ 𝑥𝑔) #⟨ dyn𝑖(ro𝑔(𝑥𝑔) #⟨ 𝑥𝑖),

and

ro(𝑓#ℎ)⊗⊗⊗(𝑔#𝑖) ∶ 𝐗𝑓 #⦉ 𝐗ℎ #⦉ 𝐗𝑔 #⦉ 𝐗𝑖 → 𝐘ℎ #⦉ 𝐘𝑖 ,
𝑥𝑓 #⟨ 𝑥ℎ #⟨ 𝑥𝑔 #⟨ 𝑥𝑖 ↦ ro𝑓#ℎ(𝑥𝑓 #⟨ 𝑥ℎ) #⟨ ro𝑔#𝑖(𝑥𝑔 #⟨ 𝑥𝑖)⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

(2)

,

where
(2) = roℎ(𝑥ℎ) #⟨ ro𝑖(𝑥𝑖).

On the other hand, we have:

𝑓⊗⊗⊗ 𝑔 =
⟨
𝐔𝑓 #⦉ 𝐔𝑔, 𝐗𝑓 #⦉ 𝐗𝑔, 𝐘𝑓 #⦉ 𝐘𝑔, dyn𝑓⊗⊗⊗𝑔, ro𝑓⊗⊗⊗𝑔, 𝗌𝗍𝑓 #⟨ 𝗌𝗍𝑔

⟩
,

ℎ ⊗⊗⊗ 𝑖 =
⟨
𝐔ℎ #⦉ 𝐔𝑖 , 𝐗ℎ #⦉ 𝐗𝑖 , 𝐘ℎ #⦉ 𝐘𝑖 , dynℎ⊗⊗⊗𝑖 , roℎ⊗⊗⊗𝑖 , 𝗌𝗍ℎ #⟨ 𝗌𝗍𝑖

⟩
,

with

dyn𝑓⊗⊗⊗𝑔 ∶ 𝐔𝑓 #⦉ 𝐔𝑔 #⦉ 𝐗𝑓 #⦉ 𝐗𝑔 → 𝐗𝑓 #⦉ 𝐗𝑔,
𝑢𝑓 #⟨ 𝑢𝑔 #⟨ 𝑥𝑓 #⟨ 𝑥𝑔 ↦ dyn𝑓(𝑢𝑓 #⟨ 𝑥𝑓) #⟨ dyn𝑔(𝑢𝑔 #⟨ 𝑥𝑔),

dynℎ⊗⊗⊗𝑖 ∶ 𝐔ℎ #⦉ 𝐔𝑖 #⦉ 𝐗ℎ #⦉ 𝐗𝑖 → 𝐗ℎ #⦉ 𝐗𝑖 ,
𝑢ℎ #⟨ 𝑢𝑖 #⟨ 𝑥ℎ #⟨ 𝑥𝑖 ↦ dynℎ(𝑢ℎ #⟨ 𝑥ℎ) #⟨ dyn𝑖(𝑢𝑖 #⟨ 𝑥𝑖),

ro𝑓⊗⊗⊗𝑔 ∶ 𝐗𝑓 #⦉ 𝐗𝑔 → 𝐘𝑓 #⦉ 𝐘𝑔,
𝑥𝑓 #⟨ 𝑥𝑔 ↦ ro𝑓(𝑥𝑓) #⟨ ro𝑔(𝑥𝑔),

and
roℎ⊗⊗⊗𝑖 ∶ 𝐗ℎ #⦉ 𝐗𝑖 → 𝐘ℎ #⦉ 𝐘𝑖 ,

𝑥ℎ #⟨ 𝑥𝑖 ↦ roℎ(𝑥ℎ) #⟨ ro𝑖(𝑥𝑖).

Furthermore:
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(𝑓⊗⊗⊗ 𝑔) # (ℎ⊗⊗⊗ 𝑖) =
⟨
𝐔𝑓 #⦉ 𝐔𝑔, 𝐗𝑓 #⦉ 𝐗𝑔 #⦉ 𝐗ℎ #⦉ 𝐗𝑖 , 𝐘ℎ #⦉ 𝐘𝑖 , dyn(𝑓⊗⊗⊗𝑔)⊗⊗⊗(ℎ⊗⊗⊗𝑖), ro(𝑓⊗⊗⊗𝑔)#(ℎ⊗⊗⊗𝑖), 𝗌𝗍𝑓 #⟨ 𝗌𝗍𝑔 #⟨ 𝗌𝗍ℎ #⟨ 𝗌𝗍𝑖

⟩
,

with

dyn(𝑓⊗⊗⊗𝑔)#(ℎ⊗⊗⊗𝑖) ∶ 𝐔𝑓 #⦉ 𝐔𝑔 #⦉ 𝐗𝑓 #⦉ 𝐗𝑔 #⦉ 𝐗ℎ #⦉ 𝐗𝑖 → 𝐗𝑓 #⦉ 𝐗𝑔 #⦉ 𝐗ℎ #⦉ 𝐗𝑖 ,
𝑢𝑓 #⟨ 𝑢𝑔 #⟨ 𝑥𝑓 #⟨ 𝑥𝑔 #⟨ 𝑥ℎ #⟨ 𝑥𝑖 ↦ dyn𝑓⊗⊗⊗𝑔(𝑢𝑓 #⟨ 𝑢𝑔 #⟨ 𝑥𝑓 #⟨ 𝑥𝑔) #⟨ dynℎ⊗⊗⊗𝑖(ro𝑓⊗⊗⊗𝑔(𝑥𝑓 #⟨ 𝑥𝑔) #⟨ 𝑥ℎ #⟨ 𝑥𝑖)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
(3)

,

with

(3) = dyn𝑓(𝑢𝑓 #⟨ 𝑥𝑓) #⟨ dyn𝑔(𝑢𝑔 #⟨ 𝑥𝑔) #⟨ dynℎ⊗⊗⊗𝑖(ro𝑓(𝑥𝑓) #⟨ ro𝑔(𝑥𝑔) #⟨ 𝑥ℎ #⟨ 𝑥𝑖)
= dyn𝑓(𝑢𝑓 #⟨ 𝑥𝑓) #⟨ dyn𝑔(𝑢𝑔 #⟨ 𝑥𝑔)

⏟⎴⎴⎴⏟⎴⎴⎴⏟
(∗)

#⟨ dynℎ(ro𝑓(𝑥𝑓) #⟨ 𝑥ℎ)⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟
(∗∗)

#⟨dyn𝑖(ro𝑔(𝑥𝑔) #⟨ 𝑥𝑖)

and

ro(𝑓⊗⊗⊗𝑔)#(ℎ⊗⊗⊗𝑖) ∶ 𝐗𝑓 #⦉ 𝐗𝑔 #⦉ 𝐗ℎ #⦉ 𝐗𝑖 → 𝐘ℎ #⦉ 𝐘𝑖 ,
𝑥𝑓 #⟨ 𝑥𝑔 #⟨ 𝑥ℎ #⟨ 𝑥𝑖 ↦ roℎ⊗⊗⊗𝑖(𝑥ℎ #⟨ 𝑥𝑖) = roℎ(𝑥ℎ) #⟨ ro𝑖(𝑥𝑖),

As one can see from the expression for (3), the two terms (∗) and (∗∗) are switched
compared to (1). Apart from this switch (and the corresponding switch in the sig-
natures of the dynamics maps), we can see that there is a “moral correspondence”
between the Moore machines in the functorial stacking axiom.

Associative stacking

Definition 25.44 (Strict associative stacking semicategory)
An strict associative stacking category is
Constituents
1. a functorial stacking semicategory ⟨C, ⊗⊗⊗⟩;
Conditions
1. the two composite functors ((−)⊗⊗⊗ (−))⊗⊗⊗ (−) and (−)⊗⊗⊗ ((−)⊗⊗⊗ (−)) are

equal as functors C × C × C→ C.

Moo is associative stacking

When considering Moore machines, we can define stacking operations and show
thatMoo forms a stacking semicategory (Def. 25.41). The objects of Moo are
objects of ⦉ Set⦊, and therefore the stacking operation for objects corresponds to
the “multiplication in ⦉ Set⦊”, denoted by #⦉.
The operation on morphisms “stacks” Moore machines onto each other. For-
mally:

𝑓∶ 𝐔𝑓 →Moo 𝐘𝑓 𝑓∶ 𝐔𝑔 →Moo 𝐘𝑔
,

𝑓⊗⊗⊗ 𝑔 =
⟨
𝐔𝑓 #⦉ 𝐔𝑔, 𝐗𝑓 #⦉ 𝐗𝑔, 𝐘𝑓 #⦉ 𝐘𝑔, dyn𝑓⊗⊗⊗𝑔, ro𝑓⊗⊗⊗𝑔, 𝗌𝗍𝑓 #⟨ 𝗌𝗍𝑔

⟩
(112)
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374 25. Parallel composition

with

dyn𝑓⊗⊗⊗𝑔 ∶ 𝐔𝑓 #⦉ 𝐔𝑔 #⦉ 𝐗𝑓 #⦉ 𝐗𝑔 → 𝐗𝑓 #⦉ 𝐗𝑔,
𝑢𝑓 #⟨ 𝑢𝑔 #⟨ 𝑥𝑓 #⟨ 𝑥𝑔 ↦ dyn𝑓(𝑢𝑓 #⟨ 𝑥𝑓) #⟨ dyn𝑔(𝑢𝑔 #⟨ 𝑥𝑔),

and
ro𝑓⊗⊗⊗𝑔 ∶ 𝐗𝑓 #⦉ 𝐗𝑔 → 𝐘𝑓 #⦉ 𝐘𝑔,

𝑥𝑓 #⟨ 𝑥𝑔 ↦ ro(𝑥𝑓) #⟨ ro(𝑥𝑔).

While we have already proved that the operation #⦉ is associative, it is also easy to
see that the stacking of Moore machines is associative. Therefore,Moo equipped
with the described stacking operations forms an associative stacking semicate-
gory.

Monoidal stacking

Definition 25.45 (Strict monoidal stacking semicategory)
A strict monoidal stacking semicategory is a stacking semicategory ⟨C, ⊗⊗⊗,⊗⊗⊗⟩
with
Constituents

1. an object 𝟏 ∈ ObC, called themonoidal unit
Conditions

1. For any object 𝑋 of C,

𝑋⊗⊗⊗ 𝟏 = 𝑋 and 𝟏⊗⊗⊗𝑋 = 𝑋. (113)

2. Themonoidal unit 𝟏 has an identitymorphism id𝟏, and for anymorphism
𝑓∶ 𝑋 → 𝑌,

𝑓⊗⊗⊗ id𝟏 = 𝑓 and id𝟏⊗⊗⊗ 𝑓 = 𝑓. (114)

Example 25.46. We can look atMoo and ask whether it is a strict monoidal
semicategory. The monoidal unit is given by the object

𝟏 = ⦉⦊.

Its identity morphism is the Moore machine

id𝟏 =
⟨
⦉⦊, ⦉⦊, ⦉⦊, dyn𝟏, ro𝟏, ⟨⟩

⟩
,

where
dyn𝟏 ∶ ⦉⦊ #⦉ ⦉⦊ → ⦉⦊,

⟨⟩ #⟨ ⟨⟩ ↦ ⟨⟩,

and
ro𝟏 ∶ ⦉⦊ → ⦉⦊,

⟨⟩ ↦ ⟨⟩.

Clearly, 𝐀 #⦉ ⦉⦊ = ⦉⦊ #⦉ 𝐀 = 𝐀 for every 𝐀 ∈ ObMoo. Furthermore, consider a
Moore machine 𝑓∶ 𝐔→ 𝐘 with

𝑓 = ⟨𝐔, 𝐗, 𝐘, dyn, ro, 𝗌𝗍⟩.
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One has:

𝑓⊗⊗⊗ id𝟏 =
⟨
𝐔 #⦉ ⦉⦊, 𝐗 #⦉ ⦉⦊, 𝐘 #⦉ ⦉⦊, dyn𝑓⊗⊗⊗id𝟏 , ro𝑓⊗⊗⊗id𝟏 , 𝗌𝗍 #⟨ ⟨⟩

⟩

= ⟨𝐔, 𝐗, 𝐘, dyn, ro, 𝗌𝗍⟩ = 𝑓,

where we used

dyn𝑓⊗⊗⊗id𝟏 ∶ 𝐔 #⦉ ⦉⦊ #⦉ 𝐗 #⦉ ⦉⦊→ 𝐗 #⦉ ⦉⦊
𝑢 #⟨ ⟨⟩ #⟨ 𝑥 #⟨ ⟨⟩↦ dyn(𝑢, 𝑥) #⟨ dyn𝟏(⟨⟩, ⟨⟩) = dyn(𝑢, 𝑥)

and
ro𝑓⊗⊗⊗id𝟏 ∶ 𝐗 #⦉ ⦉⦊→ 𝐘 #⦉ ⦉⦊

𝑥 #⟨ ⟨⟩↦ ro(𝑥) #⟨ ro𝟏(⟨⟩) = ro(𝑥)

to show the equivalences dyn = dyn𝑓⊗⊗⊗id𝟏 and ro = ro𝑓⊗⊗⊗id𝟏 . The argument for
id𝟏⊗⊗⊗ 𝑓 follows analogously.
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378 26. Crossing wires

26.1. Symmetric monoidal categories
Symmetric strict monoidal categories

Definition 26.1
A symmetric strict monoidal category is
Constituents

1. a strict monoidal category ⟨C, ⊗⊗⊗, 𝟏⟩,
2. for any two objects 𝑋,𝑌 ∈ ObC, an isomorphism

𝖻𝗋𝑋,𝑌 ∶ 𝑋⊗⊗⊗𝑌 → 𝑌⊗⊗⊗𝑋, (1)

called the braiding;

Conditions

1. Naturality: For any morphisms 𝑓∶ 𝑋 → 𝑍, 𝑔∶ 𝑌 → 𝑈, the diagram

𝑋⊗⊗⊗𝑌 𝑌⊗⊗⊗𝑋

𝑍⊗⊗⊗𝑈 𝑈⊗⊗⊗ 𝑍

𝖻𝗋𝑋,𝑌

𝑓⊗⊗⊗ 𝑔 𝑔⊗⊗⊗ 𝑓

𝖻𝗋𝑍,𝑈

(2)

commutes.
2. Compatibility with nesting:

(𝑋⊗⊗⊗𝑌)⊗⊗⊗𝑍

𝑋⊗⊗⊗ (𝑌⊗⊗⊗ 𝑍) (𝑌⊗⊗⊗𝑋)⊗⊗⊗𝑍

(𝑌⊗⊗⊗ 𝑍)⊗⊗⊗𝑋 𝑌⊗⊗⊗ (𝑋⊗⊗⊗ 𝑍)

𝑌⊗⊗⊗ (𝑍 ⊗⊗⊗𝑋)

𝖻𝗋𝑋,𝑌 ⊗⊗⊗ id𝑍

𝖻𝗋𝑋,𝑌⊗⊗⊗𝑍

id𝑌 ⊗⊗⊗ 𝖻𝗋𝑋,𝑍

(3)

3. Symmetry: For all 𝑋,𝑌 ∈ ObC,

𝖻𝗋𝑋,𝑌 # 𝖻𝗋𝑌,𝑋 = id𝑋⊗⊗⊗𝑌 . (4)

Definition 26.2 (Symmetric monoidal category)
A symmetric monoidal category is
Constituents
1. A monoidal category ⟨C, ⊗⊗⊗, 𝟏, 𝖺𝗌, 𝗅𝗎, 𝗋𝗎⟩,
2. for any two objects 𝑋,𝑌 ∈ ObC, an isomorphism

𝖻𝗋𝑋,𝑌 ∶ 𝑋⊗⊗⊗𝑌 → 𝑌⊗⊗⊗𝑋, (5)

called the braiding;
Conditions
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1. Naturality: For any morphisms 𝑓∶ 𝑋 → 𝑍, 𝑔∶ 𝑌 → 𝑈, the diagram

𝑋⊗⊗⊗𝑌 𝑌⊗⊗⊗𝑋

𝑍⊗⊗⊗𝑈 𝑈⊗⊗⊗ 𝑍

𝖻𝗋𝑋,𝑌

𝑓⊗⊗⊗ 𝑔 𝑔⊗⊗⊗ 𝑓

𝖻𝗋𝑍,𝑈

(6)

commutes.
2. Hexagon identities: for any 𝑋,𝑌, 𝑍 ∈ ObC, the following diagrams must

commute.

(𝑋⊗⊗⊗𝑌)⊗⊗⊗𝑍 (𝑌⊗⊗⊗𝑋)⊗⊗⊗𝑍 𝑌⊗⊗⊗ (𝑋⊗⊗⊗ 𝑍)

𝑋⊗⊗⊗ (𝑌⊗⊗⊗ 𝑍) (𝑌⊗⊗⊗ 𝑍)⊗⊗⊗𝑋 𝑌⊗⊗⊗ (𝑍 ⊗⊗⊗𝑋)

𝖻𝗋𝑋,𝑌 ⊗⊗⊗ id𝑍

𝖺𝗌𝑋,𝑌,𝑍

𝖺𝗌𝑌,𝑋,𝑍

id𝑌 ⊗⊗⊗ 𝖻𝗋𝑋,𝑍

𝖻𝗋𝑋,𝑌⊗⊗⊗𝑍 𝖺𝗌𝑌,𝑍,𝑋
(7)

𝑋⊗⊗⊗ (𝑌⊗⊗⊗ 𝑍) 𝑋⊗⊗⊗ (𝑍 ⊗⊗⊗𝑌) (𝑋⊗⊗⊗ 𝑍)⊗⊗⊗𝑌

(𝑋⊗⊗⊗𝑌)⊗⊗⊗𝑍 𝑍⊗⊗⊗ (𝑋⊗⊗⊗𝑌) (𝑍 ⊗⊗⊗𝑋)⊗⊗⊗𝑌

id𝑋 ⊗⊗⊗ 𝖻𝗋𝑌,𝑍

𝖺𝗌−1𝑋,𝑌,𝑍

𝖺𝗌−1𝑌,𝑋,𝑍

𝖻𝗋𝑋,𝑍 ⊗⊗⊗ id𝑌

𝖻𝗋𝑋⊗⊗⊗𝑌,𝑍 𝖺𝗌−1𝑍,𝑋,𝑌
(8)

3. Symmetry: for any 𝑋,𝑌 ∈ ObC,

𝖻𝗋𝑋,𝑌 # 𝖻𝗋𝑌,𝑋 = id𝑋⊗⊗⊗𝑌 (9)

Remark 26.3. In the presence of the symmetry condition (9), the two hexagon
identities are actually redundant and only one of them is needed. However, if
one drops the condition (9), then the above (with both hexagon identities) gives
the definition of a braided monoidal category.

Remark 26.4. If ⟨C, ⊗⊗⊗, 𝟏, 𝖺𝗌, 𝗅𝗎, 𝗋𝗎, 𝖻𝗋⟩ is a symmetric monoidal category (or
even a braided monoidal category), we can show that the following diagram
commutes for all 𝑋 ∈ ObC.

𝟏⊗⊗⊗𝑋 𝑋⊗⊗⊗ 𝟏

𝑋

𝖻𝗋𝟏,𝑋

𝗅𝗎𝑋 𝗋𝗎𝑋

(10)

DP is a symmetric monoidal category

We define a monoidal product⊗⊗⊗ for DP on objects by

𝐏⊗⊗⊗𝐐 = 𝐏 ×𝐐 (11)

and on morphisms by

𝐝∶ 𝐏 op ×𝐑→ Pos Bool 𝐞∶ 𝐐 op × 𝐒→ Pos Bool
.

𝐝⊗⊗⊗ 𝐞∶ (𝐏 ×𝐐)op × (𝐑 × 𝐒) → Pos Bool,
⟨⟨𝑎, 𝑐⟩∗, ⟨𝑏, 𝑑⟩⟩ ↦ 𝐝(𝑎∗, 𝑏) ∧ 𝐞(𝑐∗, 𝑑),

(12)
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380 26. Crossing wires

Lemma 26.5. There is a symmetric monoidal category ⟨ DP, ⊗⊗⊗, 𝟏, 𝖺𝗌, 𝗅𝗎, 𝗋𝗎, 𝖻𝗋⟩
where the braiding is given by the design problem 𝖻𝗋𝐏,𝐐 ∶ 𝐏 ×𝐐 ,↦ 𝐐 × 𝐏 with

𝖻𝗋𝐏,𝐐(⟨𝑝1, 𝑞1⟩∗, ⟨𝑞2, 𝑝2⟩) ∶= (𝑝1 ⪯𝐏 𝑝2) ∧
(
𝑞1 ⪯𝐐 𝑞2

)
(13)

for any 𝐏,𝐐 ∈ Ob DP.
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26.2. PROPs
Definition 26.6
A prop is a symmetric strict monoidal category C where the collection of
objects is the natural numbersℕ, themonoidal product on objects is addition
of natural numbers, and the monoidal unit is 0 ∈ ℕ.

Example 26.7. There is a prop FinSet where
⊳ the set of morphisms from 𝑚 to 𝑛 (for 𝑚, 𝑛 ∈ ℕ) is defined to be the set of
functions from {1, …, 𝑚} to {1, …, 𝑛};

⊳ composition is the usual composition of functions;
⊳ identity morphisms are identity functions;
⊳ the monoidal product of functions 𝑓∶ {1, …, 𝑚} → {1, …, 𝑛} and 𝑓′ ∶ {1, …,
𝑚′}→ {1, …, 𝑛′} is the “disjoint union”

𝑓 + 𝑓′ ∶ {1, …, 𝑚 +𝑚′}→ {1, …, 𝑛 + 𝑛′}. (14)

Example 26.8. We define a propMatℝ where:
⊳ morphisms from𝑚 to 𝑛 are 𝑛 ×𝑚matrices with entries in ℝ (we also allow
zero-dimensional matrices);

⊳ composition is matrix multiplication ;
⊳ identity morphisms are identity matrices;
⊳ the monoidal product of matrices 𝐀∶ 𝑚 → 𝑛 and 𝐁∶ 𝑚′ → 𝑛′ is

[𝐀 𝟎
𝟎 𝐁] ∶ 𝑚 +𝑚′ → 𝑛 + 𝑛′. (15)

Example 26.9. We define a prop LinRelℝ where:
⊳ morphisms from𝑚 to 𝑛 are linear relations ℝ𝑚 → ℝ𝑛 (in other words, linear
subspaces of ℝ𝑚 ⊕ℝ𝑛);

⊳ composition is composition of relations;
⊳ identity morphisms are identity relations;
⊳ the monoidal product of linear relations 𝑅∶ 𝑚 → 𝑛 and 𝑆∶ 𝑚′ → 𝑛′ is 𝑅 ⊕
𝑆∶ ℝ𝑚 ⊕ℝ𝑚′

→ ℝ𝑛 ⊕ℝ𝑛′ , where

𝑅 ⊕ 𝑆 = {
⟨⟨
𝑣, 𝑣′

⟩
,
⟨
𝑤, 𝑤′⟩⟩ ∣ ⟨𝑣, 𝑤⟩ ∈ 𝑅 and

⟨
𝑣′, 𝑤′⟩ ∈ 𝑆}. (16)
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27. Feedback

27.1 Traced symmetric monoidal cate-
gories . . . . . . . . . . . . . . . . 384

27.2 Partial traces . . . . . . . . . . . . 390
27.3 Feedback categories . . . . . . . . 394
27.4 Dual objects and morphisms . . 396
27.5 Canonical trace . . . . . . . . . . . 399

Some symmetric monoidal categories have, in addition to serial com-
position and parallel composition, also an operation that describes
“feedback” or “recursion” or ”iteration”. In terms of string diagram,
this operation allows us to create loops.

The “Zopf” is a Swiss type of sweet bread, made from white flour, eggs, milk, butter, and yeast. The name in German and French is derived from the bread’s
shape, and means “braid”.



384 27. Feedback

27.1. Traced symmetric monoidal categories

Figure 1.: Naturality in 𝑋

Figure 2.: Naturality in 𝑌

Figure 3.: Dinaturality in 𝑍

Figure 4.: Vanishing I

Figure 5.: Vanishing II

Definition 27.1 (Traced monoidal category)
We say that a symmetric monoidal category ⟨C, ⊗⊗⊗, 𝟏, 𝖺𝗌, 𝗅𝗎, 𝗋𝗎, 𝖻𝗋⟩ is traced
if it is equipped with a a trace operator: a family of functions

Tr𝑍𝑋,𝑌 ∶ HomC(𝑋⊗⊗⊗ 𝑍;𝑌⊗⊗⊗ 𝑍)→ HomC(𝑋;𝑌), (1)

You are reading a draft compiled on 2024-12-09 11:28:28Z



27.1. Traced symmetric monoidal categories 385

Figure 6.: Yanking

satisfying the following axioms:
1. Naturality in𝑋: For any morphisms 𝑓∶ 𝑋⊗⊗⊗𝑍 → 𝑌⊗⊗⊗𝑍 and 𝑔∶ 𝑋′ → 𝑋,

Tr𝑍𝑋′,𝑌((𝑔⊗⊗⊗ id𝑍) # 𝑓) = 𝑔 # Tr𝑍𝑋,𝑌(𝑓) (2)

2. Naturality in 𝑌: For any morphisms 𝑓∶ 𝑋⊗⊗⊗𝑍 → 𝑌⊗⊗⊗𝑍 and 𝑔∶ 𝑌 → 𝑌′,

Tr𝑍𝑋,𝑌′(𝑓 # (𝑔⊗⊗⊗ id𝑍)) = Tr𝑍𝑋,𝑌(𝑓) # 𝑔 (3)

3. Dinaturality in 𝑍: For any morphisms 𝑓∶ 𝑋⊗⊗⊗𝑍 → 𝑌⊗⊗⊗𝑍′ and 𝑔∶ 𝑍′ →
𝑍,

Tr𝑍𝑋,𝑌(𝑓 # (id𝑌 ⊗⊗⊗ 𝑔)) = Tr𝑍
′

𝑋,𝑌((id𝑋 ⊗⊗⊗ 𝑔) # 𝑓). (4)

4. Vanishing I: For any morphisms 𝑓∶ 𝑋⊗⊗⊗ 𝟏→ 𝑌⊗⊗⊗ 𝟏 in C,

Tr𝟏𝑋,𝑌(𝑓) = 𝗋𝗎−1𝑋 # 𝑓 # 𝗋𝗎𝑌 . (5)

5. Vanishing II: For any morphism 𝑓∶ (𝑋⊗⊗⊗ 𝑍)⊗⊗⊗𝑈 → (𝑌⊗⊗⊗ 𝑍)⊗⊗⊗𝑈 in C,

Tr𝑍𝑋,𝑌
(
Tr𝑈𝑋⊗⊗⊗𝑍,𝑌⊗⊗⊗𝑍(𝑓)

)
= Tr𝑍⊗⊗⊗𝑈𝑋,𝑌 (𝖺𝗌𝑋,𝑍,𝑈 # 𝑓 # 𝖺𝗌−1𝑌,𝑍,𝑈). (6)

6. Superposing: For any morphism 𝑓∶ 𝑋⊗⊗⊗ 𝑍 → 𝑌⊗⊗⊗ 𝑍 in C,

Tr𝑍𝑉⊗⊗⊗𝑋,𝑉⊗⊗⊗𝑌(𝖺𝗌𝑉,𝑋,𝑍 # id𝑉 ⊗⊗⊗ 𝑓 # 𝖺𝗌−1𝑉,𝑌,𝑍) = id𝑉 ⊗⊗⊗ Tr𝑍𝑋,𝑌(𝑓). (7)

7. Yanking:
Tr𝑍𝑍,𝑍

(
𝖻𝗋𝑍,𝑍

)
= id𝑍 . (8)

Remark 27.2. Other variants of the definition of a traced monoidal category
can be found in the literature. For instance, some include a more general version
of the superposing law, see Lemma 27.3 below.

Lemma 27.3. Let ⟨C, ⊗⊗⊗, 𝟏C, 𝖻𝗋, Tr⟩ be a traced monoidal category. Then a more
general version of the superposing law holds: for any morphisms 𝑓∶ 𝑋⊗⊗⊗ 𝑍 →
𝑌⊗⊗⊗ 𝑍 and 𝑔∶ 𝑈 → 𝑉,

Tr𝑍𝑈⊗⊗⊗𝑋,𝑉⊗⊗⊗𝑌(𝑔⊗⊗⊗ 𝑓) = 𝑔⊗⊗⊗ Tr𝑍𝑋,𝑌(𝑓). (9)

Definition 27.4
For the symmetric monoidal category ⟨ Rel, ×, 𝟏, 𝖺𝗌, 𝗅𝗎, 𝗋𝗎, 𝖻𝗋⟩, a trace is de-
fined as follows. Given a relation

𝑅∶ 𝐀 × 𝐂→ 𝐁 × 𝐂, (10)
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386 27. Feedback

we set

Tr𝐂𝐀,𝐁(𝑅) = {⟨𝑥, 𝑦⟩ ∈ 𝐀 × 𝐁 ∣ ∃ 𝑧 ∈ 𝐂 ∶ ⟨⟨𝑥, 𝑧⟩, ⟨𝑦, 𝑧⟩⟩ ∈ 𝑅} (11)

Definition 27.5
Consider the symmetric monoidal category ⟨ Rel,+, ∅, 𝖺𝗌, 𝗅𝗎, 𝗋𝗎, 𝖻𝗋⟩. In Rel,
the disjoint union of any two sets always comes with canonical inclusion
relations

𝗂𝗇𝐀 ∶ 𝐀→ 𝐀+ 𝐁
{⟨𝑎, ⟨1, 𝑎⟩⟩},

𝗂𝗇𝐁 ∶ 𝐁→ 𝐀+ 𝐁
{⟨𝑏, ⟨2, 𝑏⟩⟩},

(12)

and canonical projection relations

𝗉𝗋𝐀 ∶ 𝐀+ 𝐁→ 𝐀
{⟨⟨1, 𝑎⟩, 𝑎⟩},

𝗂𝗇𝐁 ∶ 𝐀+ 𝐁→ 𝐁
{⟨⟨1, 𝑎⟩, 𝑏⟩}.

(13)

Given any relation of type

𝑅∶ 𝐀+ 𝐂→ 𝐁+𝐃, (14)

we can pre-compose it with the inclusion 𝗂𝗇𝐀 ∶ 𝐀→ 𝐀+𝐂 and post-compose
it with the relation 𝗉𝗋𝐀 ∶ 𝐀+ 𝐂→ 𝐁 to obtain a relation

𝑅𝐀𝐁 ∶ 𝐀
𝗂𝗇𝐀→ 𝐀+ 𝐂

𝑅
→ 𝐁+ 𝐂

𝗉𝗋𝐁→ 𝐁. (15)

In an analogous manner we also obtain relations

𝑅𝐂𝐁 ∶ 𝐀→ 𝐁, 𝑅𝐀𝐂 ∶ 𝐂→ 𝐁, 𝑅𝐂𝐂 ∶ 𝐂→ 𝐂, (16)

induced from 𝑅.
Now we set

Tr𝐂𝐀,𝐁(𝑅) = 𝑅𝐀𝐁 ∪
⋃

𝑛≥0
𝑅𝐀𝐂 # 𝑅𝑛𝐂𝐂 # 𝑅𝐂𝐁. (17)

Graded exercise H.6 (TracingRelations)
Given the symmetric monoidal category ⟨ Rel, ×, 𝟏, 𝖺𝗌, 𝗅𝗎, 𝗋𝗎, 𝖻𝗋⟩, consider
the trace operation

Tr𝑍𝑋,𝑌 ∶ Hom⦉ Rel⦊
(
𝑋 #⦉ 𝑍;𝑌 #⦉ 𝑍

)
→ Hom⦉ Rel⦊(𝑋;𝑌)

which is defined, for a morphism 𝑅 ∈ HomC
(
𝑋 #⦉ 𝑍;𝑌 #⦉ 𝑍

)
, by

Tr𝑍𝑋,𝑌(𝑅) = {⟨𝑥, 𝑦⟩ ∈ 𝑋 × 𝑌 ∣ ∃𝑧 ∈ 𝑍∶
⟨
𝑥 #⟨ 𝑧, 𝑦 #⟨ 𝑧

⟩
∈ 𝑅}. (18)

Your task is to check that this definition satisfies the following two trace
axioms:

1. Vanishing II:
For any relation 𝑅∶ 𝑋 #⦉ 𝑍 #⦉ 𝑈 → 𝑌 #⦉ 𝑍 #⦉ 𝑈 in ⦉ Rel⦊,

Tr
𝑍#⦉𝑈
𝑋,𝑌 (𝑅) = Tr𝑍𝑋,𝑌(Tr

𝑈
𝑋#⦉𝑍,𝑌#⦉𝑍(𝑅)). (19)

2. Superposing:
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𝐝 𝐑
𝐐

𝐑
𝐏

Figure 7.: Design problem with a resource and a
functionality of the same type.

𝐝 𝐐𝐏

𝐑𝐑
⪰

Figure 8.: Closing the loop in the design problem.

For any relations 𝑅∶ 𝑋 #⦉ 𝑍 → 𝑌 #⦉ 𝑍 and 𝑆∶ 𝑉 →𝑊 in ⦉ Rel⦊,

Tr𝑍𝑉#⦉𝑋,𝑊#⦉𝑌(𝑆 ⊗⊗⊗ 𝑅) = 𝑆 ⊗⊗⊗ Tr𝑍𝑋,𝑌(𝑅). (20)

Trace in co-design
Suppose that we are given a design problem with a resource and a functionality
of the same type 𝐑 (Fig. 7). Can we “close the loop”, as in the diagram reported
in Fig. 8?
It turns out that we can give a well-defined semantics to this loop-closing opera-
tion, which coincides with the notion of a trace in category theory.
The following is the formal definition of the trace operation for design prob-
lems.

Definition 27.6 (Trace of a design problem)
Given a design problem 𝐝∶ 𝐏⊗⊗⊗𝐑 ,↦ 𝐐⊗⊗⊗𝐑, its trace

Tr𝐑𝐏,𝐐(𝐝)∶ 𝐏 ,↦ 𝐐 (21)

is defined as follows:

Tr𝐑𝐏,𝐐(𝐝)∶ 𝐏
op ×𝐐→ Pos Bool,
⟨𝑝∗, 𝑞⟩↦

⋁

𝑟∈𝐑
𝐝(⟨𝑝, 𝑟⟩∗, ⟨𝑞, 𝑟⟩). (22)

Think of drawing a loop as a way of writing down the following requirement:
Something that produces 𝐑 should not use up more of 𝐑 than it produces.

Lemma27.7. Trace as inDef. 27.6 satisfies the trace axioms. In otherwords, ⟨ DP,
⊗, 𝟏, 𝜎⟩ is a traced monoidal category, with trace as in (22).

Proof. We have already shown that ⟨ DP, ⊗, 𝟏, 𝜎⟩ is a symmetric monoidal
category (Lemma 26.5). We prove the trace axioms one by one, starting from
vanishing ((5), (6)). Given any 𝐏,𝐐 ∈ Ob DP and 𝐝∶ 𝐏× 𝟏 ,↦ 𝐐× 𝟏 in DP,
we have

= Tr𝟏𝐏,𝐐(𝐝)(𝑝∗, 𝑞)

=
⋁

𝑟∈𝟏
𝐝(⟨𝑝, 𝑟⟩∗, ⟨𝑞, 𝑟⟩)

= 𝐝(⟨𝑝, ∙⟩∗, ⟨𝑞, ∙⟩)
= 𝐝(𝑝∗, 𝑞).

(23)

Furthermore, for any morphism 𝐝∶ 𝐏 × 𝐗 × 𝐘 ,↦ 𝐐 × 𝐗 × 𝐘 in DP, we
have

Tr𝐗×𝐘𝐏,𝐐 (𝐝)(𝑝∗, 𝑞)

=
⋁

⟨𝑥, 𝑦⟩∈𝐗×𝐘
𝐝(⟨𝑝, 𝑥, 𝑦⟩∗, ⟨𝑞, 𝑥, 𝑦⟩)

=
⋁

𝑥∈𝐗

⎛
⎜
⎝

⋁

𝑦∈𝐘
𝐝(⟨𝑝, 𝑥, 𝑦⟩∗, ⟨𝑞, 𝑥, 𝑦⟩)

⎞
⎟
⎠

= Tr𝐗𝐏,𝐐
(
Tr𝐘𝐏×𝐗,𝐐×𝐗(𝐝)(⟨𝑝, 𝑥⟩∗, ⟨𝑞, 𝑥⟩)

)
.

(24)

For the superposing axiom ((7)), consider 𝐝∶ 𝐏 × 𝐗 ,↦ 𝐐 × 𝐗 in DP. We
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388 27. Feedback

have
Tr𝐗𝐑×𝐏,𝐑×𝐐(id𝐑⊗⊗⊗ 𝐝)(⟨𝑟1, 𝑝⟩∗, ⟨𝑟2, 𝑞⟩)

=
⋁

𝑥∈𝐗
id𝐑(𝑟∗1 , 𝑟2) ∧ 𝐝(⟨𝑝, 𝑥⟩

∗, ⟨𝑞, 𝑥⟩)

= id𝐑(𝑟∗1 , 𝑟2) ∧
⋁

𝑥∈𝐗
𝐝(⟨𝑝, 𝑥⟩∗, ⟨𝑞, 𝑥⟩)

= (id𝐑⊗⊗⊗ Tr𝐗𝐏,𝐐(𝐝))(⟨𝑟1, 𝑝⟩∗, ⟨𝑟2, 𝑞⟩).

(25)

Finally, for yanking (8) consider 𝜎𝐗,𝐗. We have

Tr𝐏𝐏,𝐏(𝜎𝐏,𝐏)(𝑝∗1 , 𝑝2)

=
⋁

𝑝∈𝐏
𝜎𝐏,𝐏(⟨𝑝1, 𝑝⟩∗, ⟨𝑝, 𝑝2⟩)

=
⋁

𝑝∈𝐏
𝑝1 ⪯ 𝑝2 ∧ 𝑝 ⪯ 𝑝

=
⋁

𝑝∈𝐏
𝑝1 ⪯ 𝑝2

= id𝐏(𝑝∗1 , 𝑝2).

(26)

Graded exercise H.7 (DPSnakeTracePart2)
In this exercise we work again with the category DP of posets and de-
sign problems, equipped with the symmetric monoidal structure where the
monoidal product is the cartesian product of posets. In the following we
make the identification

(𝐏 ×𝐐)op = 𝐏op ×𝐐op (27)

for any posets 𝐏, 𝐐. Also, recall that (𝐏op)op = 𝐏.
In components, the associator for DP is

𝖺𝗌𝐏,𝐐,𝐑 ∶ ((𝐏 ×𝐐) ×𝐑)op × (𝐏 × (𝐐 ×𝐑))→ Bool (28)

with

𝖺𝗌𝐏,𝐐,𝐑(
⟨⟨
𝑝∗1 , 𝑞

∗
1
⟩
, 𝑟∗1

⟩
, ⟨𝑝2, ⟨𝑞2, 𝑟2⟩⟩) = 𝑝1 ⪯ 𝑝2 ∧ 𝑞1 ⪯ 𝑞2 ∧ 𝑟1 ⪯ 𝑟2, (29)

and the left unitor is

𝗅𝗎𝐏 ∶ (𝟏 × 𝐏)op × 𝐏→ Bool (30)

with
𝗅𝗎𝐏(

⟨⟨
∙∗, 𝑝∗1

⟩
, 𝑝2

⟩
) = 𝑝1 ⪯ 𝑝2. (31)

The right unitor is analogous.
The braiding

𝖻𝗋𝐏,𝐐 ∶ 𝐏 ×𝐐 ,↦ 𝐐 × 𝐏

is
𝖻𝗋𝐏,𝐐(

⟨
𝑝∗1 , 𝑞

∗
1
⟩
, ⟨𝑞2, 𝑝2⟩) ∶= (𝑝1 ⪯𝐏 𝑝2) ∧

(
𝑞1 ⪯𝐐 𝑞2

)
. (32)

We define the following duality data, with respect to which DP is compact
closed:
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27.1. Traced symmetric monoidal categories 389

⊳ 𝐏∨ ∶= 𝐏op

⊳ ev𝐏 ∶ (𝐏op × 𝐏)op × {∙}→ Bool, ⟨⟨𝑥∗, 𝑦⟩∗, ∙⟩↦ 𝑦 ⪯𝐏 𝑥
⊳ coev𝐏 ∶ {∙}

op × (𝐏 × 𝐏op)→ Bool, ⟨∙, ⟨𝑥, 𝑦∗⟩⟩↦ 𝑦 ⪯𝐏 𝑥
Your task: given a morphism 𝐝∶ 𝐏 × 𝐑 ,↦ 𝐐 × 𝐑 in DP, show that the
design problem 𝐏 ,↦ 𝐐 given by the following composition

𝗋𝗎−1𝐏 #(id𝐏⊗⊗⊗coev𝐑)#𝖺𝗌−1𝐏,𝐑,𝐑op#(𝐝⊗⊗⊗id𝐑op)#𝖺𝗌𝐐,𝐑,𝐑op #(id𝐐⊗⊗⊗𝖻𝗋𝐑,𝐑op)#(id𝐐⊗⊗⊗ev𝐑)#𝗋𝗎𝐐
(33)

is equal to the design problem 𝐏 ,↦ 𝐐 given by

𝐏op ×𝐐→ Pos Bool,
⟨𝑝∗, 𝑞⟩↦

⋁

𝑟∈𝐑
𝐝(⟨𝑝, 𝑟⟩∗, ⟨𝑞, 𝑟⟩). (34)

Trace of a linear transformation
Consider the category FinVectℝ of finite dimensional real vector spaces, which
has as objects finite dimensional vector spaces and as morphisms linear maps
between them. Using the tensor product ⊗ of real vector spaces as monoidal
product, we can show FinVectℝ is a monoidal category. Consider a linear
transformation𝑓∶ 𝐵⊗𝐷 → 𝐶⊗𝐷,with𝐵, 𝐶, 𝐷 vector spaceswith bases {𝑏𝑖}, {𝑐𝑗},
and {𝑑𝑘} respectively. Here, the trace is a linear function 𝖳𝗋𝐷𝐵,𝐶(𝑓)∶ 𝐵 → 𝐶, given
by (

𝖳𝗋𝐷𝐵,𝐶(𝑓)
)
𝑖,𝑗
=
∑

𝑘
𝑓𝑖⊗𝑘,𝑗⊗𝑘 (35)

Trace for symmetric strict monoidal categories

Definition 27.8 (Trace for ⦉ Rel⦊ with concatenation as monoidal product)
Consider the symmetric strictmonoidal category⦉ Rel⦊,where themonoidal
product is defined via the concatenation operation #⦉ for lists of sets. Given a
relation 𝑅∶ ⦉𝐀, 𝐂⦊→ ⦉𝐁, 𝐂⦊, its trace is defined as

Tr⦉𝐂⦊⦉𝐀⦊,⦉𝐁⦊(𝑅) = {⟨𝑥, 𝑦⟩ ∈ ⦉𝐀⦊ × ⦉𝐁⦊ ∣ ∃ 𝑧 ∈ ⦉𝐂⦊ ∶
⟨
𝑥 #⟨ 𝑧, 𝑦 #⟨ 𝑧

⟩
∈ 𝑅}

(36)
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390 27. Feedback

27.2. Partial traces
Definition 27.9
Let 𝑋 and 𝑌 be sets. A partial function 𝑓 from 𝑋 to 𝑌, written 𝑓 ∶ 𝑋 ⇀ 𝑌,
is a function 𝑓 ∶ 𝑈𝑓 → 𝑌 for some subset 𝑈𝑓 ⊂ 𝑋.
For partial functions 𝑓, 𝑔 ∶ 𝑋 ⇀ 𝑌 and 𝑥 ∈ 𝑋 we define the following:
⊳ We write 𝑓(𝑥) ↓ if 𝑥 ∈ 𝑈𝑓 , i.e. 𝑓(𝑥) is defined.
⊳ We write 𝑓(𝑥) ↑ if 𝑥 ∉ 𝑈𝑓 , i.e. 𝑓(𝑥) is undefined.
⊳ WesayKleene equality at𝑥 holds andwrite𝑓(𝑥) ≍ 𝑔(𝑥), if either𝑓(𝑥) =
𝑔(𝑥) and 𝑓(𝑥) and 𝑔(𝑥) are defined, or 𝑓(𝑥) and 𝑔(𝑥) are undefined.

⊳ We say directed Kleene equality at 𝑥 holds and write 𝑓(𝑥) >≍ 𝑔(𝑥),
if either 𝑓(𝑥) is undefined or else 𝑓(𝑥) and 𝑔(𝑥) are both defined and
𝑓(𝑥) = 𝑔(𝑥). Similarly, we write 𝑓(𝑥) <≍ 𝑔(𝑥) for the case when the roles
of 𝑓 and 𝑔 are reversed.

Definition 27.10
Let ⟨C, ⊗⊗⊗, 𝟏, 𝖻𝗋⟩ be a symmetric strict monoidal category. Then it is called
partially traced if it is equipped with family of partial functions

Tr𝑍𝑋,𝑌 ∶ HomC(𝑋⊗⊗⊗ 𝑍;𝑌⊗⊗⊗ 𝑍)→ HomC(𝑋;𝑌)

for all objects 𝑋,𝑌, 𝑍 ∈ ObC such that the following axioms are satisfied:
1. Tightening (naturality in 𝑋,𝑌) For all objects 𝑋,𝑌,𝑋′, 𝑌′, 𝑍 and mor-

phisms 𝑔 ∶ 𝑋′ → 𝑋, 𝑓 ∶ 𝑋 ⊗⊗⊗ 𝑍 → 𝑌 ⊗⊗⊗ 𝑍 and ℎ ∶ 𝑌 → 𝑌′ it holds
that

Tr𝑍𝑋′,𝑌′((𝑔⊗⊗⊗ id𝑍) # 𝑓 # (ℎ⊗⊗⊗ id𝑍)) >≍ 𝑔 # Tr𝑍𝑋,𝑌(𝑓) # ℎ.

2. Sliding (naturality in 𝑍) For all objects 𝑋,𝑌, 𝑍, 𝑍′ and morphisms 𝑓 ∶
𝑋⊗⊗⊗ 𝑍 → 𝑌⊗⊗⊗ 𝑍′ and 𝑔 ∶ 𝑍′ → 𝑍 it holds that

Tr𝑍𝑋,𝑌(𝑓 # (id𝑌 ⊗⊗⊗ 𝑔)) ≍ Tr𝑍
′

𝑋,𝑌((id𝑋 ⊗⊗⊗ 𝑔) # 𝑓).

3. Vanishing For all objects 𝑋,𝑌, 𝑍, 𝑍′ and morphisms 𝑔 ∶ 𝑋 → 𝑌 and
𝑓 ∶ 𝑋⊗⊗⊗ 𝑍⊗⊗⊗ 𝑍′ → 𝑌⊗⊗⊗ 𝑍⊗⊗⊗ 𝑍′ it holds that

Tr𝟏𝑋,𝑌(𝑔) ≍ 𝑔

and if Tr𝑍
′

𝑋⊗⊗⊗𝑍,𝑌⊗⊗⊗𝑍(𝑓) ↓, then

Tr𝑍⊗⊗⊗𝑍
′

𝑋,𝑌 (𝑓) ≍ Tr𝑍𝑋,𝑌(Tr
𝑍′
𝑋⊗⊗⊗𝑍,𝑌⊗⊗⊗𝑍(𝑓)).

4. Strength For all objects 𝑋,𝑌,𝑋′, 𝑌′, 𝑍 and morphisms 𝑓 ∶ 𝑋′⊗⊗⊗ 𝑍 →
𝑌′⊗⊗⊗𝑍 and 𝑔 ∶ 𝑋 → 𝑌 it holds that

Tr𝑍𝑋⊗⊗⊗𝑋′,𝑌⊗⊗⊗𝑌′(𝑔⊗⊗⊗ 𝑓) >≍ 𝑔⊗⊗⊗ Tr𝑍𝑋′,𝑌′(𝑓).

5. Yanking For all objects 𝑍 it holds that

Tr𝑍𝑍,𝑍(𝖻𝗋𝑍,𝑍) ≍ id𝑍 .

Definition 27.11
Consider the symmetric strict monoidal category𝐌𝐚𝐭ℝ (objects are natural
numbers and a morphism𝑚 → 𝑛 is a 𝑛 ×𝑚 matrix with entries in ℝ), with
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27.2. Partial traces 391

monoidal stacking operation

𝐀⊗⊗⊗ 𝐁 = [𝐀 𝟎
𝟎 𝐁] . (37)

A partial trace operation is defined as follows. Given

𝑓 = [𝐀 𝐁
𝐂 𝐃] ∶ 𝑚 + 𝑘 → 𝑛 + 𝑘 (38)

we set
Tr𝑘𝑚,𝑛(𝑓) = 𝐀 + 𝐂(𝐈 −𝐃)−1𝐁 (39)

if 𝐈 −𝐃 is invertible, and otherwise Tr𝑘𝑚,𝑛(𝑓) is undefined.

Remark 27.12. How might one arrive at the formula for the trace in Def. 27.11?
Here are two informal derivations of why it is a plausible and suitable guess for a
formula for a (partial) trace.

1. One intuition is to treat this case similarly to the case of Rel when it is
equipped with the cartesian product as monoidal product. If we think of a
morphism

𝑓 = [𝐀 𝐁
𝐂 𝐃] ∶ 𝑚 + 𝑘 → 𝑛 + 𝑘 (40)

as a function (or: a relation)

ℝ𝑚 ⊕ℝ𝑘 → ℝ𝑛 ⊕ℝ𝑘 (41)

then a natural condition for feedback is to consider the equation

[𝐀 𝐁
𝐂 𝐃] [

𝐮
𝐱] = [𝐲𝐱] (42)

and think of 𝐮 as input, 𝐲 as output, and 𝐱 as a state variable. From (42), the
output 𝐲 is given then by the formula

𝐲 = 𝐀𝐮 + 𝐂𝐱 (43)

where 𝐱 is required to satisfy the recursive equation

𝐱 = 𝐁𝐮 +𝐃𝐱 (44)

which, if 𝐈 −𝐃 is invertible, may be solved thus:

𝐱 = (𝐈 −𝐃)−1𝐁𝐮. (45)

Substituting this formula in (43), we obtain

𝐲 = 𝐀𝐮 + 𝐂(𝐈 −𝐃)−1𝐁𝐮 (46)

2. Another way to think of the trace formula (39) is in analogy to the trace for
Rel equipped with the sum of set as monoidal product. There we noted that a
relation of the type

𝑅∶ 𝐀+ 𝐂→ 𝐁+ 𝐂 (47)

gives rise to four relations, which we denoted 𝑅𝐀𝐁, 𝑅𝐂𝐁, 𝑅𝐀𝐂, and 𝑅𝐂𝐂. These
are in analogy to the components 𝐀, 𝐁, 𝐂, and 𝐃, respectively, of the matrix

[𝐀 𝐁
𝐂 𝐃] . (48)
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392 27. Feedback

The analogue here to the formula (17) for the trace of a relation is to set

Tr𝑘𝑚,𝑛(𝑓) = 𝐀 + 𝐂 (
∞∑

𝑖=0
𝐃𝑖)𝐁, (49)

which, under suitable assumptions, is well-defined and equal to (39) because
the geometric series

∑∞
𝑖=𝑜 𝐃

𝑖 then converges to (𝐈 −𝐃)−1.

LTI systems

Let 𝑓 = ⟨𝗌𝗍,𝐀, 𝐁, 𝐂,𝐃⟩ be a LTI system from 𝑙 ∈ ℕ to𝑚 ∈ ℕ, and suppose we
are given factorizations 𝑙 = 𝑖+𝑘 and𝑚 = 𝑗+𝑘 of the dimension of the input and
output spaces,𝑈 and𝑌, respectively. Thenwe can think of𝑈 = ℝ𝑙 as an (internal)
direct sum of the form ℝ𝑙 = ℝ𝑖 ⊕ℝ𝑘, and similarly so for 𝑈 = ℝ𝑚 = ℝ𝑗 ⊕ℝ𝑘.
We will use the notation 𝑈 = 𝑈1 ⊕𝑈2 and 𝑌 = 𝑈1 ⊕𝑈2, respectively for these
factorizations. This induces corresponding factorizations of the matrices 𝐁, 𝐂,
and 𝐃 as block matrices:

𝐁 =
[
𝐁1 𝐁2

]
𝐂 = [𝐂1𝐂2

] 𝐃 = [𝐃11 𝐃12
𝐃21 𝐃22

] . (50)

Definition 27.13
Let an LTI system 𝑓 = ⟨𝗌𝗍,𝐀, 𝐁, 𝐂,𝐃⟩ and factorizations 𝑙 = 𝑖 + 𝑘 and
𝑚 = 𝑗 + 𝑘 be given, and let

𝐁 =
[
𝐁1 𝐁2

]
𝐂 = [𝐂1𝐂2

] 𝐃 = [𝐃11 𝐃12
𝐃21 𝐃22

] (51)

be the corresponding factorizations of 𝐁, 𝐂, and 𝐃. If the matrix 𝐈 −𝐃22 is
invertible, we define the LTI system Tr𝑘𝑖,𝑗(𝑓) as

⟨𝗌𝗍, 𝐀 + 𝐁2(𝟏 −𝐃22)−1𝐂2, 𝐵1 + 𝐷2(𝟏 −𝐃22)−1𝐷21,
𝐶1 + 𝐷12(𝟏 −𝐃22)−1𝐶2, 𝐷11 + 𝐷12(𝟏 −𝐃22)−1𝐷21⟩.

(52)

Example 27.14. Let’s consider the simple signal-flow diagram reported in Fig. 9.
Note that the represented signals are scalar. In basic engineering classes, you
learn that you can find an expression of the output 𝑦(𝑡) as a function of the input
𝑢(𝑡), by following the diagram. In particular, one can write

𝐾(𝑢(𝑡) − 𝐶𝑦(𝑡)) = 𝑦(𝑡)⇔ 𝐾𝑢(𝑡) − 𝐾𝐶𝑦(𝑡) = 𝑦(𝑡)
⇔ 𝐾𝑢(𝑡) = 𝑦(𝑡) + 𝐾𝐶𝑦(𝑡)
⇔ 𝐾𝑢(𝑡) = 𝑦(𝑡)(1 + 𝐾𝐶)

⇔ 𝑦(𝑡) = 𝐾
1 + 𝐾𝐶𝑢(𝑡).

(53)

Now, we want to get the same expression, but interpreting the presented system
as a composition of LTI systems, and leveraging the newly introduced concept of
trace.
This can be visualized as in Fig. 10. The systems are given by
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𝐾

𝐶

𝑢(𝑡) 𝑦(𝑡)

−

Figure 9.: Example with signal-flow diagram.

𝑓 = ⟨𝟎0×1,𝟎0×0,𝟎0×1,𝟎1×0,
[
1 −1

]
⟩

𝑔 =
⟨
𝟎0×1, 𝟎0×0, 𝟎0×1, 𝟎1×0, 𝐾

⟩

ℎ =
⟨
𝟎0×1, 𝟎0×0, 𝟎0×1, 𝟎1×0, [11]

⟩

𝑖 = ⟨𝟎0×1,𝟎0×0,𝟎0×1,𝟎1×0, [1 0
0 𝐶]⟩

Intuitively, 𝑓 is acting as the subtraction, 𝑔 as the gain 𝐾, ℎ is splitting the signal
in two identical copies, one of which is used by the controller, expressed via 𝑖.
All of these LTI systems are described by their last component, and are therefore
explicit input-output relationships. We can compose the LTI systems.
We just look at the last component of the composition, given by:

𝐃 = 𝐃𝑖𝐃ℎ𝐃𝑔𝐃𝑓

= [1 0
0 𝐶] [

1
1]𝐾

[
1 −1

]

= [ 𝐾𝐾𝐶]
[
1 −1

]

= [ 𝐾 −𝐾
𝐶𝐾 −𝐶𝐾]

We can now apply the formula for the trace and we get:

𝗉𝗋5(Tr
𝑤
1,1) = 𝐾 − 𝐾(1 + 𝐶𝐾)−1𝐶𝐾

= 𝐾
1 + 𝐶𝐾 .

From this we get the LTI system from (53) (in other words, a direct input-output
dependency).

𝑓 𝑔 ℎ
𝑖𝑦(𝑡)

𝑦(𝑡)𝑢(𝑡)

𝑤(𝑡)

Figure 10.: Signal-flow diagram transformed into
composition of LTI systems.
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394 27. Feedback

27.3. Feedback categories
The following definition of a feedback operator is identical with the definition of
a trace operator, except for two important differences:
1. the dinaturality axiom for the feeback operator is only required to hold for

isomorphisms;
2. the yanking axiom is omitted completely.

Definition 27.15 (Feedback category)
We call a symmetric monoidal category ⟨C, ⊗⊗⊗, 𝟏, 𝖺𝗌, 𝗅𝗎, 𝗋𝗎, 𝖻𝗋⟩ a feedback
category if it is equipped with a feedback operator: a family of functions

Fb𝑍𝑋,𝑌 ∶ HomC(𝑋⊗⊗⊗ 𝑍;𝑌⊗⊗⊗ 𝑍)→ HomC(𝑋;𝑌), (54)

satisfying the following axioms:
1. Naturality in𝑋: For any morphisms 𝑓∶ 𝑋⊗⊗⊗𝑍 → 𝑌⊗⊗⊗𝑍 and 𝑔∶ 𝑋′ → 𝑋,

Fb𝑍𝑋′,𝑌((𝑔⊗⊗⊗ id𝑍) # 𝑓) = 𝑔 # Fb𝑍𝑋,𝑌(𝑓) (55)

2. Naturality in 𝑌: For any morphisms 𝑓∶ 𝑋⊗⊗⊗𝑍 → 𝑌⊗⊗⊗𝑍 and 𝑔∶ 𝑌 → 𝑌′,

Fb𝑍𝑋,𝑌′(𝑓 # (𝑔⊗⊗⊗ id𝑍)) = Fb𝑍𝑋,𝑌(𝑓) # 𝑔 (56)

3. Dinaturality in 𝑍 with respect to isomorphisms: For anymorphism 𝑓∶ 𝑋⊗⊗⊗
𝑍 → 𝑌⊗⊗⊗ 𝑍′ and any isomorphism 𝑔∶ 𝑍′ → 𝑍,

Fb𝑍𝑋,𝑌(𝑓 # (id𝑌 ⊗⊗⊗ 𝑔)) = Fb𝑍
′

𝑋,𝑌((id𝑋 ⊗⊗⊗ 𝑔) # 𝑓). (57)

4. Vanishing I: For any morphisms 𝑓∶ 𝑋⊗⊗⊗ 𝟏→ 𝑌⊗⊗⊗ 𝟏 in C,

Fb𝟏𝑋,𝑌(𝑓) = 𝗋𝗎−1𝑋 # 𝑓 # 𝗋𝗎𝑌 . (58)

5. Vanishing II: For any morphism 𝑓∶ (𝑋⊗⊗⊗ 𝑍)⊗⊗⊗𝑈 → (𝑌⊗⊗⊗ 𝑍)⊗⊗⊗𝑈 in C,

Fb𝑍𝑋,𝑌
(
Fb𝑈𝑋⊗⊗⊗𝑍,𝑌⊗⊗⊗𝑍(𝑓)

)
= Fb𝑍⊗⊗⊗𝑈𝑋,𝑌 (𝖺𝗌𝑋,𝑍,𝑈 # 𝑓 # 𝖺𝗌−1𝑌,𝑍,𝑈). (59)

6. Superposing: For any morphism 𝑓∶ 𝑋⊗⊗⊗ 𝑍 → 𝑌⊗⊗⊗ 𝑍 in C,

Fb𝑍𝑉⊗⊗⊗𝑋,𝑉⊗⊗⊗𝑌(𝖺𝗌𝑉,𝑋,𝑍 # id𝑉 ⊗⊗⊗ 𝑓 # 𝖺𝗌−1𝑉,𝑌,𝑍) = id𝑉 ⊗⊗⊗ Fb𝑍𝑋,𝑌(𝑓). (60)

Example 27.16. Consider the symmetric monoidal categoryMealy/~ of Mealy
machines modulo congruence, where objects are sets and where a morphism
𝐀 → 𝐁 is an equivalence class represented by a pair ⟨𝐒, 𝑓⟩ consisting of a set 𝐒
(which we think of as a state space) and a function

𝑓∶ 𝐀 × 𝐒→ 𝐁 × 𝐒. (61)

A feedback operator forMealy/~ is defined as follows. Given a morphism of the
type

[𝑔]∶ 𝐀 × 𝐂→ 𝐁 × 𝐂, (62)

represented by a function

𝑔∶ (𝐀 × 𝐂) × 𝐒→ (𝐁 × 𝐂) × 𝐒, (63)
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we let
Fb𝐂𝐀𝐁([𝑔])∶ 𝐀→ 𝐁 (64)

be the morphism inMealy/~ represented by the function

𝐀 × (𝐂 × 𝐒)
𝖺𝗌−1
→ (𝐀 × 𝐂) × 𝐒

𝑔
→ (𝐁 × 𝐂) × 𝐒

𝖺𝗌
→ 𝐁 × (𝐂 × 𝐒). (65)

In other words, the feedback operator Fb𝐂𝐀𝐁 simply shifts 𝐂 to being part of the
state space, instead of as being part of the input and output spaces.
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396 27. Feedback

27.4. Dual objects and morphisms
There is a concept of “duality” for objects in a monoidal category which we will
introduce with an illustrative example.
We have seen in Example 25.29 that the categoryC = Vectℝ of real vector spaces
is symmetric monoidal, with tensor product as the monoidal product. Given a
vector space 𝑉, its linear dual is the real vector space

𝑉∗ ∶= {linear maps 𝑉 → ℝ} = HomC(𝑉;ℝ). (66)

Recall from linear algebra the following fact about any vector space 𝑉:

𝑉 ≃ (𝑉∗)∗ if and only if dim𝑉 <∞. (67)

One might say that the finite-dimensional real vector spaces are characterizable
based on their behavior in this way with respect to the operation of taking the
linear dual.
We will develop an alternative formulation of this fact, based on the notion of a
dualizable object. This notion will make sense in the setting of any (symmetric)
monoidal category, and we will see then, that (67) translates to the statement

𝑉 ∈ Ob Vectℝ is dualizable if and only if dim𝑉 <∞. (68)

Key protagonists in this reformulation are evaluation and coevaluationmaps.
In the following,𝑉 denotes a finite-dimensional real vector space. The evaluation
map ev𝑉 associated to 𝑉 is

ev𝑉 ∶ 𝑉∗ ⊗𝑉 → ℝ,
⟨𝑙, 𝑣⟩ ↦ 𝑙(𝑣).

(69)

In other words, given ⟨𝑙, 𝑣⟩, the map ev𝑉 evaluates 𝑙 at 𝑣.
The coevaluation map coev𝑉 associated to 𝑉 is slightly trickier to describe. Let
{𝑒1, …, 𝑒𝑛} be a basis of𝑉, and let {𝑒∗1 , …, 𝑒

∗
𝑛} be the corresponding dual basis of𝑉∗.

Then
coev𝑉 ∶ ℝ → 𝑉 ⊗ 𝑉∗,

𝜆 ↦ 𝜆
𝑛∑

𝑖=1
𝑒𝑖 ⊗ 𝑒∗𝑖 .

(70)

It turns out that this map is independent of the choice of basis. One way to think
of this coevaluation map is to recall that 𝑉 ⊗ 𝑉∗ ≃ Hom(𝑉,𝑉). Under this
identification, coev𝑉 maps the scalar 𝜆 to the linear endomorphism of 𝑉 which
is “multiplication by 𝜆”. (In terms of matrices, this is a diagonal matrix, with 𝜆 at
every entry of the diagonal.)
Recall that as part of the monoidal structure on Vectℝ we have the left and right
unitors

𝗅𝗎𝑉 ∶ 𝟏⊗⊗⊗𝑉
≅
,→ 𝑉 𝑉 ∈ Ob Vectℝ (71)

𝗋𝗎𝑉 ∶ 𝑉⊗⊗⊗ 𝟏
≅
,→ 𝑉 𝑉 ∈ Ob Vectℝ . (72)

The evaluation and coevaluation maps defined above satisfy the following equa-
tions:

𝗅𝗎−1𝑉 # (coev𝑉 ⊗⊗⊗ id𝑉) # 𝖺𝗌𝑉,𝑉∗,𝑉 # (id𝑉 ⊗⊗⊗ ev𝑉) # 𝗋𝗎𝑉 = id𝑉 (73)

and
𝗋𝗎−1𝑉∗ # (id𝑉∗ ⊗⊗⊗ coev𝑉) # 𝖺𝗌−1𝑉∗,𝑉,𝑉∗ # (ev𝑉 ⊗⊗⊗ id𝑉∗) # 𝗅𝗎𝑉∗ = id𝑉∗ . (74)
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Graded exercise H.8 (VectSnakeEquations)
Check (73) and (74) bydirect calculation,assuming that𝑉 is a finite-dimensional
real vector space.

The equations (73) and (74) form the basis for the general notion of dualizability
in a monoidal category.

Definition 27.17 (Dual object)
Let

⟨
C, ⊗⊗⊗C, 𝟏C

⟩
be a monoidal category, and let𝑋 ∈ ObC. A right dual object

of 𝑋 is specified by:
Constituents

1. an object 𝑋∨ ∈ ObC;
2. a morphism ev𝑋 ∶ 𝑋∨⊗⊗⊗𝑋 → 𝟏, called evaluation;
3. a morphism coev𝑋 ∶ 𝟏→ 𝑋⊗⊗⊗𝑋∨, called coevaluation;
Conditions
1.

𝗅𝗎−1𝑋 # (coev𝑋 ⊗⊗⊗ id𝑋) # 𝖺𝗌𝑋,𝑋∨,𝑋 # (id𝑋 ⊗⊗⊗ ev𝑋) # 𝗋𝗎𝑋 = id𝑋 ; (75)

2.

𝗋𝗎−1
𝑋∨

# (id𝑋∨ ⊗⊗⊗ coev𝑋) # 𝖺𝗌−1
𝑋∨,𝑋,𝑋∨

# (ev𝑋 ⊗⊗⊗ id𝑋∨) # 𝗅𝗎𝑋∨ = id𝑋∨ . (76)

Definition 27.18
An object 𝑋 in a monoidal category is called right dualizable if there exists,
in the category, a right dual object of 𝑋.

Remark 27.19. There is an analogous definition of left dual object and left dualiz-
ability. One can show that when the monoidal category in question is symmetric,
then left dual objects can be seen as right dual objects, and vice versa. In this
case, we then speak simply of dualizability.

Definition 27.20 (Compact closed category)
A symmetric monoidal category is called compact closed if every object is
dualizable.

Definition 27.21 (Dual morphism)
Let 𝑓∶ 𝑋 → 𝑌 be a morphism in a monoidal category

⟨
C, ⊗⊗⊗C, 𝟏C

⟩
and

suppose that 𝑋 and 𝑌 have right duals 𝑋∨ and 𝑌∨, respectively. The right
dual of 𝑓 is the morphism 𝑓∨ ∶ 𝑌∨ → 𝑋∨ given by the composition

𝑌∨ 𝑌∨⊗⊗⊗ 𝟏 𝑌∨⊗⊗⊗ (𝑋⊗⊗⊗𝑋∨)

(𝑌∨⊗⊗⊗𝑋)⊗⊗⊗𝑋∨ (𝑌∨⊗⊗⊗𝑌)⊗⊗⊗𝑋∨

𝟏⊗⊗⊗𝑋∨ 𝑋∨

𝗋𝗎−1𝑌 id𝑌∨ ⊗⊗⊗ coev𝑋

𝖺𝗌−1 (id𝑌∨ ⊗⊗⊗ 𝑓)⊗⊗⊗ id𝑋∨

ev𝑌 ⊗⊗⊗ id𝑋∨ 𝗅𝗎𝑋∨

(77)
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Graded exercise H.9 (RelDualsTrace)
In this exerciseweworkwith the category Rel of sets and relations, equipped
with the symmetric monoidal structure where the monoidal product is the
cartesian product of sets. The braiding is

𝖻𝗋𝐀,𝐁 ∶ {
⟨
⟨𝑥, 𝑦⟩,

⟨
𝑦′, 𝑥′

⟩⟩
∈ (𝐀 × 𝐁) × (𝐁 ×𝐀) ∣ 𝑥 = 𝑥′, 𝑦 = 𝑦′}. (78)

This symmetric monoidal category is compact closed when we let the dual
𝐀∨ of any set 𝐀 be the set itself, 𝐀∨ = 𝐀, and we define evaluation and
co-evaluation by

ev𝐀 ∶ 𝐀 ×𝐀→ 𝟏, ev𝐀 = {⟨⟨𝑥, 𝑦⟩, ∙⟩ ∈ (𝐀 ×𝐀) × 𝟏 ∣ 𝑥 = 𝑦} (79)

and

coev𝐀 ∶ 𝟏→ 𝐀 ×𝐀, coev𝐀 = {⟨∙, ⟨𝑥, 𝑦⟩⟩ ∈ 𝟏 × (𝐀 ×𝐀) ∣ 𝑥 = 𝑦} (80)

respectively.
Your tasks:
1. Let 𝑆∶ 𝐀→ 𝐁 be a (generic) morphism in Rel. Compute the dual mor-

phism 𝑆∨ ∶ 𝐁∨ → 𝐀∨.
2. Let 𝑅∶ 𝐀 × 𝐂→ 𝐁 × 𝐂 be a morphism in Rel. Show that the trace of 𝑅,

given by the composition

𝗋𝗎−1𝐀 #(id𝐀⊗⊗⊗coev𝐂)#𝖺𝗌−1𝐀,𝐂,𝐂#(𝑅⊗⊗⊗id𝐂)#𝖺𝗌𝐁,𝐂,𝐂#(id𝐁⊗⊗⊗𝖻𝗋𝐀,𝐀)#(id𝐁⊗⊗⊗ev𝐂)#𝗋𝗎𝐁
(81)

is equal to the relation

{⟨𝑥, 𝑦⟩ ∈ 𝐀 × 𝐁 ∣ ∃𝑧 ∈ 𝐂∶ ⟨⟨𝑥, 𝑧⟩, ⟨𝑦, 𝑧⟩⟩ ∈ 𝑅}. (82)
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27.5. Canonical trace
Definition 27.22 (Trace of an endomorphism)
Let ⟨C, ⊗⊗⊗, 𝟏, 𝖺𝗌, 𝗅𝗎, 𝗋𝗎, 𝖻𝗋⟩ be a symmetric monoidal category. Let 𝑋 ∈ ObC
be dualizable and let

𝑓∶ 𝑋 → 𝑋. (83)

The trace of 𝑓 is the morphism

Tr(𝑓)∶ 𝟏→ 𝟏 (84)

defined by

𝟏 𝑋⊗⊗⊗𝑋∨ 𝑋⊗⊗⊗𝑋∨ 𝑋∨⊗⊗⊗𝑋 𝟏
coev𝑋 𝑓⊗⊗⊗ id𝑋∨ 𝖻𝗋 ev𝑋

(85)

Graded exercise H.10 (LinearAlgebraTrace)
Let C be the category of finite-dimensional real vector spaces and ℝ-linear
maps.We have seen that this category is symmetricmonoidalwhen equipped
with the usual tensor product as monoidal product. Furthermore, in Sec-
tion 27.4 we saw that every object in this category is dualizable.
Fix a finite-dimensional real vector space 𝑉, and let {𝑒1, …, 𝑒𝑛} be a basis of
it. We saw that a choice of dual object for 𝑉 is given by 𝑉∗ = Hom(𝑉,ℝ),
together with the evaluation map

ev𝑉 ∶ 𝑉∗ ⊗𝑉 → ℝ,
⟨𝑙, 𝑣⟩ ↦ 𝑙(𝑣).

(86)

and the co-evaluation map

coev𝑉 ∶ ℝ → 𝑉 ⊗ 𝑉∗,

𝜆 ↦ 𝜆
𝑛∑

𝑖=1
𝑒𝑖 ⊗ 𝑒∗𝑖 .

(87)

where {𝑒∗1 , …, 𝑒
∗
𝑛} is the basis dual to the one we chose for 𝑉.

Let 𝑓∶ 𝑉 → 𝑉 be a linear endomorphism – that is, 𝑓 ∈ HomC(𝑉,𝑉).
Compute the trace Tr(𝑓) ∈ HomC(ℝ,ℝ) of 𝑓 according to Def. 27.22, and
explain why it is the linear map “multiplication by the trace of 𝑓”, where
“trace” in this latter phrase is the usual notion that we know from linear
algebra.

Graded exercise H.11 (DPSnakeTrace)
In this exercise we work with the category DP of posets and design prob-
lems, equipped with the symmetric monoidal structure where the monoidal
product is the cartesian product of posets. The braiding

𝖻𝗋𝐏,𝐐 ∶ 𝐏 ×𝐐 ,↦ 𝐐 × 𝐏

is defined by

𝖻𝗋𝐏,𝐐(⟨𝑝1, 𝑞1⟩∗, ⟨𝑞2, 𝑝2⟩) ∶= (𝑝1 ⪯𝐏 𝑝2) ∧
(
𝑞1 ⪯𝐐 𝑞2

)
. (88)
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In the following you are free to use the identification

(𝐏 ×𝐐)op = 𝐏op ×𝐐op (89)

for any posets 𝐏, 𝐐. Also, recall that (𝐏op)op = 𝐏.
Let us define the following duality data:
⊳ 𝐏∨ ∶= 𝐏op

⊳ ev𝐏 ∶ (𝐏op × 𝐏)op × {∙}→ Bool, ⟨⟨𝑥∗, 𝑦⟩∗, ∙⟩↦ 𝑦 ⪯𝐏 𝑥
⊳ coev𝐏 ∶ {∙}

op × (𝐏 × 𝐏op)→ Bool, ⟨∙, ⟨𝑥, 𝑦∗⟩⟩↦ 𝑦 ⪯𝐏 𝑥
Your tasks:

1. Guess the definitions of the associator 𝖺𝗌 and the unitors 𝗅𝗎, 𝗋𝗎 for the
monoidal category DP, check that each has the correct type, and justify
why each of them does indeed define a morphism in the category DP.

2. Guess the definitions of 𝗅𝗎−1 and 𝗋𝗎−1 and check for one of them that it
does indeed define the inverse morphism.

3. Check that ev𝐏 and coev𝐏, as defined above, are morphisms in DP.
4. For an arbitrary poset 𝐏 and the duality data given above, prove that this

snake equation

𝗅𝗎−1𝐏 # (coev𝐏⊗⊗⊗ id𝐏) # 𝖺𝗌𝐏,𝐏op,𝐏 # (id𝐏⊗⊗⊗ ev𝐏) # 𝗋𝗎𝐏 = id𝐏 (90)

holds.

Definition 27.23 (Trace of a generalized endomorphism)
Let ⟨C, ⊗⊗⊗, 𝟏, 𝖺𝗌, 𝗅𝗎, 𝗋𝗎, 𝖻𝗋⟩ be a symmetric monoidal category. Let 𝑋 ∈ ObC be dualizable and let

𝑓∶ (𝑌⊗⊗⊗𝑋)→ (𝑍 ⊗⊗⊗𝑋). (91)

The trace over 𝑋 of 𝑓 is the morphism
Tr𝑋𝑌,𝑍(𝑓)∶ 𝑌 → 𝑍 (92)

defined by

𝑌 𝑌⊗⊗⊗ 𝟏 𝑌⊗⊗⊗ (𝑋⊗⊗⊗𝑋∨) (𝑌⊗⊗⊗𝑋)⊗⊗⊗𝑋∨ (𝑍 ⊗⊗⊗𝑋)⊗⊗⊗𝑋∨

𝑍 ⊗⊗⊗ (𝑋⊗⊗⊗𝑋∨) 𝑍 ⊗⊗⊗ (𝑋∨⊗⊗⊗𝑋) 𝑍 ⊗⊗⊗ 𝟏 𝑍

𝗋𝗎−1𝑌 id𝑌 ⊗⊗⊗ coev𝑋 𝖺𝗌−1 𝑓⊗⊗⊗ id𝑋∨

𝖺𝗌 id𝑍 ⊗⊗⊗ 𝖻𝗋 id𝑍 ⊗⊗⊗ ev𝑋 𝗋𝗎𝑍

(93)
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Solutions to selected exercises
Solution of Exercise 50. To prove the statement we first check that the stack-
ing operations satisfy Def. 25.41, we then show that they are compatible, and
finally show associativity. The stacking operation on objects was already checked
for ⦉ Set⦊. The stacking operation on morphisms clearly returns a valid relation.
Furthermore, compatibility is satisfied:

𝑅∶ ⦉𝐀1, …,𝐀𝑚⦊→⦉ Rel⦊ ⦉𝐁1, …, 𝐁𝑛⦊ 𝑆∶ ⦉𝐂1, …, 𝐂𝑜⦊→⦉ Rel⦊ ⦉𝐃1, …,𝐃𝑝⦊
.

𝑅⊗⊗⊗ 𝑆∶ ⦉𝐀1, …,𝐀𝑚⦊ #⦉ ⦉𝐂1, …, 𝐂𝑜⦊→⦉ Rel⦊ ⦉𝐁1, …, 𝐁𝑛⦊ #⦉ ⦉𝐃1, …,𝐃𝑝⦊
(94)

Finally, associativity for the operation on objects was already shown for ⦉ Set⦊.

Solution of Exercise 51.
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The Sechseläuten is a traditional spring holiday in the Zurich, Switzerland, usually happening on the 3rd monday of April. The old city guilds meet in the
city center for a parade, climax of which is the burning of the “Böögg”, a snowman prepared with explosives, considered a weather oracle for the summer.
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This chapter introduces basic concepts of engineering design, and
describes what are the design queries we want to answer.

Switzerland produces timepieces since the 14th century. Indeed, a “Swiss made” watch is very unique: according to official rules, the mechanics, casing, and
inspection of a watch must be carried out in Switzerland to earn the hallmark. Today, Switzerland is the world’s largest watch exporter, counting over 60,000
employees and exporting over $ 13.7 billion worth products.



406 28. Design

28.1. What is “design”?
We take a broad view of what it means to “design”, that is not limited to engineer-
ing. Citing at length Hebert Simon’s* The sciences of the artificial ([25], Chapter
5):

Engineers are not the only professional designers. Everyone designs
who devises courses of action aimed at changing existing situations
into preferred ones. The intellectual activity that produces material
artifacts is no different fundamentally from the one that prescribes
remedies for a sick patient or the one that devises a new sales plan for
a company or a social welfare policy for a state. Design, so construed,
is the core of all professional training; it is the principal mark that
distinguishes the professions from the sciences. Schools of engineer-
ing, as well as schools of architecture, business, education, law, and
medicine, are all centrally concerned with the process of design.

The metaphors used in the book are biased towards engineering. It is easy for
everybody to imagine creating a physical machine out of simple components,
and what choices and trade-offs we must deal with. Furthermore, it is easy to
imagine what is the boundary between the machine and the world, that is, to
delimit the design space.
Yet the theory to be discussed is applicable to other disciplines, if one takes a
more abstract view of what is a system and a component. For example, in urban
planning, the components of a city are roads, sewers, residential areas, etc. In other
disciplines, “components” can be logical instead of physical. For example, an
economist might ask how to design an incentive scheme such that such scheme
(a “component”) will move the system to a more desirable set of states.

*Hebert A. Simon (1916-2001). Winner of the 1978 Nobel Prize in Economics.

You are reading a draft compiled on 2024-12-09 11:28:28Z



28.2. What is “co-design”? 407

28.2. What is “co-design”?
The word “co-design” is not a new one. In this book, we will use a meaning that
incorporates and extends the existing meaning.
We take the “Co” in “co-design” to have four meanings:
1. “co” for “compositional”;
2. “co” for “collaborative”;
3. “co” for “computational”;
4. “co” for “continuous”.
These meanings together describe the aspects of modern engineering design.

“Co” for “compositional”
The first meaning has to do with composition:

co-design = design everything together

We use the word “co-design” to refer to any decision procedure that has to do
with making simultaneous choices about the components of a system to achieve
system-level goals. This includes the choice of components, the interconnection
of components, and the configuration of components. We will see that in most
cases, choices that are made at the level of components without looking at the
entire system are doomed to be suboptimal. Slightly modifying Haiken’s quote
in Section 1.2, we choose this as our slogan:

A system is composed of components;
a component is something you understand how to design.

“Co” for “collaborative”
In a second broad meaning, “co-” stands for “collaborative”:

co-design = design everything, together

There are two types of collaborations. First, there is the collaboration between
human and machine, in the definition and solution of design problems. Second,
and most importantly, is the collaboration among different experts or teams of
experts in the design process.
The typical situation is that the system design is suboptimal because every expert
only knows one component and there are rigid interfaces/contracts designed
early on. The problem here is sharing of knowledge across teams, specifically,
knowledge about the design of systems.
In this case, this is the slogan:

«A system is composed of components;
a component is something that somebody understands how to de-
sign. »

There is a tight link between the “composition” and “collaboration” aspects.
As Conway† first observed for software systems:

«Organizations which design systems [. . . ] are constrained to produce
designs which are copies of the communication structures of these
organizations.»

† John Horton Conway (1937–2020) was a mathematician. Probably the most popular idea of his
was the invention of the Game of Life, which inspired countless works on cellular automata. We
remember him for the discovery of the surreal numbers, which should be just called numbers, as
they contain all other ordered fields.
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This “mirroring” hypothesis between system and organization was explored
formally and found to hold [18]. The ultimate reason is that “the organization’s
governance structures, problem-solving routines and communication patterns
constrain the space in which it searches for new solutions”. This appears to be
true for generic systems in addition to software.
In the end, civilization is about dividing up the work, and so we must choose
where one’s work ends and the other’s work begins. But we need to keep talking
if we want that everything works together.

“Co” for “computational”
The third meaning of “co-” in “co-design” will be computational. It is the age
of machines, and we need machines to understand what we are doing.
Therefore, we strive to create not only a qualitative modeling for co-design, but
also a formal and quantitative description that will be suitable for setting up an
optimization problem that can be solved to obtain an optimal design.
Our slogan becomes:

«A system is composed of components;
a component is something that somebody understands how to de-
sign well enough to teach a computer. »

“Co” for “continuous”
The fourth meaning of “co-” is continuous. We look at designs not as something
that exists as a single decision in time, but rather as something that continuous
to exist and evolve, independently on the designer.
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28.3. Basic concepts of formal engineering design
Later, all these concepts will find a formal definition in the language of category
theory.

Functionality and functional requirements You are an engineer in front of
an empty whiteboard, ready to start designing the next product. The first question
to ask is: What is the purpose of the product to be designed? The purpose of the
product is expressed by the functional requirements, sometimes called functional
specifications, desired behavior, objectives, or simply function.
Unfortunately, the word “function” conflicts with the mathematical concept.
Therefore, we will talk about functionality. Moreover, we will never use the word
“function”, and instead usemap to denote the mathematical concept.

Example 28.1. These are a few examples of functional requirements:
⊳ A car must be able to transport at least 𝑛 ≥ 4 passengers.
⊳ A battery must store at least 100 kJ of energy.
⊳ An autonomous vehicle should reach at least 20mphwhile guaranteeing safety.

Resources and resource constraints We call resources what we need to pay
to realize the given functionality. In some contexts, these are better called costs,
or dependencies.

Example 28.2. These are a few examples of resource constraints:
⊳ A car should not cost more than 15,000USD.
⊳ A battery should not weigh more than 1 kg.
⊳ A process should not take more than 10 s.

Duality of functionality and resources There is an interesting duality be-
tween functionality and resources. When designing systems, one is given func-
tional requirements, as a lower bound on the functionality to provide, and one is
given resource constraints, which are an upper bound on the resources to use.
As far as design objectives go, most can be understood as eitherminimize resource
usage ormaximize functionality provided.
This duality between functionality and resources will be at the center of our
formalization.

Non-functional requirements Functionality and resources do not cover all
the requirements– there is, for example, a large class of non-functional require-
ments [deweck11] such as the extensibility and the maintainability of the system.
Nevertheless, functionality and resources can express most of the requirements
which can be quantitatively evaluated, at least prior to designing, assembling,
and testing the entire system.

Implementation space The implementation space or design space is the set of
all possible design choices that could be chosen; by implementation, or the word
“design”, used as a noun, we mean one particular set of choices. The implemen-
tation space 𝐈 is the set over which we are optimizing; an implementation 𝑖 ∈ 𝐈
is a particular point in that set (Fig. 1).
The interconnection between functionality, resources, and implementation spaces
is as follows. We will assume that, given one implementation, we can evaluate it
to know the functionality and the resources spaces (Fig. 2).
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Figure 1.:An implementation 𝑖 is a particular point
in the implementation space 𝐈.

𝑖

𝐈

Figure 2.: Evaluation of specific implementations
to get functionality and resources spaces. implementationsfunctionality requirements

Functional Interfaces and interconnection Components are interconnected
to create a system. This implies that we have defined the interfaces of components,
which have the dual function of delimiting when one component ends and an-
other begins, and also to describe exactly what is the nature of their interaction.
We will develop a formalism in which the functionality and resources are the in-
terfaces used for interconnection: two components are connected if the resources
required by the first correspond to the functionality provided by the second.

Abstraction By abstraction, we mean that it is possible to “zoom out”, in the
sense that a system of components can be seen as a component itself, which can
be part of larger systems.

Compositionality A compositional property is a property that is preserved by
interconnection and abstraction; assuming each component in a system satisfies
that property, also the system as a whole satisfies the property.

Example 28.3. One can compose two electronic circuits by joining their termi-
nals to obtain another electronic circuit. We would say that the property of being
an electronic circuit is compositional.
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28.4. Queries in design
Suppose that we have a model with a functionality space 𝐅, a requirements
space 𝐑, and an implementation space 𝐈.
There are several queries we can ask of a model. They all look at the same phe-
nomenon from different angles, so they look similar; however the computational
cost of answering each one might be very different.
The first kind of query is one that asks if the design is feasible when fixed all
variables.

Problem (Feasibility problem). Given a triplet of implementation 𝑖 ∈ 𝐈, func-
tionality 𝑓 ∈ 𝐅, requirements 𝑟 ∈ 𝐑, determine if the design is feasible.

The second type of query is that which fixes the boundary conditions of func-
tionality and requirements, and asks to find a solution.

Problem (Find implementation). Given a pair of minimal requested functional-
ity 𝑓 ∈ 𝐅 and maximum allowed requirements 𝑟 ∈ 𝐑, determine if there is an
implementation 𝑖 ∈ 𝐈 that is feasible.

A different type of query is the one in which the design objective (the functional-
ity) is fixed, and we ask what are the least resources necessary.

Problem (𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌). Given a certain functionality 𝑓 ∈ 𝐅, find the set of
“minimal” resources in 𝐑 that are needed to realize it (along with the implemen-
tations), or provide a proof that there are none (a certificate of infeasibility).

Dually, we can ask, fixed the resources available, what are the functionalities that
can be provided.

Problem (𝖥𝗂𝗑𝖱𝖾𝗌𝖬𝖺𝗑𝖥𝗎𝗇). Given a certain requirement 𝑟 ∈ 𝐑, find the set of
“maximal” functionalities in that can realize it (along with the implementations),
or provide a proof that there are none (a certificate of infeasibility).

It is very natural to talk about the “minimal” requirements and “maximal” func-
tionalities; after all,we always want tominimize costs andmaximize performance.
In the next chapterwe start to putmoremathematical scaffolding in place, starting
from defining functionality and requirements as posets.
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This chapter introduces Monotone Co-Design Theory, a formaliza-
tion for computational design theory. It is a compositional theory of
which the primitive elements are design problems (DPI), formalized
as relations among functionality, resources, and implementations.
We show that DPIs can capture design problems across diverse fields.

The Swiss Army knife is a multi-tool pocketknife manufactured by Victorinox, first manufactured in 1981.
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29.1. Design Problems with Implementation
We start by defining a “design problem with implementation”, which is a tuple of
“functionality space”, “implementation space”, and “resources space”, together
with two maps that describe the feasibility relations between these three spaces
(Fig. 1).

Definition 29.1 (Design problem with implementation)
A design problem with implementation (DPI) is a tuple

⟨𝐅,𝐑, 𝐈, 𝗉𝗋𝗈𝗏, 𝗋𝖾𝗊⟩, (1)

where:
⊳ 𝐅 is a poset, called functionality space;
⊳ 𝐑 is a poset, called requirements space;
⊳ 𝐈 is a set, called implementation space;
⊳ the map 𝗉𝗋𝗈𝗏∶ 𝐈 → 𝐅 maps an implementation to the functionality it
provides;

⊳ the map 𝗋𝖾𝗊∶ 𝐈→ 𝐑maps an implementation to the resources it requires.

Figure 1. implementationsfunctionality requirements

𝗉𝗋𝗈𝗏 𝗋𝖾𝗊

Example 29.2 (Motor design). Suppose we need to choose a motor for a robot
from a given set. The functionality of a motor could be parametrized by torque
and speed. The resources to consider could include the cost [USD], the mass [g],
the input voltage [V], and the input current [A]. The map 𝗉𝗋𝗈𝗏∶ 𝐈→ 𝐅 assigns to
each motor its functionality, and the map 𝗋𝖾𝗊∶ 𝐈→ 𝐑 assigns to each motor the
resources it needs (Fig. 2).

Figure 2.

speed [rad/s]
torque [Nm]

cost [USD]
mass [g]
voltage [V]
current [A]

implementations
𝐈

functionality
𝐅

requirements
𝐑

𝗉𝗋𝗈𝗏 𝗋𝖾𝗊

Example 29.3 (Chassis design). Suppose we need to choose a chassis for a robot.
The implementation space 𝐈 (Fig. 3) could be the set of all chassis that could ever
be designed (in case of a theoretical analysis), or just the set of chassis available
in the catalogue at hand (in case of a practical design decision). The functionality
of a chassis could be formalized as “the ability to transport a certain payload
[g]” and “at a given speed [m/s]”. More refined functional requirements would
include maneuverability, the cargo volume, etc. The resources to consider could
be the cost [USD] of the chassis; the total mass; and, for each motor to be placed
in the chassis, the required speed [rad/s] and torque [Nm].
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all chassis
payload [g]
velocity [m/s]

cost [USD]
total mass [g]
motor speed [m/s]
motor torque [Nm]

chassis available at ServoCity.com

implementations
𝐈

functionality
𝐅

requirements
𝐑

𝗉𝗋𝗈𝗏 𝗋𝖾𝗊

Figure 3.

Example 29.4. We revisit the leading example of Section 34.1 with the newly
introduced co-design perspective. Consider a list of electrical motors as in Ta-
ble 29.1.

Table 29.1.: A simplified catalogue of motors.

Motor ID Company Torque [kg ⋅ cm] Weight [g] Max Power [W] Cost [USD]
1204 SOYO 0.18 60.0 2.34 19.95
1206 SOYO 0.95 140.0 3.00 19.95
1207 SOYO 0.65 130.0 2.07 12.95
2267 SOYO 3.7 285.0 4.76 16.95
2279 Sanyo Denki 1.9 165.0 5.40 164.95
1478 SOYO 19.0 1,000 8.96 49.95
2299 Sanyo Denki 2.2 150.0 5.90 59.95

We can think of this as a catalogue of electric motors ⟨𝐈EM, 𝗉𝗋𝗈𝗏EM, 𝗋𝖾𝗊EM⟩. In
particular, the set of implementations collects all the motor models, which we
can specify using the motor IDs:

𝐈EM = {1204, 1206, 1207, 2267, 2279, 1478, 2299}. (2)

We now have to think about resources and functionalities. Each motor requires
someweight (in g), power (inW), and has some cost (in USD), and provides some
torque (in kg ⋅ cm). Thus, we can identify

𝐅 = ℝkg⋅cm, 𝐑 = ℝg ×ℝW ×ℝUSD, (3)

by considering the units as discussed in Section 15.3. The correspondences are
given by the details in Table 29.1. For instance, we have

𝗉𝗋𝗈𝗏EM(1204) = 0.18 kg ⋅ cm, (4)

𝗋𝖾𝗊EM(1204) =
⟨
60 g, 2.34W, 19.95USD

⟩
. (5)

Graphical notation

A graphical notation will help reasoning about composition. A DPI is represented
as a box with n𝑓 green edges and n𝑟 red edges (Fig. 4).
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Figure 4.

design problem resource

resource

functionality

functionality
⋮ ⋮n𝑓 n𝑟

This means that the functionality and resources spaces can be factorized in n𝑓
and n𝑟 components:

𝐅 =
n𝑓∏

𝑖=1
𝗉𝗋𝑖𝐅𝑖 , 𝐑 =

n𝑟∏

𝑗=1
𝗉𝗋𝑗𝐑𝑗 , (6)

where “𝗉𝗋𝑖” represents the projection to the 𝑖-th component. If there are no green
(respectively, red) edges, then n𝑓 (respectively, n𝑟) is zero, and 𝐅 (respectively, 𝐑)
is equal to 𝟏 = {⟨ ⟩}, the set containing one element, the empty tuple ⟨ ⟩.
These co-design diagrams are not to be confused with signal flow diagrams, in
which the boxes represent oriented systems and the edges represent signals.
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29.2. Examples
We now present a list of design problems for different disciplines, to showcase
the universality of the approach.

Mechatronics

Many mechanisms can be readily modeled as relations between a provided func-
tionality and required resources.

Example 29.5. A gearbox (Fig. 5) provides a certain output torque 𝜏𝑜 and speed
𝜔𝑜, given a certain input torque 𝜏𝑖 and speed 𝜔𝑖 . For an ideal gearbox with a
reduction ratio 𝑟 ∈ ℚ+ and efficiency ratio 𝛾, 0 < 𝛾 < 1, the constraints among
those quantities are 𝜔𝑖 ≥ 𝑟 𝜔𝑜 and 𝜏𝑖𝜔𝑖 ≥ 𝛾 𝜏𝑜𝜔𝑜. With this simple model, the set
of implementations are given by the possible values of reduction and efficiency
ratio.

Gearbox input torque 𝜏𝑖 [Nm]
input speed 𝜔𝑖 [rad/s]output speed 𝜔𝑜 [rad/s]

output torque 𝜏𝑜 [Nm]

𝑟, 𝛾 Figure 5.

Example 29.6. Propellers (Fig. 6) generate thrust given a certain torque and
speed.

Propellers input torque [Nm]
input speed [rad/s]

thrust [N]

Figure 6.

Example 29.7. A four-bar crank-rocker (Fig. 7) converts rotational motion into a
rocking motion. The parametrization depends on the length of the four linkages.

Crank-rocker
rocking motion rotational motion

Figure 7.

Geometrical constraints

Geometrical constraints are examples of constraints that are easily recognized as
monotone, but possibly hard to write down in closed form.

Example 29.8 (Bin packing). Suppose that each internal component occupies
a volume bounded by a parallelepiped, and that we must choose the minimal
enclosure in which to place all components (Fig. 8). What is the minimal size of
the enclosure? This is a variation of the bin packing problem, which is in NP for
both 2D and 3D [17]. It is easy to see that the problem is monotone, by noticing
that, if one the components shapes increases, then the size of the enclosure
cannot shrink. The implementations, in this case, are the configurations which
one can choose to place all components in the container (one of the possible
configurations is shown in the picture).
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Figure 8.

Bin packing

content
shapes

container
shape

Inference

Many inference problems have a monotone formalization, taking the accuracy or
robustness as functionality, and computation or sensing as resources. Typically,
these bounds are known in a closed form only for restricted classes of systems,
such as the linear/Gaussian setting.

Example 29.9 (SLAM). One issue with particle-filter-based estimation proce-
dures, such as the ones used in the popular GMapping [9] suite, is that the filter
might diverge if there aren’t enough particles. Although the relation might be
hard to characterize, there is a monotone relation between the robustness (1 -
probability of failure), the accuracy, and the number of particles (Fig. 9). Here,
the implementation space contains the other choices of parameters for the filter:
fixed the number of particles, by changing the tuning of the filter, we can explore
the trade-off of accuracy and robustness.

Figure 9.

GMappingaccuracy

robustness
nr. particles

Example 29.10 (Stereo reconstruction). Progressive reconstruction systems
([16]),which start with a coarse approximation of the solution that is progressively
refined, are described by a smooth relation between the resolution and the latency
to obtain the answer (Fig. 10). A similar relation characterizes any anytime
algorithms in other domains, such as robot motion planning.

Figure 10.

Progressive stereo

resolution latency [s]

Example 29.11. The empirical characterization of the monotone relation be-
tween the accuracy of a visual SLAM solution and the power consumption is the
goal of recent work by Davison and colleagues [21, 32].

Communication

Example 29.12 (Transducers). Any type of “transducer” that bridges between
different mediums can be modeled as a DP. For example, an access point (Fig. 11)
provides the wireless access functionality, and requires that the infrastructure
provides the Ethernet access resource.

Example 29.13 (Wireless link). The basic functionality of a wireless link is
to provide a certain bandwidth (Fig. 12). Further refinements could include
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Access point

wireless internet access ethernet internet access

Figure 11.

bounds on the latency or the probability that a packet drop is dropped. Given the
established convention about the preference relations for functionality, in which a
lower functionality is “easier” to achieve, one needs to choose “minus the latency”
and “minus the packet drop probability” for them to count as functionality. As
for the resources, apart from the transmission power [W], one should consider at
least the spectrum occupation, which could be described as an interval [𝑓0, 𝑓1] of
the frequency axisℝ[Hz]. Thus, the resources space is𝐑 = ℝ[W]× 𝗂𝗇𝗍𝖾𝗋𝗏𝖺𝗅𝗌(ℝ[Hz]).

wireless
link

bandwidth [B/s]
-latency [s]

-packet drop probability

power [W]

spectrum allocation [ranges of Hz]

Figure 12.

Multi-robot systems

In a multi-robot system there is always a trade-off between the number of robots
and the capabilities of the single robot.

Example 29.14. Supposewe need to create a swarmof agentswhose functionality
is to sweep an area. If the functionality is fixed, one expects a three-way trade-
off between the three resources: number of agents, the speed of a single agent,
and the execution time. For example, if the time available decreases, we have to
increase either the speed of an agent or the number of agents (Fig. 13b).

swarm
operationsarea to cover [m2]

nr. of agents
agent speed [m/s]
execution time [s]

(a)

∙ speed

nr. agents

execution time
area

(b) Figure 13.

Computation graphs

The trivial model of a CPU is as a device that provides computation, measured in
flops, and requires power [W]. Clearly there is a monotone relation between the
two.
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Figure 14.

CPU

power [W]computation [flops]

A similar monotone relation between application requirements and computation
resources holds in a much more general setting, where both application and
computation resources are represented by graphs. This will be an example of a
monotone relation between nontrivial partial orders.
In the Static Data Flow (SDF) model of computation [29, 14, Chapter 3], the
application is represented as a graph of procedures that need to be allocated on a
network of processors.

1

bin packingcomponent !
shapes

enclosure!
shape

xxxx [?]pfffft  [J] power !
[W]

computation !
[flops]

resource!
allocation

application graph resource graph
min throughput [Hz]

nodes: components!
edges: signals

nodes: processors
edges: network links

(a)

1

bin packingcomponent !
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enclosure!
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xxxx [?]pfffft  [J] power !
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resource!
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application graph resource graph
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1

bin packingcomponent !
shapes

enclosure!
shape

xxxx [?]pfffft  [J] power !
[W]

computation !
[flops]

resource!
allocation

application graph resource graph
min throughput [Hz]

nodes: components!
edges: signals

nodes: processors
edges: network links

(c)

Figure 15.

Define the application graph (sometimes called “computation graph”) as a graph
where each node is a procedure (or “actor”) and each edge is a message that needs
to be passed between procedures. Each node is labeled by the number of ops
necessary to run the procedure. Each edge is labeled by the size of the message.
There is a partial order⪯ on application graphs. In this order, it holds that𝐴1 ⪯ 𝐴2
if the application graph𝐴2 needsmore computation orbandwidth for its execution
than𝐴1. Formally, it holds that𝐴1 ⪯ 𝐴2 if there is a homomorphism𝜑∶ 𝐴1 ⇒ 𝐴2;
and, for each node 𝑛 ∈ 𝐴1, the node 𝜑(𝑛) has equal or larger computational
requirements than 𝑛; and for each edge ⟨𝑛1, 𝑛2⟩ in 𝐴2, the edge ⟨𝜑(𝑛1), 𝜑(𝑛2)⟩
has equal or larger message size.
Define a resource graph as a graph where each node represents a processor, and
each edge represents a network link. Each node is labeled by the processor ca-
pacity [flops] Each edge is labeled by latency [s] and bandwidth [B/s]. There is
a partial order on resources graph as well: it holds that 𝑅1 ⪯ 𝑅2 if the resource
graph 𝑅2 has more computation or network available than 𝑅1. The definition is
similar to the case of the application graph: there must exist a graph homomor-
phism 𝜑∶ 𝑅1 ⇒ 𝑅2 and the corresponding nodes (edges) of 𝑅2 must have larger
or equal computation (bandwidth) than those of 𝑅1.
Given an application graph𝐴 and a resource graph𝑅, a typical resource allocation
problem consists in choosing in which processor each actor must be scheduled to
maximize the throughput 𝑇 [Hz]. This is equivalent to the problem of finding a
graph homomorphism Ψ∶ 𝐴 ⇒ 𝑅. Let 𝑇∗ be the optimal throughput, and write
it as a function of the two graphs:

𝑇∗ = 𝑇∗(𝐴, 𝑅). (7)

Then the optimal throughput 𝑇∗ is decreasing in 𝐴 (a more computationally
demanding application graph decreases the throughput) and increasing in 𝑅
(more available computation/bandwidth increase the throughput).
Therefore, we can formalize this as a design problem where the two functional-
ities are the throughput 𝑇 [Hz] and the application graph 𝐴, and the resource
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graph 𝑅 is the resource.
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Figure 16.

Example 29.15. Svorenova et al. [30] consider a joint sensor scheduling and
control synthesis problem, in which a robot can decide to not perform sensing
to save power, given performance objectives on the probability of reaching the
target and the probability of collision. The method outputs a Pareto frontier of all
possible operating points. This can be cast as a design problem with functionality
equal to the probability of reaching the target and (the inverse of) the collision
probability, and with resources equal to the actuation power, sensing power, and
sensor accuracy.

actuation power
sensing power
sensor accuracy

task completion probability
1/collision probability

Figure 17.

Example 29.16. Nardi et al. [32] describe a benchmarking system for visual
SLAM that provides the empirical characterization of the monotone relation
between the accuracy of the visual SLAM solution, the throughput [frames/s]
and the energy for computation [J/frame]. The implementation space is the
product of algorithmic parameters, compiler flags, and architecture choices, such
as the number of GPU cores active. This is an example of a design problemwhose
functionality-resources map needs to be experimentally evaluated.

computation energy [J/frame]
accuracy

throughput [frame/s]
Figure 18.

Other examples in minimal robotics

Many works have sought to find “minimal” designs for robots, and can be under-
stood as characterizing the relation between the poset of tasks and the poset of
physical resources, which is the product of sensing, actuation, and computation
resources, plus other non-physical resources, such as prior knowledge (Fig. 19).
Given a task, there is a minimal antichain in the resources poset that describes
the possible trade-offs (for instance, compensating lousier sensors with more
computation).
The poset structure arises naturally: for example, in the sensor lattice [13], a
sensor dominates another if it induces a finer partition of the state space. Similar
dominance relations can be defined for actuation and computation. O’Kane and
Lavalle [22] define a robot as a union of “robotic primitives”, where each primitive
is an abstraction for a set of sensors, actuators, and control strategies that can be
used together (for instance, a compass plus a contact sensor allow to “drive North
until a wall is hit”). The effect of each primitive is modeled as an operator on the
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Figure 19.

“robotics”

sensing resources
actuation resources
computation resources
prior knowledge
...

tasks
∙

∙ ∙

robot’s information space. It is possible to work out what are the minimal combi-
nations of robotic primitives (minimal antichain) that are sufficient to perform a
task (for instance, global localization), and describe a dominance relation (partial
order) of primitives. Other works have focused on minimizing the complexity of
the controller. Egerstedt [4] studies the relation between the complexity of the
environment and a notion of minimum description length of control strategies,
which can be taken as a proxy for the computation necessary to perform the task.
Soatto [26] studies the relation between the performance of a visual task, and the
minimal representation that is needed to perform that task.
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29.3. Queries
A DPI is a model to which we can associate a family of optimization problems.
While in previous examples we covered the problem “feasibility”, we still miss
𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌, 𝖥𝗂𝗑𝖱𝖾𝗌𝖬𝖺𝗑𝖥𝗎𝗇, and 𝖥𝖾𝖺𝗌𝗂𝖻𝗅𝖾𝖨𝗆𝗉.
The first can be translated to “Given a lower bound on the functionality 𝑓, what
are the implementations that have minimal resource usage?” (Fig. 20).

Problem (𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌). Given 𝑓 ∈ 𝐅, find the implementations in 𝐈 that
realize the functionality 𝑓 (or higher) with minimal resources, or provide a proof
that there are none:

⎧
⎪
⎨
⎪
⎩

using 𝑖 ∈ 𝐈,
Min⪯𝐑 𝑟,
s.t. 𝑟 = 𝗋𝖾𝗊(𝑖),

𝑓 ⪯𝐅 𝗉𝗋𝗈𝗏(𝑖).

(8)

Remark 29.17 (Minimal vs least solutions). Note the use ofMin⪯𝐑 in (8), which
indicates the set of minimal (non-dominated) elements according to ⪯𝐑, rather
than min⪯𝐑 , which would presume the existence of the least element. In all
problems in this paper, the goal is to find the optimal trade-off of resources
(“Pareto front”). So, for each 𝑓, we expect to find an antichain 𝑅 ∈ 𝖠𝗇𝗍𝗂𝐑. We
will see that this formalization allows an elegant way to treat multi-objective
optimization problems. The algorithm to be developed will directly solve for the
set 𝑅, without resorting to techniques such as scalarization, and therefore is able
to work with arbitrary posets, possibly discrete.

In an entirely symmetric fashion, we could fix an upper bound on the resource
usage, and thenmaximize the functionality provided (Fig. 21). The formulation is
entirely dual, in the sense that it is obtained from (8) by swappingMin withMax,
𝐅 with 𝐑, and 𝗉𝗋𝗈𝗏 with 𝗋𝖾𝗊.

Problem (𝖥𝗂𝗑𝖱𝖾𝗌𝖬𝖺𝗑𝖥𝗎𝗇). Given 𝑟 ∈ 𝐑, find the implementations in 𝐈 that
requires 𝑟 (or lower) and provide the maximal functionality, or provide a proof
that there are none:

⎧
⎪
⎨
⎪
⎩

using 𝑖 ∈ 𝐈,
Max⪯𝐅 𝑓,
s.t. 𝑓 = 𝗉𝗋𝗈𝗏(𝑖),

𝑟 ⪰𝐑 𝗋𝖾𝗊(𝑖).

(9)

Another type of query is: “Given a lower bound on the functionality 𝑓 and an
upper bound on the costs 𝑓, what are the feasible implementations?

implementationsfunctionality requirements

𝐈𝐅 𝐑

𝗉𝗋𝗈𝗏 𝗋𝖾𝗊𝑓

Figure 20.
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implementationsfunctionality requirements

𝐈𝐅 𝐑

𝗉𝗋𝗈𝗏 𝗋𝖾𝗊 𝑟

Figure 21.

Problem (𝖥𝖾𝖺𝗌𝗂𝖻𝗅𝖾𝖨𝗆𝗉). Given 𝑓 ∈ 𝐅 and 𝑟 ∈ 𝐑, find the implementations in 𝐈
that requires 𝑟 (or lower) and provide 𝑓 (or higher)

⎧

⎨
⎩

using 𝑖 ∈ 𝐈,
s.t. 𝑓 ⪯𝐅 𝗉𝗋𝗈𝗏(𝑖),
s.t. 𝗉𝗋𝗈𝗏(𝑖) ⪯𝐑 𝗋𝖾𝗊(𝑖),

(10)

Another variation is to find only whether there are feasible solutions or not.

Problem (𝖥𝖾𝖺𝗌𝗂𝖻𝗂𝗅𝗂𝗍𝗒). Given 𝑓 ∈ 𝐅 and 𝑟 ∈ 𝐑, find if (10) is feasible.
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29.4. Co-design problems
A “co-design problem” will be defined as amultigraph of design problems.

Definition 29.18 (Co-design problem with implementation)
A co-design problem with implementation (CDPI) is a tuple ⟨𝐅,𝐑, ⟨𝒱 , ℰ⟩⟩,
where 𝐅 and 𝐑 are two posets, and ⟨𝒱 , ℰ⟩ is a multigraph of DPIs. Each
node 𝐝 ∈ 𝒱 is a DPI 𝐝 = ⟨𝐅𝐝,𝐑𝐝, 𝐈𝐝, 𝗉𝗋𝗈𝗏𝐝, 𝗋𝖾𝗊𝐝⟩. An edge 𝑒 ∈ ℰ is a tuple
𝑒 = ⟨⟨𝐝1, 𝑖1⟩, ⟨𝐝2, 𝑗2⟩⟩, where 𝐝1,𝐝2 ∈ 𝒱 are two nodes and 𝑖1 and 𝑗2 are the
indices of the components of the functionality and resources to be connected,
and it holds that 𝜋𝑖1𝐑𝐝1 = 𝜋𝑗2𝐅𝐝2 (Fig. 22).

𝐝1 𝐝2
𝜋𝑖1𝐑𝐝1 𝜋𝑗2𝐅𝐝2⪯

⟨⟨𝐝1, 𝑖1⟩, ⟨𝐝2, 𝑗2⟩⟩

𝐑𝐅

Figure 22.

A CDPI is equivalent to a DPI with an implementation space 𝐈 that is a subset
of the product

∏
𝐝∈𝒱 𝐈𝐝, and contains only the tuples that satisfy the co-design

constraints. An implementation tuple 𝑖 ∈
∏

𝐝∈𝒱 𝐈𝐝 belongs to 𝐈 iff it respects
all functionality–resources constraints on the edges, in the sense that, for all
edges ⟨⟨𝐝1, 𝑖1⟩, ⟨𝐝2, 𝑗2⟩⟩ in ℰ, it holds that

𝜋𝑖1 𝗋𝖾𝗊𝐝1(𝜋𝐝1 𝑖) ⪯ 𝜋𝑗2𝗉𝗋𝗈𝗏𝐝2(𝜋𝐝2 𝑖). (11)

The posets 𝐅,𝐑 for the entire CDPI are the products of the functionality and
resources of the nodes that remain unconnected. For a node 𝐝, let 𝖴𝖥𝐝 and 𝖴𝖱𝐝 be
the set of unconnected functionalities and resources. Then 𝐅 and 𝐑 for the CDPI
are defined as the product of the unconnected functionality and resources of all
DPIs: 𝐅 =

∏
𝐝∈𝒱

∏
𝑗∈𝖴𝖥𝐝

𝜋𝑗𝐅𝐝 and 𝐑 =
∏

𝐝∈𝒱
∏

𝑖∈𝖴𝖱𝐝
𝜋𝑖𝐑𝐝. The maps 𝗉𝗋𝗈𝗏

and 𝗋𝖾𝗊 return the values of the unconnected functionality and resources:

𝗉𝗋𝗈𝗏∶ 𝑖 ↦
∏

𝐝∈𝒱

∏

𝑗∈𝖴𝖥𝐝
𝜋𝑗𝗉𝗋𝗈𝗏𝐝(𝜋𝐝𝑖),

𝗋𝖾𝗊∶ 𝑖 ↦
∏

𝐝∈𝒱

∏

𝑖∈𝖴𝖱𝐝
𝜋𝑖𝗋𝖾𝗊𝐝(𝜋𝐝𝑖).

(12)

Example 29.19. The CDPI in Fig. 23 is the interconnection of 3 DPs 𝐝, 𝐞, 𝐠. The
implementation space is a subset of the product

𝐈𝐝 × 𝐈𝐞 × 𝐈𝐠. (13)

The elements ⟨𝑖𝐝, 𝑖𝐞, 𝑖𝐠⟩ that are feasible are the ones that respect the following
constraints:
1. Functionality and resources of each DPI are given by their implementation:

𝑟𝐝 = 𝗋𝖾𝗊(𝑖𝐝), (14)

𝐝
𝐞

𝐠

𝑓𝐞
𝑓𝐠

𝑟𝐞
𝑟𝐠

𝑟𝐝 𝑓𝐞,𝐠
⪯

𝑟𝐞,𝐠

⪰
𝑓𝐝,2

𝑓𝐝,1

Figure 23.: Example of interconnection of 3 DPs
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𝑟𝐞 = 𝗋𝖾𝗊(𝑖𝐞), (15)
𝑟𝐠 = 𝗋𝖾𝗊(𝑖𝐠), (16)

𝑓𝐝 = 𝗉𝗋𝗈𝗏(𝑖𝐝), (17)
𝑓𝐞 = 𝗉𝗋𝗈𝗏(𝑖𝐞), (18)
𝑓𝐠 = 𝗉𝗋𝗈𝗏(𝑖𝐠). (19)

2. Wiring constraints:

⟨𝑓𝐝1 , 𝑓𝐝2⟩ = 𝑓𝐝, (20)

𝑟𝐞,𝐠 =
⟨
𝑟𝐞, 𝑟𝐠

⟩
, (21)

𝑓𝐞,𝐠 =
⟨
𝑓𝐞, 𝑓𝐠

⟩
. (22)

3. Co-design constraints:

𝑟𝐞,𝐠 ⪯ 𝑓𝐝2 , (23)

𝑟𝐝 ⪯ 𝑓𝐞,𝐠. (24)

Recursive constraints
Example 29.20. Consider the co-design of chassis (Example 29.3) plus motor
(Example 29.2). The design problem for a motor has speed and torque as the
provided functionality (what the motor must provide), and cost, mass, voltage,
and current as the required resources (Fig. 24).

Figure 24.

motor cost [USD]
mass [kg]
voltage [V]
current [A]

speed [rad/s]

torque [Nm]

For the chassis (Fig. 25), the provided functionality is parameterized by themass of
the payload and the cost, total mass, and what the chassis needs from its motor(s),
such as speed and torque.

Figure 25.

chassis
cost [USD]
total mass [g]

motor speed [rad/s]
motor torque [Nm]payload mass [g]

velocity [m/s]

The two design problem can be connected at the edges for torque and speed, as
in Fig. 26. The semantics is that the motor needs to have at least the given torque
and speed.

chassis

motorpayload [g]

velocity [m/s] cost [CHF]
total mass [g]

mass [g]

voltage [V]
current [A]

cost [CHF]
torque

⪯
torque

speed
⪯

Figure 26.

Resources can be summed together using a trivial DP corresponding to the rela-
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tion:
𝑓1 + 𝑓2 ⪯ 𝑟. (25)

+cost
cost total cost

Figure 27.

A co-design problem might contain recursive co-design constraints. For example,
if we set the payload to be transported to be the sum of the motor mass plus some
extra payload, a cycle appears in the graph (Fig. 28).

chassis motor

+

+

⪯

velocity [m/s]
extra

payload [g]

⪯
total mass [g]

total cost [CHF]

voltage [V]
current [A]

⪯
torque

⪯ speed
⪯

⪰mass [g]
cycle in the co-design graph

Figure 28.

Abstraction
This formalism makes it easy to abstract away the details in which we are not
interested. Once a diagram like Fig. 28 is obtained, we can draw a box around it
and consider the abstracted problem (Fig. 29).

chassis + motor cost [USD]
mass [g]
voltage [V]
current [A]

speed [m/s]

extra payload [g]
Figure 29.

Let us finish assembling our robot. A motor needs a motor control board. The
functional requirements are the (peak) output current and the output voltage
range (Fig. 30).

motor controller
board

cost [USD]
mass [g]
input voltage [V]
input current [A]

output current [A]

output voltages [V]

Figure 30.

The functionality for a power supply could be parameterized by the output cur-
rent, the output voltages, and the capacity. The resources could include cost and
mass (Fig. 31).
Relations such as current× voltage ⪯ power required and power× endurance ⪯
energy required can be modeled by a trivial “multiplication” DPI (Fig. 32).
We can connect these DPs to obtain a co-design problem with functionality
voltage, current, endurance, and resources mass and cost (Fig. 33).
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Figure 31.

power supply unit
cost [USD]

mass [g]

output current [A]
output voltages [V]

capacity [J]

Figure 32.
×voltage [V]

current [A] power [W]

Figure 33.

MCB
[V]

[A]

[V]

[A]
[$]

[g]
[J]

endurance

PSU

Draw a box around the diagram, and call it “MCB+PSU”; then interconnect it
with the “chassis+motor” diagram in Fig. 34.

Figure 34.

MCB + PSU

mass [g]chassis !
+ motor

[V]

[A]

[$]

[$]

endurance
extra power

velocity

extra !
payload

mass

We can further abstract away the diagram in Fig. 34 as a “mobility+power” CDPI,
as in Fig. 35. The formalism allows considering mass and cost as independent
resources, meaning that we wish to obtain the Pareto frontier for the minimal
resources. Of course, we can always reduce everything to a scalar objective.
For example, a conversion from mass to cost exists, and it is called “shipping”.
Depending on the destination, the conversion factor is between $0.5∕lbs, using
USPS, to $10k∕lbs for sending your robot to low Earth orbit.

Figure 35.

mobility + power

[$]

mass

mission time

extra power

velocity 

extra payload
shipping

[$]

[$]
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29.5. The semicategory DPI
Definition 29.21 (Semicategory DPI)
There is a semicategory DPI where
⊳ The objects are posets, objects of ⦉ Pos⦊.
⊳ The morphisms from 𝐅 to 𝐑 are DPIs ⟨𝐅,𝐑, 𝐈, 𝗉𝗋𝗈𝗏, 𝗋𝖾𝗊⟩, with 𝐈 an object
of ⦉ Set⦊.

⊳ Given two morphisms 𝐝1 ∶ 𝐀 ,↦ 𝐁 and 𝐝2 ∶ 𝐁 ,↦ 𝐂, described by

𝐝1 = ⟨𝐀, 𝐁, 𝐈1, 𝗉𝗋𝗈𝗏1, 𝗋𝖾𝗊1⟩, (26)
𝐝2 = ⟨𝐁, 𝐂, 𝐈2, 𝗉𝗋𝗈𝗏2, 𝗋𝖾𝗊2⟩, (27)

their composition 𝐝1 # 𝐝2 is given by

𝐝1 # 𝐝2 = ⟨𝐀, 𝐂, 𝐈, 𝗉𝗋𝗈𝗏, 𝗋𝖾𝗊⟩, (28)

where

𝐈 = {𝑖1 #⟨ 𝑖2 ∈ 𝐈1 #⦉ 𝐈2 ∣ 𝗋𝖾𝗊1(𝑖1) ⪯𝐁 𝗉𝗋𝗈𝗏2(𝑖2)}, (29)

𝗉𝗋𝗈𝗏∶ 𝑖1 #⟨ 𝑖2 ↦ 𝗉𝗋𝗈𝗏1(𝑖1), (30)

𝗋𝖾𝗊∶ 𝑖1 #⟨ 𝑖2 ↦ 𝗋𝖾𝗊2(𝑖2). (31)

The semantics of the interconnection is that the second DPI provides the re-
sources required by the first DPI. This is a partial order inequality constraint of
the type 𝑟1 ⪯ 𝑓2.

Lemma 29.22. Series composition is associative.

Proof. Consider
𝐝1 = ⟨𝐀, 𝐁, 𝐈1, 𝗉𝗋𝗈𝗏1, 𝗋𝖾𝗊1⟩,
𝐝2 = ⟨𝐁, 𝐂, 𝐈2, 𝗉𝗋𝗈𝗏2, 𝗋𝖾𝗊2⟩,
𝐝3 = ⟨𝐂,𝐃, 𝐈3, 𝗉𝗋𝗈𝗏3, 𝗋𝖾𝗊3⟩.

(32)

We want to show that

(𝐝1 # 𝐝2) # 𝐝3 = 𝐝1 # (𝐝2 # 𝐝3). (33)

We know that the first part of the left term of (33) gives

(𝐝1 # 𝐝2) = ⟨𝐀, 𝐂, 𝐈1,2, 𝗉𝗋𝗈𝗏1,2, 𝗋𝖾𝗊1,2⟩, (34)

where

𝐈1,2 = {𝑖1 #⟨ 𝑖2 ∈ 𝐈1 #⦉ 𝐈2 ∣ 𝗋𝖾𝗊1(𝑖1) ⪯𝐁 𝗉𝗋𝗈𝗏2(𝑖2)} (35)

𝗉𝗋𝗈𝗏1,2 ∶ 𝑖1 #⟨ 𝑖2 ↦ 𝗉𝗋𝗈𝗏1(𝑖1) (36)

𝗋𝖾𝗊1,2 ∶ 𝑖1 #⟨ 𝑖2 ↦ 𝗋𝖾𝗊2(𝑖2) (37)

Therefore, the full left term of (33) reads

(𝐝1 # 𝐝2) # 𝐝3 = ⟨𝐀,𝐃, 𝐈1,3, 𝗉𝗋𝗈𝗏1,3, 𝗋𝖾𝗊1,3⟩, (38)

where

𝐈1,3 = {𝑖1 #⟨ 𝑖2 #⟨ 𝑖3 ∈ 𝐈 ∣ 𝗋𝖾𝗊1,2(𝑖1 #⟨ 𝑖2) ⪯𝐂 𝗉𝗋𝗈𝗏3(𝑖3) ∧ 𝗋𝖾𝗊1(𝑖1) ⪯𝐁 𝗉𝗋𝗈𝗏2(𝑖2)},
(39)
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= {𝑖1 #⟨ 𝑖2 #⟨ 𝑖3 ∈ 𝐈 ∣ 𝗋𝖾𝗊2(𝑖2) ⪯𝐂 𝗉𝗋𝗈𝗏3(𝑖3) ∧ 𝗋𝖾𝗊1(𝑖1) ⪯𝐁 𝗉𝗋𝗈𝗏2(𝑖2)},
(40)

𝗉𝗋𝗈𝗏1,3 ∶ 𝑖1 #⟨ 𝑖2 #⟨ 𝑖3 ↦ 𝗉𝗋𝗈𝗏1,2(𝑖1 #⟨ 𝑖2) = 𝗉𝗋𝗈𝗏1(𝑖1), (41)

𝗋𝖾𝗊1,3 ∶ 𝑖1 #⟨ 𝑖2 #⟨ 𝑖3 ↦ 𝗋𝖾𝗊3(𝑖3), (42)

where 𝐈 = 𝐈1 #⦉ 𝐈2 #⦉ 𝐈3.
By expanding the second part of the second term of (33), we have:

(𝐝2 # 𝐝3) = ⟨𝐁,𝐃, 𝐈2,3, 𝗉𝗋𝗈𝗏2,3, 𝗋𝖾𝗊2,3⟩, (43)

where

𝐈2,3 = {𝑖2 #⟨ 𝑖3 ∈ 𝐈2 #⦉ 𝐈3 ∣ 𝗋𝖾𝗊2(𝑖2) ⪯𝐂 𝗉𝗋𝗈𝗏3(𝑖3)} (44)

𝗉𝗋𝗈𝗏2,3 ∶ 𝑖2 #⟨ 𝑖3 ↦ 𝗉𝗋𝗈𝗏2(𝑖2) (45)

𝗋𝖾𝗊2,3 ∶ 𝑖2 #⟨ 𝑖3 ↦ 𝗋𝖾𝗊3(𝑖3) (46)

Therefore, the full right term of (33) reads

𝐝1 # (𝐝2 # 𝐝3) = ⟨𝐀,𝐃, 𝐈1,3′, 𝗉𝗋𝗈𝗏1,3
′, 𝗋𝖾𝗊1,3

′⟩, (47)

where

𝐈1,3′ = {𝑖1 #⟨ 𝑖2 #⟨ 𝑖3 ∈ 𝐈 ∣ 𝗋𝖾𝗊1(𝑖1) ⪯𝐁 𝗉𝗋𝗈𝗏2,3(𝑖2 #⟨ 𝑖3) ∧ 𝗋𝖾𝗊2(𝑖2) ⪯𝐂 𝗉𝗋𝗈𝗏3(𝑖3)},
(48)

= {𝑖1 #⟨ 𝑖2 #⟨ 𝑖3 ∈ 𝐈 ∣ 𝗋𝖾𝗊1(𝑖1) ⪯𝐁 𝗉𝗋𝗈𝗏2(𝑖2) ∧ 𝗋𝖾𝗊2(𝑖2) ⪯𝐂 𝗉𝗋𝗈𝗏3(𝑖3)},
(49)

𝗉𝗋𝗈𝗏1,3
′ ∶ 𝑖1 #⟨ 𝑖2 #⟨ 𝑖3 ↦ 𝗉𝗋𝗈𝗏1(𝑖1), (50)

𝗋𝖾𝗊1,3
′ ∶ 𝑖1 #⟨ 𝑖2 #⟨ 𝑖3 ↦ 𝗋𝖾𝗊2,3(𝑖2 #⟨ 𝑖3) = 𝗋𝖾𝗊3(𝑖3). (51)

It is clear that 𝐈1,3 = 𝐈1,3′, 𝗉𝗋𝗈𝗏1,3 = 𝗉𝗋𝗈𝗏1,3
′, and 𝗋𝖾𝗊1,3 = 𝗋𝖾𝗊1,3

′. This,
together with (38) and (47) shows associativity.

These two properties are sufficient to conclude that there exists a semicategory
of design problems.

Lemma 29.23. DPI is not a category, because one cannot find identities.

Proof. We prove this by contradiction. Suppose we can find a DPI that works
as an identity for interconnection for any other DPI with implementation
space 𝐈id. Therefore, when postponed to a DPI with implementation space 𝐈1
we should have that

𝐈1 #⦉ 𝐈id = 𝐈1. (52)

This implies that 𝐈id is an empty list of sets, that is inhabited by only one ele-
ment, the empty tuple. Therefore, the map 𝗋𝖾𝗊id of the identity is necessarily
a constant, because there is only one element in the domain. Therefore, it is
impossible to preserve 𝗋𝖾𝗊1.

You are reading a draft compiled on 2024-12-09 11:28:28Z



29.6. Sum and intersection of DPIs 431

𝐝

𝐞

𝐑

𝐑

𝐑

𝐅

𝐅

𝐅
∨

Figure 36.

𝐝

𝐞

𝐑

𝐑

𝐑

𝐅

𝐅

𝐅
∧

Figure 37.

29.6. Sum and intersection of DPIs
Sum of DPIs
The sum of two design problems with implementation is a design problem with
the implementation space 𝐈 = 𝐈1 + 𝐈2, and it represents the exclusive choice
between two possible alternative families of designs.

Definition 29.24 (Sum of DPIs)
Given two DPIs with same functionality and resources 𝐝 = ⟨𝐅,𝐑, 𝐈1, 𝗉𝗋𝗈𝗏1,
𝗋𝖾𝗊1⟩ and 𝐞 = ⟨𝐅,𝐑, 𝐈2, 𝗉𝗋𝗈𝗏2, 𝗋𝖾𝗊2⟩, define their sum as

𝐝 ∨ 𝐞 ∶= ⟨𝐅,𝐑, 𝐈1 + 𝐈2, 𝗉𝗋𝗈𝗏, 𝗋𝖾𝗊⟩, (53)

where
𝗉𝗋𝗈𝗏 = 𝗉𝗋𝗈𝗏1 + 𝗉𝗋𝗈𝗏2,
𝗋𝖾𝗊 = 𝗋𝖾𝗊1 + 𝗋𝖾𝗊2.

(54)

Intersection of DPIs
Definition 29.25 (Intersection of DPIs)
Given two DPIs with same functionality and resources 𝐝 = ⟨𝐅,𝐑, 𝐈1, 𝗉𝗋𝗈𝗏1,
𝗋𝖾𝗊1⟩ and 𝐞 = ⟨𝐅,𝐑, 𝐈2, 𝗉𝗋𝗈𝗏2, 𝗋𝖾𝗊2⟩, define their intersection as

𝐝 ∧ 𝐞 ∶= ⟨𝐅,𝐑, 𝐈, 𝗉𝗋𝗈𝗏, 𝗋𝖾𝗊⟩, (55)

where
𝐈 = {(𝑖1 #⟨ 𝑖2 #⟨ 𝑓 #⟨ 𝑟) ∈ (𝐈1 #⦉ 𝐈2 #⦉ 𝐅 #⦉ 𝐑) ∣

(𝑓 ⪯𝐅 𝗉𝗋𝗈𝗏1(𝑖1)) ∧ (𝑓 ⪯𝐅 𝗉𝗋𝗈𝗏2(𝑖2))∧
(𝗋𝖾𝗊1(𝑖1) ⪯𝐑 𝑟) ∧ (𝗋𝖾𝗊2(𝑖2) ⪯𝐑 𝑟)}

(56)

and the maps 𝗉𝗋𝗈𝗏 and 𝗋𝖾𝗊 are the projections of the third and fourth com-
ponent.
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30. Feasibility

30.1 From DPIs to DPs . . . . . . . . . 434In the previous chapter we have introduced the design problems with
implementations. Those describe relations among 3 sets: functional-
ity, resources, and implementations.
If we are not interested in the implementations, we can simplify
the model and obtain a relation directly between functionality and
resources. We obtain in this way a category DP.

Steinstossen is a sport in which the competitors need to throw a heavy stone as far away as possible. It was practiced among the alpine population since
prehistoric times.
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30.1. From DPIs to DPs
A DPI (Def. 29.1) describes a relation between three sets: 𝐅, 𝐑, 𝐈. If we are not
interested in the implementations, but just in the relation between 𝐅 and𝐑, then
we can describe a DPI more compactly as a “DP”.

Remark 30.1. Given a DPI ⟨𝐅,𝐑, 𝐈, 𝗉𝗋𝗈𝗏, 𝗋𝖾𝗊⟩ it is always possible to obtain from
it the following DP

𝐝∶ 𝐅op ×𝐑 → Pos Bool,
⟨𝑓∗, 𝑟⟩ ↦ ∃𝑖 ∈ 𝐈∶ (𝑓 ⪯𝐅 𝗉𝗋𝗈𝗏(𝑖)) ∧ (𝗋𝖾𝗊(𝑖) ⪯𝐑 𝑟).

(1)

Evaluating this DP is the same as asking whether the set

{𝑖 ∈ 𝐈∶ (𝑓 ⪯𝐅 𝗉𝗋𝗈𝗏(𝑖)) ∧ (𝗋𝖾𝗊(𝑖) ⪯𝐑 𝑟)} (2)

is empty or not.
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Example 30.2. Recall Example 29.4, with the catalogue of electric motors in
Table 30.1.

Table 30.1.: A simplified catalogue of motors.

Torque [kg ⋅ cm] Motor ID Weight [g] Max Power [W] Cost [USD]
0.18 1204 60.0 2.34 19.95
0.95 1206 140.0 3.00 19.95
0.65 1207 130.0 2.07 12.95
3.7 2267 285.0 4.76 16.95
1.9 2279 165.0 5.40 164.95
19.0 1478 1,000 8.96 49.95
2.2 2299 150.0 5.90 59.95

Table 30.2.: Feasibility relations for the design problem of motors.

Torque [kg ⋅ cm] Weight [g] Max Power [W] Cost [USD]
0.18 60.0 2.34 19.95
0.95 140.0 3.00 19.95
0.65 130.0 2.07 12.95
3.7 285.0 4.76 16.95
1.9 165.0 5.40 164.95
19.0 1,000 8.96 49.95
2.2 150.0 5.90 59.95

Electric motor
weight [g]
max power [W]
cost [USD]

torque [kg ⋅ cm]
Figure 1.: Electric motor design problem.

The catalogue induces a design problem 𝐝EM, where each feasibility relation
between functionality and resources is reported in Table 30.2. with diagrammatic
form as in Fig. 1. In particular, we can query the design problem for combinations
of functionalities and resources. For instance:

𝐝EM
(
0.2 kg ⋅ cm,

⟨
50.0 g

⟩
, 2.0W, 15.0USD

)
= ⊥, (3)

since no listed model can provide 0.2 kg ⋅ cm torque by requiring the set of
resources

⟨
50.0 g, 2.0W, 15.0USD

⟩
or less.

We have already seen in Remark 30.1 that we can obtain a DP from a DPI. We
can make this more formal and say that there exists a forgetful semifunctor from
DPI to DP.

Definition 30.3
The forgetful semifunctor 𝐹∶ DPI→ DP is given by:
1. Identity on the objects: 𝐹∙(𝐏) = 𝐏.
2. Given 𝐝 = ⟨𝐅,𝐑, 𝐈, 𝗉𝗋𝗈𝗏, 𝗋𝖾𝗊⟩, the action on morphisms is given by

𝐹�(𝐝)∶ 𝐅op ×𝐑 → Pos Bool,
⟨𝑓∗, 𝑟⟩ ↦ ∃𝑖 ∈ 𝐈∶ (𝑓 ⪯𝐅 𝗉𝗋𝗈𝗏(𝑖)) ∧ (𝗋𝖾𝗊(𝑖) ⪯𝐑 𝑟).

(4)

Lemma 30.4. Def. 30.3 indeed defines a semifunctor.
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436 30. Feasibility

Proof. Consider
𝐝 =

⟨
𝐏,𝐐, 𝐈1, 𝗉𝗋𝗈𝗏1, 𝗋𝖾𝗊1

⟩
,

𝐞 =
⟨
𝐐,𝐑, 𝐈2, 𝗉𝗋𝗈𝗏2, 𝗋𝖾𝗊2

⟩
,

(5)

We need to show

𝐹�(𝐝 # DPI 𝐞) = 𝐹�(𝐝) # DP 𝐹�(𝐞). (6)

Let’s start with the left term. One has

𝐹�(𝐝 # DPI 𝐞)(𝑝∗, 𝑟) = ∃𝑖 ∈ 𝐈∶ (𝑝 ⪯𝐏 𝗉𝗋𝗈𝗏1(𝑖1)) ∧ (𝗋𝖾𝗊2(𝑖2) ⪯𝐑 𝑟), (7)

where 𝐈 = {𝑖1 #⟨ 𝑖2 ∈ 𝐈1 #⦉ 𝐈2 ∣ 𝗋𝖾𝗊1(𝑖1) ⪯𝐐 𝗉𝗋𝗈𝗏2(𝑖2)}.
On the other hand,

(𝐹�(𝐝) # DP 𝐹�(𝐞))(𝑝∗, 𝑟)

=
⋁

𝑞∈𝐐
𝐹�(𝐝)(𝑝∗, 𝑞) ∧ 𝐹�(𝐞)(𝑞∗, 𝑟)

=
⋁

𝑞∈𝐐

(
∃𝑖1 ∈ 𝐈1 ∶ (𝑝 ⪯𝐏 𝗉𝗋𝗈𝗏1(𝑖1)) ∧ (𝗋𝖾𝗊1(𝑖1) ⪯𝐐 𝑞)

)

∧
(
∃𝑖2 ∈ 𝐈2 ∶ (𝑞 ⪯𝐐 𝗉𝗋𝗈𝗏2(𝑖2)) ∧ (𝗋𝖾𝗊2(𝑖2) ⪯𝐑 𝑟)

)

(8)

Consider the following cases:
⊳ If 𝐹�(𝐝 # DPI 𝐞)(𝑝∗, 𝑟) = ⊤, there exist 𝑖1 ∈ 𝐈1, 𝑖2 ∈ 𝐈2 for which

𝑝 ⪯𝐏 𝗉𝗋𝗈𝗏1(𝑖1),
𝗋𝖾𝗊2(𝑖2) ⪯𝐑 𝑟,
𝗋𝖾𝗊1(𝑖1) ⪯𝐐 𝗉𝗋𝗈𝗏2(𝑖2).

(9)

The first two terms are clear, and the last term implies that there exists
a 𝑞 ∈ 𝐐 such that

(𝑞 ⪯𝐐 𝗉𝗋𝗈𝗏2(𝑖2)) ∧ (𝗋𝖾𝗊1(𝑖1) ⪯𝐐 𝑞), (10)

implying (𝐹�(𝐝) # DP 𝐹�(𝐞))(𝑝∗, 𝑟) = ⊤.
⊳ The case

𝐹�(𝐝 # DPI 𝐞)(𝑝∗, 𝑟) = ⊥

(𝐹�(𝐝) # DP 𝐹�(𝐞))(𝑝∗, 𝑟) = ⊥ (11)

follows analogously.
⊳ The other direction is easier to show, since clearly

(𝐹�(𝐝) # DP 𝐹�(𝐞))(𝑝∗, 𝑟) = ⊤

𝐹�(𝐝 # DPI 𝐞)(𝑝∗, 𝑟) = ⊤ (12)

and
(𝐹�(𝐝) # DP 𝐹�(𝐞))(𝑝∗, 𝑟) = ⊥

𝐹�(𝐝 # DPI 𝐞)(𝑝∗, 𝑟) = ⊥ (13)

by inspecting (7) and (8).

In the other direction, we can take a DP and find a corresponding DPI.
Given a DP 𝐝∶ 𝐅op ×𝐑→ Pos Bool, we can define a DPI ⟨𝐅,𝐑, 𝐈, 𝗉𝗋𝗈𝗏, 𝗋𝖾𝗊⟩ by
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setting
𝐈 = {⟨𝑓, 𝑟⟩ ∈ 𝐅 ×𝐑∶ 𝐝(𝑓∗, 𝑟)},

𝗉𝗋𝗈𝗏∶ ⟨𝑓, 𝑟⟩↦ 𝑓,
𝗋𝖾𝗊∶ ⟨𝑓, 𝑟⟩↦ 𝑟,

(14)

However, this operation is not a semifunctor, since it does not preserve composi-
tion.
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440 31. Lattices

∧ ⊥ ⊤
⊥ ⊥ ⊥
⊤ ⊥ ⊤

31.1. Monoidal posets
A monoidal poset is a poset that is also a monoid, and in which the monoidal
product is a monotone map that is compatible with the order.

Definition 31.1 (Monoidal poset)
Amonoidal structure on a poset 𝐏 = ⟨𝐏, ⪯𝐏⟩ is specified by:
Constituents
1. A monotone map⊗∶ 𝐏 × 𝐏→ Pos 𝐏, called themonoidal product.
2. An element 𝟏 ∈ 𝐏, called themonoidal unit.
Conditions
1. Associativity: for all 𝑥, 𝑦, 𝑧 ∈ 𝐏:

(𝑥 ⊗ 𝑦)⊗ 𝑧 = 𝑥 ⊗ (𝑦 ⊗ 𝑧). (1)

2. Left and right unitality: for all 𝑥 ∈ 𝐏:

𝟏⊗ 𝑥 = 𝑥 and 𝑥 ⊗ 𝟏 = 𝑥. (2)

A poset equipped with a monoidal structure is called amonoidal poset.

Note that here we are implicitly assuming 𝐏 × 𝐏 as having the product order
(Def. 6.1). In detail, monotonicity means that, for all 𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ 𝐏:

𝑥1 ⪯𝐏 𝑦1 𝑥2 ⪯𝐏 𝑦2 .
(𝑥1 ⊗ 𝑥2) ⪯𝐏 (𝑦1 ⊗ 𝑦2) (3)

Definition 31.2 (Symmetric monoidal poset)
A symmetric monoidal poset is a monoidal poset 𝐏 = ⟨𝐏, ⪯𝐏, ⊗, 𝟏⟩ such
that, for all 𝑥, 𝑦 ∈ 𝐏,

𝑥 ⊗ 𝑦 = 𝑦 ⊗ 𝑥. (4)

Example 31.3 (Reals with addition). Consider the real numbers ℝ with the
poset structure given the usual ordering. Consider 0 as the monoidal unit and
the operation +∶ ℝ × ℝ → ℝ as monoidal product. It is easy to see that the
conditions of Def. 31.1 are satisfied:
(a) Given 𝑝1, 𝑝2, 𝑞1, 𝑞2 ∈ ℝ, we know:

𝑝1 ≤ 𝑝2 𝑞1 ≤ 𝑞2 .
(𝑝1 + 𝑝2) ≤ (𝑞1 + 𝑞1) (5)

(b) 0 + 𝑝 = 𝑝 + 0 = 0, ∀𝑝 ∈ ℝ.
(c) (𝑝 + 𝑞) + 𝑟 = 𝑝 + (𝑞 + 𝑟), ∀𝑝, 𝑞, 𝑟 ∈ ℝ.

Counter-example 31.4. Someone proposes now to substitute the monoidal
unit in Example 31.3 with 1 and the monoidal product with multiplication “⋅”.
This does not form a monoidal poset anymore. To see a simple counterexample,
consider the fact that 95 ≤ 0 and 94 ≤ 3. However, (95) ⋅ (94) ≰ 0 ⋅ 3.

Example 31.5 (Boolean monoid). The booleans form a monoidal poset ⟨ Bool,
⪯ Bool, ⊤, ∧⟩ with the unit being ⊤ and the product being ∧. The action of the
monoidal product “∧” can be summarized in the table on the side. From this table,
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it is clear that given 𝑥1 ⪯ Bool 𝑦1 and 𝑥2 ⪯ Bool 𝑦2, we have 𝑥1 ∧ 𝑥2 ⪯ Bool 𝑦1 ∧ 𝑦2
(if you do not believe it, try all possible combinations). Furthermore, 𝑥 ∧ ⊤ =
𝑥 = ⊤ ∧ 𝑥.

Graded exercise I.1 (HwkMonoidalPosets)
Prove or disprove that the following are monoidal posets:
1. The setℝ equippedwith the usual ordering, addition asmonoidal product,

and 0 ∈ ℝ as monoidal unit.
2. The set ℝ equipped with the usual ordering, multiplication as monoidal

product, and 1 ∈ ℝ as monoidal unit.

Graded exercise I.2 (HwkInternalHomCancelling)
Let𝐏 =

⟨
𝐏, ⪯, ⊗⊗⊗, 𝟏, ∖

⟩
be a closedmonoidal poset. Prove that for any 𝑥, 𝑦, 𝑧

∈ 𝐏, we have
(𝑥∖𝑦)⊗⊗⊗ (𝑦∖𝑧) ⪯ 𝑥∖𝑧. (6)

Graded exercise I.3 (HwkInternalLeastUpperBounds)1. Let 𝐏 = ⟨𝐏, ⪯⟩ be a
poset, and consider a subset 𝐒 ⊆ 𝐏. A least upper bound, or join, for
𝐒 is an element 𝑥 ∈ 𝐏 which satisfies the conditions
a) 𝑦 ⪯ 𝑥 ∀𝑦 ∈ 𝐒;
b) if 𝑥′ ∈ 𝐏 is such that 𝑦 ⪯ 𝑥′ ∀𝑦 ∈ 𝐒, then 𝑥 ⪯ 𝑥′ must hold.
Prove that, if a least upper bound of a subset 𝐒 exists, then it is unique. In
this case we use the notation

⋁
𝐒 to denote it.

2. Suppose that we have a Galois connection

𝐏 𝐐

𝑓

𝑔

⊣

(7)

between posets 𝐏 = and 𝐐. Furthermore, assume that 𝐏 has all joins,
meaning that for any subset 𝐒 ⊆ 𝐏, the least upper bound

⋁
𝐒 exists and

is an element of 𝐏.
Prove that for any subset 𝐒 ⊆ 𝐏 it holds that

𝑓(
⋁

𝐒) =
⋁

{𝑓(𝑥) ∣ 𝑥 ∈ 𝐒}. (8)
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31.2. Monoidal-time procedures
Before, we thought of sized sets (Def. 15.14) as a datatype that can be measured
with integer sizes. However, this does not capture some important cases. For
example, if we are dealing with trees, from the point of view of computation it
could be important to think about multidimensional sizes: for example, we might
want to account for number of nodes, number of edges, maximum branching
factor, and so on. Still, we want to know when an instance is bigger than another:
this is a perfect job for posets.

Definition 31.6 (Poset-sized sets)
A poset-sized set is a tuple ⟨𝐀, Σ𝐀, 𝗌𝗂𝗓𝖾⟩, where 𝐀 is a set, Σ𝐀 is a poset, and
𝗌𝗂𝗓𝖾∶ 𝐀→ Σ𝐀 is the size function.

In ProcSizeTime, we assumed that time was measured using real numbers. We
can generalize this to an arbitrary poset, for example allowing counting “number
of operations”. We need an additional structure: in (55) we needed a “+” to sum
the time of successive procedures. Therefore, we assume that we have a time
monoidal poset T.

Definition 31.7 (Semicategory ProcSizeTimeT)
For a given monoidal poset ⟨T, ⊗T⟩, the semicategory ProcSizeTimeT
consists of the following constituents:
1. Objects: The objects are poset-sized sets.
2. Morphisms: A morphism

𝑓∶ 𝑋 →ProcSize 𝑋 (9)

between the two objects

𝑋 = ⟨𝐀, Σ𝐀, 𝗌𝗂𝗓𝖾𝐀⟩ and 𝑌 = ⟨𝐁, Σ𝐀, 𝗌𝗂𝗓𝖾𝐁⟩ (10)

is a tuple
⟨𝑓𝑒, 𝜎, 𝖽𝗎𝗋⟩, (11)

where:
a) 𝑓𝑒 ∶ 𝐀→ 𝐁 is the function computed;
b) 𝜎 ∶ Σ𝐀 → Pos Σ𝐁 is a monotone function that keeps track of how the

size changes.
c) 𝖽𝗎𝗋 ∶ Σ𝐀 → Pos T is a monotone function that gives computation

time as a function of instance size;
3. Composition: The composition of

⟨𝑓1, 𝜎1, 𝖽𝗎𝗋1⟩ and ⟨𝑔2, 𝜎2, 𝖽𝗎𝗋2⟩ (12)

is given by
⟨𝑓1;2, 𝜎1;2, 𝖽𝗎𝗋1,2⟩, (13)

where
𝑓1;2 = 𝑓1 # 𝑔2, (14)

𝜎1;2 = 𝜎1 # 𝜎2, (15)
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and 𝖽𝗎𝗋1,2 is defined as

𝖽𝗎𝗋1,2 ∶ Σ𝐀 → T,
𝜎𝐀 ↦ 𝖽𝗎𝗋1(𝜎𝐀)⊗ T𝖽𝗎𝗋2(𝜎1(𝜎𝐀)).

(16)

Something incorrect or unclear or missing? Report issues on GitHub by clicking here.

https://github.com/ACT4E/ACT4E/issues/new?labels=chap:lattices;body=Chapter:%20Lattices%0ASection:%20 Monoidal-time procedures%0AVersion:%202024-12-09%0A%0ACheck%20all%20that%20apply:%0A-%20(%20)%20Something%20incorrect%0A-%20(%20)%20Something%20not%20clear%0A-%20(%20)%20Something%20missing%0A%0APlease%20describe%20more%20in%20detail%20below.%20Feel%20free%20to%20change%20the%20title%20to%20something%20more%20informative.%0A;title=Lattices%20/%20 Monoidal-time procedures%20/%202024-12-09


444 31. Lattices

𝑥 ∧ 𝑦

𝑥 𝑦

𝑥 ∨ 𝑦

Figure 1.

6

2 3

1

(a) A lattice

2 3

1
(b) Not a lattice

Figure 2.: Examples of a lattice and a non-lattice.

𝑎 𝑏 𝑎 ⪯ 𝑏 𝑎 ∧ 𝑏 𝑎 ∨ 𝑏
⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊥ ⊥ ⊥ ⊤
⊥ ⊤ ⊤ ⊥ ⊤
⊥ ⊥ ⊤ ⊥ ⊥

Table 31.1.: Properties of the Boolposet. Note
that ⪯≡⇒.

31.3. Lattices
Definition 31.8 (Lattice)
A lattice is a poset 𝐏 = ⟨𝐏, ⪯𝐏⟩ with the additional property that, for any
two-element subset {𝑥, 𝑦} ⊆ 𝐏, both the join ∨{𝑥, 𝑦} and the meet ∧{𝑥,
𝑦} exist. Usually these are written using infix notation as 𝑥 ∨ 𝑦 and 𝑥 ∧ 𝑦,
respectively.

Definition 31.9 (Bounded lattices)
If both a top and a bottom exist, we call the lattice bounded, and denote it
by 𝐏 = ⟨𝐏, ⪯𝐏, ∨, ∧, ⊥, ⊤⟩.

Example 31.10. In Def. 5.12 we presented the poset arising from the power
set 𝖯𝗈𝗐𝐀 of a set 𝐀 and ordered via subset inclusion. This is a lattice, bounded
by 𝐀 and by the empty set ∅. Note that this lattice possesses two (dual) monoidal
structures ⟨𝖯𝗈𝗐𝐀, ⊆, ∅, ∪⟩ and ⟨𝖯𝗈𝗐𝐀, ⊆,𝐀, ∩⟩.

Example 31.11. Consider the poset Bool, in which 𝑏1 ⪯ Bool 𝑏2 iff 𝑏1 ⇒ 𝑏2,
that is, in addition to the operation

⇒∶ Bool × Bool→ Bool, (17)

called implication, there are also the familiar and (∧) and or (∨) operations. Note
that ∧ and ∨ are commutative (𝑏 ∧ 𝑐 = 𝑐 ∧ 𝑏, 𝑏 ∨ 𝑐 = 𝑐 ∨ 𝑏 ), whereas⇒ is not.
Furthermore, ∧ and ∨ correspond to the meet and the join, respectively.

Example 31.12. Consider the set {1, 2, 3, 6} ordered by divisibility. For instance,
since 2 divides 6, we have 2 ⪯ 6. This is a lattice. However, the set {1, 2, 3} ordered
by divisibility is not, since 2 and 3 lack a meet (Fig. 2).

Lemma 31.13. 𝑈𝐏 is a bounded lattice (Def. 31.8) with

⪯𝑈𝐏 ∶= ⊇,
⊥𝑈𝐏 ∶= 𝐏,
⊤𝑈𝐏 ∶= ∅,
∧𝑈𝐏 ∶= ∩,
∨𝑈𝐏 ∶= ∪.

(18)

Proof. Consider the poset 𝑈𝐏 =
⟨
𝖴𝖲𝖾𝗍𝗌𝐏, ⪯𝑈𝐏

⟩
and 𝐀,𝐁 ∈ 𝖴𝖲𝖾𝗍𝗌𝐏.

First, we need to show that𝐀∩𝐁 ∈ 𝖴𝖲𝖾𝗍𝗌𝐏. To this extent, we need to show
that, for all 𝑎 ∈ 𝐀 ∩ 𝐁 and for all 𝑎 ⪯𝐏 𝑏, it holds 𝑏 ∈ 𝐀 ∩ 𝐁. We have 𝐀
∈ 𝖴𝖲𝖾𝗍𝗌𝐏 and 𝐁 ∈ 𝖴𝖲𝖾𝗍𝗌𝐏, meaning that by definition, if 𝑎 ∈ 𝐀 ∩ 𝐁, we
have 𝑎 ∈ 𝐀∧ 𝑎 ∈ 𝐁. It follows that 𝑏 ∈ 𝖴𝖲𝖾𝗍𝗌𝐏 and 𝑏 ∈ 𝖴𝖲𝖾𝗍𝗌𝐐. Therefore,
𝑏 ∈ 𝖴𝖲𝖾𝗍𝗌𝐏 ∩ 𝐁 and, thus, 𝐀 ∩ 𝐁 ∈ 𝖴𝖲𝖾𝗍𝗌𝐏. Furthermore, we need to show
that 𝐀 ∩ 𝐁 is the least upper bound of 𝐀 and 𝐁. Let 𝐂 ∈ 𝖴𝖲𝖾𝗍𝗌𝐏 such that

𝐀 ⪯𝑈𝐏 𝐂 ⪯𝑈𝐏 (𝐀 ∩ 𝐁) ⟺ 𝐀 ⊇ 𝐂 ⊇ (𝐀 ∩ 𝐁)

and
𝐁 ⪯𝑈𝐏 𝐂 ⪯𝑈𝐏 (𝐀 ∩ 𝐁) ⟺ 𝐁 ⊇ 𝐂 ⊇ (𝐀 ∩ 𝐁).
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Using the fact that intersection preserves inclusions, we have

(𝐀 ∩ 𝐁) ⊇ (𝐂 ∩ 𝐂) ⊇ (𝐀 ∩ 𝐁)
⟺ (𝐀 ∩ 𝐁) ⊇ 𝐂 ⊇ (𝐀 ∩ 𝐁)
⟺ 𝐂 = (𝐀 ∩ 𝐁).

Therefore, 𝐀 ∩ 𝐁 is the least upper bound of 𝐀 and 𝐁.
Second, we need to show that 𝐀 ∪ 𝐁 ∈ 𝖴𝖲𝖾𝗍𝗌𝐏, meaning that for all 𝑎 ∈
𝐀 ∪ 𝐁, 𝑎 ⪯𝐏 𝑏 implies 𝑏 ∈ 𝐀 ∪ 𝐁. We have 𝐀 ∈ 𝖴𝖲𝖾𝗍𝗌𝐏 and 𝐁 ∈ 𝖴𝖲𝖾𝗍𝗌𝐏,
meaning that by definition, if 𝑎 ∈ 𝐀∪𝐁, we have either 𝑎 ∈ 𝐀 or 𝑎 ∈ 𝐁. If 𝑎
∈ 𝐀, then 𝑏 ∈ 𝖴𝖲𝖾𝗍𝗌𝐀. If 𝑎 ∈ 𝐁, then 𝑏 ∈ 𝖴𝖲𝖾𝗍𝗌𝐁. Either way, 𝑏 ∈ 𝐀 ∪ 𝐁
and, thus,𝐀∪𝐁 ∈ 𝖴𝖲𝖾𝗍𝗌𝐏. Furthermore, we need to show that 𝐀∪𝐁 is the
greatest lower bound of 𝐀 and 𝐁. Let 𝐂 ∈ 𝖴𝖲𝖾𝗍𝗌𝐏 such that

𝐀 ∪ 𝐁 ⪯𝑈𝐏 𝐂 ⪯𝑈𝐏 𝐀 ⟺ 𝐀 ∪ 𝐁 ⊇ 𝐂 ⊇ 𝐀

and
𝐀 ∪ 𝐁 ⪯𝑈𝐏 𝐂 ⪯𝑈𝐏 𝐁 ⟺ 𝐀 ∪ 𝐁 ⊇ 𝐂 ⊇ 𝐁.

Using the fact that union preserves inclusions, we have

(𝐀 ∪ 𝐁) ∪ (𝐀 ∪ 𝐁) ⊇ (𝐂 ∪ 𝐂) ⊇ (𝐀 ∪ 𝐁)
⟺ 𝐀 ∪ 𝐁 ⊇ 𝐂 ⊇ (𝐀 ∪ 𝐁)
⟺ 𝐂 = (𝐀 ∪ 𝐁).

Therefore, 𝐀 ∪ 𝐁 is the greatest lower bound of 𝐀 and 𝐁.
We have therefore proved that 𝑈𝐏 =

⟨
𝖴𝖲𝖾𝗍𝗌𝐏, ⪯𝑈𝐏

⟩
is a lattice. To show

that it is bounded, we notice that ∅ ⊆ 𝐂 for any 𝐂 ∈ 𝖴𝖲𝖾𝗍𝗌𝐏, meaning that ∅
is the top. Furthermore, we notice that 𝐂 ⊆ 𝐏 for any 𝐂 ∈ 𝖴𝖲𝖾𝗍𝗌𝐏, meaning
that 𝐏 is a bottom. Therefore, the lattice is bounded.

Lemma 31.14. 𝐿𝐏 is a bounded lattice (Def. 31.8) with:

⪯𝐿𝐏 ∶= ⊆,
⊥𝐿𝐏 ∶= ∅,
⊤𝐿𝐏 ∶= 𝐏,
∧𝐿𝐏 ∶= ∪,
∨𝐿𝐏 ∶= ∩.

Proof. Consider the poset 𝐿𝐏 = ⟨𝖫𝖲𝖾𝗍𝗌𝐏, ⪯𝐿𝐏⟩ and 𝐀,𝐁 ∈ 𝖫𝖲𝖾𝗍𝗌𝐏.
First, we need to show that 𝐀 ∪ 𝐁 ∈ 𝖫𝖲𝖾𝗍𝗌𝐏. That is, 𝑏 ⪯𝐏 𝑎 implies 𝑏 ∈
𝐀 ∪ 𝐁. We have 𝐀 ∈ 𝖫𝖲𝖾𝗍𝗌𝐏 and 𝐁 ∈ 𝖫𝖲𝖾𝗍𝗌𝐏, meaning that by definition,
if 𝑎 ∈ 𝐀∪𝐁, either 𝑎 ∈ 𝐀 or 𝑎 ∈ 𝐁. If 𝑎 ∈ 𝐀, then 𝑏 ∈ 𝐀. If 𝑎 ∈ 𝐁, then 𝑏 ∈
𝖫𝖲𝖾𝗍𝗌𝐏. It follows that 𝑏 ∈ 𝐀 ∪ 𝐁 and, thus, all 𝐀 ∪ 𝐁𝖫𝖲𝖾𝗍𝗌𝐏. Furthermore,
we need to show that 𝐀 ∪𝐁 is the least upper bound of 𝐀 and 𝐁. Consider 𝐂
∈ 𝖫𝖲𝖾𝗍𝗌𝐏 such that

𝐀 ⪯𝐿𝐏 𝐂 ⪯𝐿𝐏 𝐀 ∪ 𝐁 ⟺ 𝐀 ⊆ 𝐂 ⊆ 𝐀 ∪ 𝐁

and
𝐁 ⪯𝐿𝐏 𝐂 ⪯𝐿𝐏 𝐀 ∪ 𝐁 ⟺ 𝐁 ⊆ 𝐂 ⊆ 𝐀 ∪ 𝐁.
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446 31. Lattices

Using the fact that union preserves inclusions, we have

(𝐀 ∪ 𝐁) ⊆ (𝐂 ∪ 𝐂) ⊆ (𝐀 ∪ 𝐁)
⟺ (𝐀 ∪ 𝐁) ⊆ 𝐂 ⊆ (𝐀 ∪ 𝐁)
⟺ 𝐂 = (𝐀 ∪ 𝐁).

Therefore, 𝐀 ∪ 𝐁 is the least upper bound of 𝐀 and 𝐁.
Second, we need to show that 𝐀 ∩ 𝐁 ∈ 𝖫𝖲𝖾𝗍𝗌𝐏. That is, 𝑏 ⪯𝐏 𝑎 implies 𝑏 ∈
𝐀 ∩ 𝐁. We have 𝐀 ∈ 𝖫𝖲𝖾𝗍𝗌𝐏 and 𝐁 ∈ 𝖫𝖲𝖾𝗍𝗌𝐏, meaning that by definition,
if 𝑎 ∈ 𝐀∩𝐁, we have 𝑎 ∈ 𝐀∧ 𝑎 ∈ 𝐁. Since 𝐀,𝐁 ∈ 𝖫𝖲𝖾𝗍𝗌𝐏, this implies 𝑏 ∈
𝐀 ∧ 𝑏 ∈ 𝐁 and, thus, 𝑏 ∈ 𝐀 ∩ 𝐁. Consider 𝐂 ∈ 𝖫𝖲𝖾𝗍𝗌𝐏 such that

𝐀 ∩ 𝐁 ⪯𝐿𝐏 𝐂 ⪯𝐿𝐏 𝐀 ⟺ 𝐀 ∩ 𝐁 ⊆ 𝐂 ⊆ 𝐀

and
𝐀 ∩ 𝐁 ⪯𝐿𝐏 𝐂 ⪯𝐿𝐏 𝐁 ⟺ 𝐀 ∩ 𝐁 ⊆ 𝐂 ⊆ 𝐁.

Using the fact that intersection preserves inclusions, we have

(𝐀 ∩ 𝐁) ∩ (𝐀 ∩ 𝐁) ⊆ (𝐂 ∩ 𝐂) ⊆ (𝐀 ∩ 𝐁)
⟺ 𝐀 ∩ 𝐁 ⊆ 𝐂 ⊆ (𝐀 ∩ 𝐁)
⟺ 𝐂 = (𝐀 ∩ 𝐁).

(19)

Therefore, 𝐀 ∩ 𝐁 is the greatest lower bound of 𝐀 and 𝐁.
We have therefore proved that 𝐿𝐏 = ⟨𝖫𝖲𝖾𝗍𝗌𝐏, ⪯𝐿𝐏⟩ is a lattice. To show that
it is bounded,we notice that ∅ ⊆ 𝐂 for any𝐂 ∈ 𝖫𝖲𝖾𝗍𝗌𝐏,meaning that ∅ is the
bottom. Furthermore, we notice that 𝐂 ⊆ 𝐏 for any 𝐂 ∈ 𝖫𝖲𝖾𝗍𝗌𝐏, meaning
that 𝐏 is a top. Therefore, the lattice is bounded.

Graded exercise I.4 (UpperLowerBounds)
Let𝐀 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}. Give examples of the following situations using Hasse
diagrams. In each case, provide a poset structure on 𝐀 and a subset 𝐁 ⊆ 𝐀
such that:
1. 𝐁 has a least upper bound;
2. 𝐁 has a greatest lower bound;
3. 𝐁 has no least upper bound;
4. 𝐁 has no greatest lower bound.
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𝐀 𝑓(𝐀)
∅
{ }
{ }

{ , }

Table 31.2.

31.4. Lattice homomorphisms
In this section, we want to abstract the concept of lattice and describe a category
in which the objects are lattices themselves, and the morphisms are lattice
homomorphisms. We call this category Lat.

Definition 31.15 (Lattice homomorphism)
Given two lattices 𝐏,𝐐, a lattice homomorphism is a map 𝑓∶ 𝐏→ 𝐐 which
preserves meets and joins:

𝑓(𝑝 ∧𝐏 𝑞) = 𝑓(𝑝) ∧𝐐 𝑓(𝑞),
𝑓(𝑝 ∨𝐏 𝑞) = 𝑓(𝑝) ∨𝐐 𝑓(𝑞).

(20)

Example 31.16. We consider the lattices 𝐏 = ⟨𝖯𝗈𝗐 { , }, ∩, ∪⟩, and 𝐐 =
⟨{ , },max,min⟩, wheremin (max) refer to the minimum (maximum) alco-
holic content of the beverage (assuming Swiss beers, which have alcohol content
lower than wine). Furthermore, consider

𝑓∶ 𝖯𝗈𝗐 { , } → { , },

𝐀 ↦ {
, ∈ 𝐀,
, otherwise

.
(21)

The explicit evaluations of 𝑓 are reported in Table 31.2.
Is 𝑓 a lattice homomorphism? Yes. We can check it explicitly. Consider 𝐀,𝐁 ⊆
{ , }. We need to show that

𝑓(𝐀 ∩ 𝐁) = max {𝑓(𝐀), 𝑓(𝐁)} (22)

and
𝑓(𝐀 ∪ 𝐁) = min {𝑓(𝐀), 𝑓(𝐁)}. (23)

Technically, we can check every possible pair of 𝐀,𝐁 (only 16 for this case), but
that’s not efficient. First, consider 𝑓(𝐀∩𝐁) = . Following (21), this means ̸∈
𝐀 ∩ 𝐁 (in other words, either ̸∈ 𝐀, ̸∈ 𝐁, or both). At least one of 𝑓(𝐀)
and 𝑓(𝐁) is , because

̸∈ 𝐀

𝑓(𝐀) =
and ̸∈ 𝐁

.
𝑓(𝐁) =

(24)

This impliesmax {𝑓(𝐀), 𝑓(𝐁)} = , which verifies (22).
If instead, we have 𝑓(𝐀∩𝐁) = , then ∈ 𝐀∩𝐁, meaning that ∈ 𝐀 and
∈ 𝐁. Therefore,max {𝑓(𝐀), 𝑓(𝐁)} = , which verifies (22).
Condition (23) can be verified analogously.

The notion of lattice homomorphism can be extended to bounded lattices.

Definition 31.17 (Bounded lattice homomorphism)
Given two bounded lattices𝐏,𝐐, a bounded lattice homomorphism is a lattice
homomorphism 𝑓∶ 𝐏→ 𝐐 which also preserves top and bottom:

𝑓(⊥𝐏) = ⊥𝐐,
𝑓(⊤𝐏) = ⊤𝐐.

(25)

Note that (bounded) lattice homomorphisms are necessarily monotone.
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448 31. Lattices

31.5. Categories Lat and BoundedLat
Definition 31.18 (Category Lat)
The category Lat is defined by:
1. Objects: The objects of this category are all lattices.
2. Morphisms: The morphisms from a lattice 𝑋 to a lattice 𝑌 are the lattice

homomorphisms from 𝑋 to 𝑌.
3. Identity morphism: The identity morphism for the lattice𝑋 is the identity

map id𝑋 .
4. Composition operation: The composition operation is composition of

maps.

Definition 31.19 (Category BoundedLat)
The category BoundedLat is defined by:
1. Objects: The objects of this category are all bounded lattices.
2. Morphisms: The morphisms from a lattice 𝑋 to a lattice 𝑌 are the lattice

homomorphisms from 𝑋 to 𝑌.
3. Identity morphism: The identity morphism for the bounded lattice 𝑋 is

the identity map id𝑋 .
4. Composition operation: The composition operation is composition of

maps.

Exercise52. Show that Lat is a category.
See solution on page 465.

Exercise53. Show that BoundedLat is a category.
See solution on page 465.
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In the previous chapter we have talked about the posetal structure
of hom-sets. In DP hom-sets are also posets: morphisms can be
ordered, and this order is preserved by composition. Moreover, it also
has a lattice structure that is preserved by composition.

“Krampus” is a horned figure, which, in Alpine folklore, during the Christmas season, scares children who have misbehaved, helping Saint Nicholas. More
recently, the character has been imported in Hollywood horror films, and has become part of the American popular culture.
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𝐞

𝐝

Figure 1.: The design problem 𝐝 implies the de-
sign problem 𝐞.

32.1. Ordering DPs
Definition 32.1 (Order on DP)
Suppose that 𝐏 and 𝐐 are posets, and that 𝐝, 𝐞∶ 𝐏 ,↦ 𝐐 are design prob-
lems. We define the order as follows:

𝐝 ⪯ DP 𝐞
,

𝐝(𝑝∗, 𝑞) ⪯ Bool 𝐞(𝑝∗, 𝑞) for all 𝑝 ∈ 𝐏, 𝑞 ∈ 𝐐.
(1)

Remark 32.2. Recall that design problems are monotone functions, and note
that the order defined in Def. 32.1 is just the usual order on monotone functions.

We diagrammatically represent the relation 𝐝 ⪯ DP 𝐞 as in Fig. 1.

You are reading a draft compiled on 2024-12-09 11:28:28Z



32.2. Interaction with series composition 451

32.2. Interaction with series composition
In the previous section, we introduced the concept of order in DP, and proved
that the hom-sets of DP form a bounded lattice. In this section, we show that
composition (Def. 15.6) of design problems is an order-preserving operation.

Lemma 32.3. Given 𝐝, 𝐞 ∈ Hom DP(𝐏;𝐐) and 𝐠,𝐡 ∈ Hom DP(𝐐;𝐑) we have:

𝐝 ⪯ DP 𝐞 𝐠 ⪯ DP 𝐡 .
(𝐝 # 𝐠) ⪯ DP (𝐞 # 𝐡) (2)

In other words, series composition is order-preserving on DP.

Proof. We have
(𝐝 # 𝐠)(𝑝∗, 𝑟)

=
⋁

𝑞∈𝐐
𝐝(𝑝∗, 𝑞) ∧ 𝐠(𝑞∗, 𝑟)

⪯ DP
⋁

𝑞∈𝐐
𝐞(𝑝∗, 𝑞) ∧ 𝐡(𝑞∗, 𝑟)

= (𝐞 # 𝐡)(𝑝∗, 𝑟).

(3)

Therefore, # is order-preserving on DP.
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452 32. Lattice structure of DPs

32.3. Union of Design Problems
Let 𝐝∶ 𝐏 ,↦ 𝐐 and 𝐞∶ 𝐏 ,↦ 𝐐 be design problems. We define the union 𝐝 ∨ 𝐞
to be the design problem which is feasible whenever either 𝐝 or 𝐞 is feasible.
This models 𝐝 and 𝐞 as interchangeable technologies: either we can replace the
other.

Definition 32.4 (Union of design problems)
Given two design problems 𝐝∶ 𝐏 ,↦ 𝐐 and 𝐞∶ 𝐏 ,↦ 𝐐, their union 𝐝 ∨
𝐞∶ 𝐏 ,↦ 𝐐 is defined by

(𝐝 ∨ 𝐞)∶ 𝐏 op ×𝐐 → Pos Bool,
⟨𝑝∗, 𝑞⟩ ↦ 𝐝(𝑝∗, 𝑞) ∨ 𝐞(𝑝∗, 𝑞).

(4)

The union of design problems is represented as in Fig. 2.

Figure 2.: Diagrammatic representation of the
union of design problems.

𝐝

≡ 𝐝 ∨ 𝐞

𝐞

𝐏

𝐐

𝐏

𝐏

𝐐𝐏 𝐐𝐏∨
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32.4. Intersection of Design Problems
Given two design problems 𝐝, 𝐞∶ 𝐏 ,↦ 𝐐, we can define a design problem 𝐝∧ 𝐞
that is feasible if and only if 𝐝 and 𝐞 are both feasible. We call 𝐝 ∧ 𝐞 the inter-
section of 𝐝 and 𝐞. One interpretation of 𝐝 ∧ 𝐞 is that 𝐝 and 𝐞 are two slightly
different models of the same process, and we want to make sure that the design
is conservatively feasible for both models.

Definition 32.5 (Intersection of design problems )
Given design problems 𝐝∶ 𝐏 ,↦ 𝐐 and 𝐞∶ 𝐏 ,↦ 𝐐, their intersection is
denoted (𝐝 ∧ 𝐞)∶ 𝐏 ,↦ 𝐐, defined by:

(𝐝 ∧ 𝐞)∶ 𝐏 op ×𝐐 → Pos Bool,
⟨𝑝∗, 𝑞⟩ ↦ 𝐝(𝑝∗, 𝑞) ∧ 𝐞(𝑝∗, 𝑞).

(5)

The intersection of design problems is represented as in Fig. 3.

𝐝

≡ 𝐝 ∧ 𝐞

𝐞

∧

𝐐

𝐐

𝐏

𝐏

𝐐𝐏 𝐐𝐏

Figure 3.: Diagrammatic representation of the in-
tersection of design problems.

We can directly generalize the intersection 𝐝 ∧ 𝐞 by allowing 𝐝 and 𝐞 to have
different domain and codomains, 𝐝∶ 𝐏 ,↦ 𝐐 and 𝐞∶ 𝐑 ,↦ 𝐒. We call this
putting two design problems “in parallel”.
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32.5. Lattice structure of DP hom-sets
Given the definitions of ∧ and ∨ in the previous sections, we can prove that every
DP hom-sets have a lattice structure.
This lattice is bounded by a “true” and a “false” DP.

Definition 32.6 (False and true DP)
Given any two partial orders 𝐏,𝐐, we can define a false DP as

⊥𝐏,𝐐 ∶ 𝐏 op ×𝐐 → Pos Bool,
⟨𝑝∗, 𝑞⟩ ↦ ⊥.

We can define a true DP as

⊤𝐏,𝐐 ∶ 𝐏 op ×𝐐 → Pos Bool,
⟨𝑝∗, 𝑞⟩ ↦ ⊤.

For any functionality-resource pair 𝐏,𝐐, these represent the design problem
which is never (respectively always) feasible.

Lemma 32.7. Hom DP(𝐏;𝐐) is a bounded lattice with union ∨ as join, inter-
section ∧ as meet, top ⊤𝐏,𝐐 and bottom ⊥𝐏,𝐐.

Proof. First, we need to prove that Hom DP(𝐏;𝐐) is a poset. To prove this,
we check the following:
⊳ Reflexivity: Given 𝐝 ∈ Hom DP(𝐏;𝐐):

⊤
;

𝐝 ⪯ DP 𝐝 (6)

⊳ Antisymmetry: Given 𝐝, 𝐞 ∈ Hom DP(𝐏;𝐐):

𝐝 ⪯ DP 𝐞 𝐞 ⪯ DP 𝐝 ;
𝐝 = 𝐞 (7)

⊳ Transitivity: Given 𝐝, 𝐞, 𝐠 ∈ Hom DP(𝐏;𝐐):

𝐝 ⪯ DP 𝐞 𝐞 ⪯ DP 𝐠 .
𝐝 ⪯ DP 𝐠 (8)

Therefore, Hom DP(𝐏;𝐐) is a poset. Furthermore, consider two design prob-
lems 𝐝, 𝐞 ∈ Hom DP(𝐏;𝐐). Their greatest lower bound (meet) is 𝐝 ∧ 𝐞, since
it is the greatest design problem implying both 𝐝 and 𝐞. Their least upper
bound (join), instead, is 𝐝 ∨ 𝐞, since it is the least design problem implied
by both 𝐝 and 𝐞. This proves that Hom DP is a lattice. To prove that it is
bounded, we identify the top element as ⊤𝐏,𝐐 (it is implied by all other
design problems) and the bottom element as ⊥𝐏,𝐐 (it implies by all the
other design problems).

We show that a DP hom-set is a complete lattice.

Definition 32.8 (Complete Lattice)
A poset 𝐏 = ⟨𝐏, ⪯𝐏⟩ is a complete lattice if every subset 𝐒 of 𝐏 has both a
greatest lower bound (often referred to as the infimum,meet) and a least upper
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bound (often referred to as the supremum, join).

Example 32.9. Consider the power set of any given set, ordered by inclusion.
The supremum of any two subsets is given by their union. The infimum of any
two subsets is given by their intersection.

Lemma 32.10 ( DP hom-sets are complete lattices). Hom-sets of DP are com-
plete lattices.

Proof. Consider any 𝐏,𝐐 ∈ Ob DP and Hom DP(𝐏;𝐐). We have already
shown that 𝐀 = Hom DP(𝐏;𝐐) is a bounded lattice (Lemma 32.7). Now,
take any subset 𝐁 of 𝐀. We define the following two design problems:

⋁

𝐝∈𝐁
𝐝∶ 𝐏 op ×𝐐 → Pos Bool,

⟨𝑝, 𝑞⟩ ↦ ∃𝐝 ∈ 𝐁∶ 𝐝(𝑝∗, 𝑞),
(9)

and ⋀

𝐝∈𝐁
𝐝∶ 𝐏 op ×𝐐 → Pos Bool,

⟨𝑝∗, 𝑞⟩ ↦ ∀𝐝 ∈ 𝐁∶ 𝐝(𝑝∗, 𝑞).
(10)

These are clearly design problems (given that 𝐝 is a design problem) and
given their signature they belong to 𝐀. We will now argue that

⋁
𝐝∈𝐁 𝐝 is

the supremum of 𝐁 and
⋀

𝐝∈𝐁 𝐝 is the infimum of 𝐁.

⋁
𝐝∈𝐁 𝐝 is the supremumof𝐁: First, for any 𝐝 ∈ 𝐁, we know that 𝐝 ⪯ DP

𝐝 ∨
⋁

𝐝∈𝐁∖𝐝 𝐝 =
⋁

𝐝∈𝐁 𝐝, proving that
⋁

𝐝∈𝐁 𝐝 is an upper bound of 𝐁. We
now want to show that

⋁
𝐝∈𝐁 𝐝 is the least upper bound of 𝐁: for any upper

bound 𝐞 of 𝐁, we need to show
⋁

𝐝∈𝐁 𝐝 ⪯ DP 𝐞. In other words, for any
pair ⟨𝑝∗, 𝑞⟩ ∈ 𝐏 op ×𝐐, we need to show (

⋁
𝐝∈𝐁 𝐝)(𝑝

∗, 𝑞) ⪯ Bool 𝐞(𝑝∗, 𝑞). Fix
any ⟨𝑝∗, 𝑞⟩. If (

⋁
𝐝∈𝐁 𝐝)(𝑝

∗, 𝑞) = ⊥, the condition is trivially satisfied.
If, instead, (

⋁
𝐝∈𝐁 𝐝)(𝑝

∗, 𝑞) = ⊤, there exists a 𝐝 ∈ 𝐁 such that 𝐝(𝑝∗, 𝑞) =
⊤. Given that 𝐞 is an upper bound of 𝐁, this implies ⊤ = 𝐝(𝑝∗, 𝑞) ⪯ Bool
𝐞(𝑝∗, 𝑞) = ⊤, proving the condition.

⋀
𝐝∈𝐁 𝐝 is the infimum of 𝐁: First, for any 𝐝 ∈ 𝐁, we know that 𝐝 ∧⋀
𝐝∈𝐁∖𝐝 𝐝 =

⋀
𝐝∈𝐁 𝐝 ⪯ DP 𝐝, proving that

⋀
𝐝∈𝐁 𝐝 is a lower bound of 𝐁.

We now want to show that
⋀

𝐝∈𝐁 𝐝 is the greatest lower bound of 𝐁: for any
lower bound 𝐞 of 𝐁, we need to show 𝐞 ⪯ DP

⋀
𝐝∈𝐁 𝐝. In other words, for

any pair ⟨𝑝∗, 𝑞⟩ ∈ 𝐏 op ×𝐐, we need to show 𝐞(𝑝∗, 𝑞) ⪯ Bool (
⋀

𝐝∈𝐁 𝐝)(𝑝
∗, 𝑞).

Fix any ⟨𝑝∗, 𝑞⟩. If (
⋀

𝐝∈𝐁 𝐝)(𝑝
∗, 𝑞) = ⊤, the condition is trivially satisfied. If,

instead, (
⋀

𝐝∈𝐁 𝐝)(𝑝
∗, 𝑞) = ⊥, there is at least one 𝐝 ∈ 𝐁 for which 𝐝(𝑝∗, 𝑞) =

⊥. Given that 𝐞 is a lower bound of 𝐁, this implies ⊥ = 𝐞(𝑝∗, 𝑞) ⪯ Bool
𝐝(𝑝∗, 𝑞) = ⊥, proving the condition.

Definition 32.11 (Distributive Lattice)
A lattice 𝐏 = ⟨𝐏, ∧, ∨⟩ is a distributive lattice if for all 𝑥, 𝑦, 𝑧 ∈ 𝐏:

𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧). (11)

Remark 32.12. Note that condition (11) is equivalent to its dual:

𝑥 ∨ (𝑦 ∧ 𝑧) = (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧), (12)
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456 32. Lattice structure of DPs

for all 𝑥, 𝑦, 𝑧 ∈ 𝐏.

Lemma 32.13. Consider 𝐝, 𝐞, 𝐠 ∈ Hom DP(𝐏;𝐐). We have

(𝐝 ∧ 𝐞) ∨ 𝐠 = (𝐝 ∨ 𝐠) ∧ (𝐞 ∨ 𝐠). (13)

Proof. We have:

((𝐝 ∧ 𝐞) ∨ 𝐠)(𝑝∗, 𝑞)
= (𝐝 ∧ 𝐞)(𝑝∗, 𝑞) ∨ 𝐠(𝑝∗, 𝑞)
= (𝐝(𝑝∗, 𝑞) ∧ 𝐞(𝑝∗, 𝑞)) ∨ 𝐠(𝑝∗, 𝑞)
= (𝐝(𝑝∗, 𝑞) ∨ 𝐠(𝑝∗, 𝑞)) ∧ (𝐞(𝑝∗, 𝑞) ∨ 𝐠(𝑝∗, 𝑞))
= ((𝐝 ∨ 𝐠) ∧ (𝐞 ∨ 𝐠))(𝑝∗, 𝑞).

(14)

Lemma 32.14. Consider 𝐝, 𝐞, 𝐠 ∈ Hom DP(𝐏;𝐐). We have

(𝐝 ∨ 𝐞) ∧ 𝐠 = (𝐝 ∧ 𝐠) ∨ (𝐞 ∧ 𝐠). (15)

Proof. We have:

((𝐝 ∨ 𝐞) ∧ 𝐠)(𝑝∗, 𝑞)
= (𝐝 ∨ 𝐞)(𝑝∗, 𝑞) ∧ 𝐠(𝑝∗, 𝑞)
= (𝐝(𝑝∗, 𝑞) ∨ 𝐞(𝑝∗, 𝑞)) ∨ 𝐠(𝑝∗, 𝑞)
= (𝐝(𝑝∗, 𝑞) ∧ 𝐠(𝑝∗, 𝑞)) ∨ (𝐞(𝑝∗, 𝑞) ∧ 𝐠(𝑝∗, 𝑞))
= ((𝐝 ∧ 𝐠) ∨ (𝐞 ∧ 𝐠))(𝑝∗, 𝑞).

(16)

Lemma 32.15 ( DP hom-sets are distributive lattices). Hom-sets of DP are
distributive lattices.

Proof. Either Lemma 32.13 or Lemma 32.14 prove the statement.
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32.6. Interaction with composition
Furthermore, we show that all composition operations preserve joins, and all
composition operations except trace preserve meets.

Series composition
Lemma 32.16. Consider 𝐝, 𝐞 ∈ Hom DP(𝐏;𝐐) and 𝐠 ∈ Hom DP(𝐐;𝐑). We have

(𝐝 ∨ 𝐞) # 𝐠 = (𝐝 # 𝐠) ∨ (𝐞 # 𝐠). (17)

This is diagrammatically represented in Fig. 4.

𝐝 ∨ 𝐞 𝐠 ≡ (𝐝 # 𝐠) ∨ (𝐞 # 𝐠)
𝐐 𝐐

⪯𝐏 𝐑 𝐏 𝐑
Figure 4.

Proof. We have:

((𝐝 ∨ 𝐞) # 𝐠)(𝑝∗, 𝑟)

=
⋁

𝑞∈𝐐
(𝐝 ∨ 𝐞)(𝑝∗, 𝑞) ∧ 𝐠(𝑞∗, 𝑟)

=
⋁

𝑞∈𝐐
(𝐝(𝑝∗, 𝑞) ∨ 𝐞(𝑝∗, 𝑞)) ∧ 𝐠(𝑞∗, 𝑟)

=
⋁

𝑞∈𝐐
(𝐝(𝑝∗, 𝑞) ∧ 𝐠(𝑞∗, 𝑟)) ∨ (𝐞(𝑝∗, 𝑞) ∧ 𝐠(𝑞∗, 𝑟))

= ((𝐝 # 𝐠) ∨ (𝐞 # 𝐠))(𝑝∗, 𝑟).

(18)

Remark 32.17. Consider 𝐝, 𝐞 ∈ Hom DP(𝐏;𝐐) and 𝐠,𝐡 ∈ Hom DP(𝐐;𝐑). In
general, we have:

(𝐝 ∨ 𝐞) # (𝐠 ∨ 𝐡) ≠ (𝐝 # 𝐠) ∨ (𝐞 # 𝐡). (19)

Indeed, consider 𝐝 = ⊤𝐏,𝐐, 𝐞 = ⊥𝐏,𝐐, 𝐠 = ⊥𝐐,𝐑, and 𝐡 = ⊤𝐐,𝐑. Clearly:

((𝐝 ∨ 𝐞) # (𝐠 ∨ 𝐡))(𝑝∗, 𝑟) =
⋁

𝑞∈𝐐
(𝐝 ∨ 𝐞)(𝑝∗, 𝑟) ∧ (𝐠 ∨ 𝐡)(𝑞∗, 𝑟)

= ⊤,
(20)

but
((𝐝 # 𝐠) ∨ (𝐞 # 𝐡))(𝑝∗, 𝑟)

=
⎛
⎜
⎝

⋁

𝑞∈𝐐
𝐝(𝑝∗, 𝑞) ∧ 𝐠(𝑞∗, 𝑟)

⎞
⎟
⎠
∨
⎛
⎜
⎝

⋁

𝑞∈𝐐
𝐞(𝑝∗, 𝑞) ∧ 𝐡(𝑞∗, 𝑟)

⎞
⎟
⎠

=⊥ ∨ ⊥
=⊥.

(21)

Lemma 32.18. Consider 𝐝, 𝐞 ∈ Hom DP(𝐏;𝐐) and 𝐠 ∈ Hom DP(𝐐;𝐑). We have

(𝐝 ∧ 𝐞) # 𝐠 = (𝐝 # 𝐠) ∧ (𝐞 # 𝐠). (22)

This is diagrammatically represented in Fig. 5.
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458 32. Lattice structure of DPs

Figure 5. 𝐝 ∧ 𝐞 𝐠 ≡ (𝐝 # 𝐠) ∧ (𝐞 # 𝐠)
𝐐 𝐐

⪯𝐏 𝐑 𝐏 𝐑

Proof. We have:

((𝐝 ∧ 𝐞) # 𝐠)(𝑝∗, 𝑟)

=
⋁

𝑞∈𝐐
(𝐝 ∧ 𝐞)(𝑝∗, 𝑞) ∧ 𝐠(𝑞∗, 𝑟)

=
⋁

𝑞∈𝐐
(𝐝(𝑝∗, 𝑞) ∧ 𝐞(𝑝∗, 𝑞)) ∧ 𝐠(𝑞∗, 𝑟)

=
⋁

𝑞∈𝐐
(𝐝(𝑝∗, 𝑞) ∧ 𝐠(𝑞∗, 𝑟)) ∧ (𝐞(𝑝∗, 𝑞) ∧ 𝐠(𝑞∗, 𝑟))

= ((𝐝 # 𝐠) ∧ (𝐞 # 𝐠))(𝑝∗, 𝑟).

(23)
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We have previously seen ways to construct posets (Chapter 6) and cat-
egories (Chapter 16) from simpler pieces. Analogously, this chapter
describes some ways to construct design problems.



460 33. Constructing design problems

33.1. Union and intersection with companions
and conjoints

We can also re-define the sum ∨ and intersection ∧ using companions and
conjoints, which allows us to introduce some useful constructions.

Definition 33.1 (Diagonal function)
Define the diagonal function 𝖽𝗂𝖺𝗀𝐏 ∶ 𝐏→ 𝐏 × 𝐏:

𝖽𝗂𝖺𝗀𝐏 ∶ 𝐏→ 𝐏 × 𝐏,
𝑝 ↦ ⟨𝑝, 𝑝⟩.

(1)

Definition 33.2 (Codiagonal function)
Define the codiagonal function 𝖼𝗈𝖽𝗂𝖺𝗀𝐏 ∶ 𝐏+ 𝐏→ 𝐏:

𝖼𝗈𝖽𝗂𝖺𝗀𝐏 ∶ 𝐏+ 𝐏→ 𝐏,
⟨1, 𝑝⟩↦ 𝑝,
⟨2, 𝑝⟩↦ 𝑝.

(2)

Using the diagonal function, (4) can be rewritten as the following lemma.

Lemma 33.3. Given 𝐝, 𝐞∶ 𝐏 ,↦ 𝐐, we have:

𝐝 ∨ 𝐞 = 𝖼𝗈𝗇𝗃
(
𝖽𝗂𝖺𝗀𝐏

)
# (𝐝 + 𝐞) # 𝖼𝗈𝗆𝗉

(
𝖽𝗂𝖺𝗀𝐐

)
. (3)

Proof. First, note that

𝖼𝗈𝗇𝗃
(
𝖽𝗂𝖺𝗀𝐏

)
∶ 𝐏 ,↦ 𝐏 + 𝐏

⟨
𝑝∗1 ,

⟨
1, 𝑝2

⟩⟩
↦ 𝑝1 ⪯ 𝑝2⟨

𝑝∗1 ,
⟨
1, 𝑝3

⟩⟩
↦ 𝑝1 ⪯ 𝑝3

(4)

and
𝖼𝗈𝗆𝗉

(
𝖽𝗂𝖺𝗀𝐐

)
∶ 𝐐 +𝐐 ,↦ 𝐐

⟨⟨
1, 𝑞∗1 , 𝑞3

⟩⟩
↦ 𝑞1 ⪯ 𝑞3⟨⟨

2, 𝑞∗2 , 𝑞3
⟩⟩
↦ 𝑞2 ⪯ 𝑞3.

(5)

We start by looking at 𝖼𝗈𝗇𝗃
(
𝖽𝗂𝖺𝗀𝐏

)
# (𝐝 + 𝐞)

⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟
⋆

∶ 𝐏 ,↦ 𝐐 +𝐐.

⋆ (⟨𝑝∗, 𝑞⟩)

=
⋁

𝑝′∈𝐏+𝐏
𝖼𝗈𝗇𝗃

(
𝖽𝗂𝖺𝗀𝐏

)
(⟨𝑝∗, 𝑝′⟩) ∧ (𝐝 + 𝐞)(⟨𝑝′∗, 𝑞⟩)

=
⎛
⎜
⎝

⋁

⟨1, 𝑝′⟩∈𝐏+𝐏
(𝑝 ⪯ 𝑝′) ∧ 𝐝(𝑝′∗, 𝑞)

⎞
⎟
⎠
∨
⎛
⎜
⎝

⋁

⟨2, 𝑝′⟩∈𝐏+𝐏
(𝑝 ⪯ 𝑝′) ∧ 𝐞(𝑝′∗, 𝑞)

⎞
⎟
⎠

= 𝐝(𝑝∗, 𝑞) ∨ 𝐞(𝑝∗, 𝑞).

(6)
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We now look at ⋆ # 𝖼𝗈𝗆𝗉
(
𝖽𝗂𝖺𝗀𝐐

)
∶ 𝐏 ,↦ 𝐐:

(⋆ # 𝖼𝗈𝗆𝗉
(
𝖽𝗂𝖺𝗀𝐐

)
)(𝑝∗, 𝑞′)

=
⋁

𝑞∈𝐐+𝐐
⋆(𝑝∗, 𝑞) ∧ 𝖼𝗈𝗆𝗉

(
𝖽𝗂𝖺𝗀𝐐

)
(𝑞∗, 𝑞′)

=
⎛
⎜
⎝

⋁

⟨1, 𝑞⟩∈𝐐+𝐐
𝐝(𝑝∗, 𝑞) ∧ (𝑞 ⪯ 𝑞′)

⎞
⎟
⎠
∨
⎛
⎜
⎝

⋁

⟨2, 𝑞⟩∈𝐐+𝐐
𝐞(𝑝∗, 𝑞) ∧ (𝑞 ⪯ 𝑞′)

⎞
⎟
⎠

= 𝐝(𝑝∗, 𝑞′) ∨ 𝐞(𝑝∗, 𝑞′).

(7)
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33.2. Companions and conjoint
We round out our discussion of DP by introducing two formulas for transforming
monotone maps in Pos into design problems in DP. Each monotone maps 𝑓
can be transformed into two design problems, called its companion 𝖼𝗈𝗆𝗉(𝑓) and
conjoint 𝖼𝗈𝗇𝗃(𝑓). Many of the design problems that we have introduced can be
realized as companions and conjoints of appropriate monotone maps.

Definition 33.4 (Companion and conjoint)
Let 𝐏 and 𝐐 be posets, and suppose that 𝑓∶ 𝐏 → Pos 𝐐 is a monotone
map. We define its companion in DP, denoted 𝖼𝗈𝗆𝗉(𝑓)∶ 𝐏 ,↦ 𝐐, and its
conjoint, denoted 𝖼𝗈𝗇𝗃(𝑓)∶ 𝐐 ,↦ 𝐏 as

𝖼𝗈𝗆𝗉(𝑓)(𝑝∗, 𝑞) ∶= 𝑓(𝑝) ⪯𝐐 𝑞 and 𝖼𝗈𝗇𝗃(𝑓)(𝑞∗, 𝑝) ∶= 𝑞 ⪯𝐏 𝑓(𝑝).
(8)

Lemma 33.5. Both the companion and conjoint constructions from Def. 33.4
are functorial from Pos to DP: they preserve identities and composition.

Proof. We will show that the companion and conjoint are functors of the
following forms:

𝖼𝗈𝗆𝗉∶ Pos→ DP and 𝖼𝗈𝗇𝗃∶ Pos→ DP op. (9)

First, we see that they send the identity monotone maps id𝐏 to the identity
design problem id𝐏 for any poset 𝐏, because

𝖼𝗈𝗆𝗉(id𝐏)(𝑝∗1 , 𝑝2) = (𝑝1 ⪯𝐏 𝑝2) = 𝖼𝗈𝗇𝗃(id𝐏)(𝑝∗1 , 𝑝2). (10)

Now suppose that 𝑓∶ 𝐏→ Pos 𝐐 and 𝑔∶ 𝐐→ Pos 𝐑 are given. We first show
that 𝖼𝗈𝗇𝗃(𝑔) # 𝖼𝗈𝗇𝗃(𝑓) = 𝖼𝗈𝗇𝗃(𝑓 # 𝑔). For any 𝑝 ∈ 𝐏 and 𝑟 ∈ 𝐑, we have

(𝖼𝗈𝗇𝗃(𝑔) # 𝖼𝗈𝗇𝗃(𝑓))(𝑝∗, 𝑟)

=
⋁

𝑞∈𝐐
𝖼𝗈𝗇𝗃(𝑔)(𝑟∗, 𝑞) ∧ 𝖼𝗈𝗇𝗃(𝑓)(𝑞∗, 𝑝)

=
⋁

𝑞∈𝐐
(𝑟 ⪯𝐑 𝑔(𝑞)) ∧ (𝑞 ⪯𝐐 𝑓(𝑝))

= 𝑟 ⪯𝐑 𝑔(𝑓(𝑝))
= (𝖼𝗈𝗇𝗃(𝑓 # 𝑔))(𝑟∗, 𝑝).

(11)

Similarly, we can prove that 𝖼𝗈𝗆𝗉(𝑓) # 𝖼𝗈𝗆𝗉(𝑔) = 𝖼𝗈𝗆𝗉(𝑓 # 𝑔):

(𝖼𝗈𝗆𝗉(𝑓) # 𝖼𝗈𝗆𝗉(𝑔))(𝑝∗, 𝑟)

=
⋁

𝑞∈𝐐
𝖼𝗈𝗆𝗉(𝑓)(𝑝∗, 𝑞) ∧ 𝖼𝗈𝗆𝗉(𝑔)(𝑞∗, 𝑟)

=
⋁

𝑞∈𝐐
(𝑔(𝑝) ⪯𝐐 𝑞) ∧ (𝑔(𝑞) ⪯𝐑 𝑟)

= 𝑔(𝑓(𝑝)) ⪯𝐑 𝑟
= (𝖼𝗈𝗆𝗉(𝑓 # 𝑔))(𝑝∗, 𝑟).

(12)

Example 33.6. The identity design problem id𝐏 ∶ 𝐏 ,↦ 𝐏 is the companion

You are reading a draft compiled on 2024-12-09 11:28:28Z
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(and the conjoint) of the identity map id Pos𝐏 ∶ 𝐏→ Pos 𝐏. This is easy to check, as

𝖼𝗈𝗆𝗉(id𝐏)(𝑝∗1 , 𝑝2)
= id𝐏(𝑝1) ⪯ 𝑝2
= 𝑝1 ⪯ 𝑝2
= id𝐏(𝑝∗1 , 𝑝2).

(13)

Example 33.7. The coproduct injections 𝜄𝐏, 𝜄𝐐 for design problems are the
companions of the coproduct injections for the disjoint union.

Example 33.8. The product projections 𝜋𝐏, 𝜋𝐐 for design problems are the
conjoints of the coproduct injections for the disjoint union.

Deriving terminators
Using companion and conjoint we can obtain the equivalent of “terminators”
representing constant functionality/resources. Consider an element 𝑥 of a poset𝐏.
We can represent this constant element as a map 𝑓𝑥 from the singleton to the
poset:

𝑓𝑥 ∶ 𝟏 → Pos 𝐏,
∙ ↦ 𝑥.

(14)

By taking the companion of 𝑓𝑥 we get

𝖼𝗈𝗆𝗉
(
𝑓𝑥
)
∶ 𝟏 ,↦ 𝐏,
⟨∙, 𝑝⟩ ↦ (𝑥 ⪯𝐏 𝑝).

(15)

By taking the conjoint, we get

𝖼𝗈𝗇𝗃
(
𝑓𝑥
)
∶ 𝐏 ,↦ 𝟏,
⟨𝑝∗, ∙⟩ ↦ (𝑝 ⪯𝐏 𝑥).

(16)

These two cases represent design problems with either constant resources or
constant, functionalities, respectively.

Something incorrect or unclear or missing? Report issues on GitHub by clicking here.
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Σ𝑛 𝐏
𝐏
⋮
⋮
𝐏

Σ𝑚𝐏
𝐏
⋮
⋮
𝐏

33.3. Monoidal DPs
If the underlying posets of functionality and resources are monoidal (Def. 31.1),
then we can define some canonical DPs.

Definition 33.9 (Sum of resources for monoidal posets)
If the poset 𝐏 is monoidal with monoidal product⊗, then the “sum” of 𝑛
copies of 𝐏 is a design problem given by

Σ𝑛 ∶ (𝐏𝑛) op × 𝐏 →→→ Pos Bool,

⟨⟨𝑝1, …, 𝑝𝑛⟩∗, 𝑞⟩ ↦,,→ (𝑝1 ⊗ …⊗ 𝑝𝑛 ⪯𝐏 𝑞).
(17)

We can do the symmetric construction.

Definition 33.10 (Sum of functionalities for monoidal posets)
If the poset 𝐏 is monoidal with monoidal product⊗, then the “sum” of𝑚
copies of 𝐏 is a design problem given by

Σ𝑚 ∶ 𝐏 op × (𝐏𝑚) →→→ Pos Bool,

⟨𝑝∗, ⟨𝑞1, …, 𝑞𝑚⟩⟩ ↦,,→ 𝑝 ⪯𝐏 (𝑞1 ⊗ …⊗ 𝑞𝑚).
(18)

We can now put these in series to obtain the generic DP Σ𝑛𝑚 with 𝑛 functionalities
and𝑚 resources:

Σ𝑛𝑚 = Σ𝑛 # Σ𝑚. (19)

Σ𝑛 Σ𝑚 Σ𝑛𝑚≡
𝐏
⋮

𝐏

𝐏 𝐏⪯
𝐏
⋮
⋮
𝐏
𝐏

𝐏
⋮

𝐏

𝐏
⋮
⋮
𝐏
𝐏

(20)

Note that this works with addition, but also with other associative operations,
such as multiplication,max, etc.

You are reading a draft compiled on 2024-12-09 11:28:28Z



33.3. Monoidal DPs 465

Solutions to selected exercises
Solution of Exercise 52. Clearly, given any lattice 𝑋, the identity map id𝑋 is a
lattice homomorphism, since

id𝑋(𝑥1 ∧𝑋 𝑥2) = 𝑥1 ∧𝑋 𝑥2
id𝑋(𝑥1 ∨𝑋 𝑥2) = 𝑥1 ∨𝑋 𝑥2.

(21)

This said, the identity map satisfies unitality. Now, given lattice homomorphisms

𝑓∶ 𝑋 → 𝑌 and 𝑔∶ 𝑌 → 𝑍, (22)

their composition is a lattice homomorphism, since

(𝑓 # 𝑔)(𝑥1 ∧𝑋 𝑥2) = 𝑓(𝑥1 ∧𝑋 𝑥2) # 𝑔
= 𝑔(𝑓(𝑥1) ∧𝑌 𝑓(𝑥2))
= (𝑓 # 𝑔)(𝑥1) ∧𝑍 (𝑓 # 𝑔)(𝑥2),

(23)

and
(𝑓 # 𝑔)(𝑥1 ∨𝑋 𝑥2) = 𝑓(𝑥1 ∨𝑋 𝑥2) # 𝑔

= 𝑔(𝑓(𝑥1) ∨𝑌 𝑓(𝑥2))
= (𝑓 # 𝑔)(𝑥1) ∨𝑍 (𝑓 # 𝑔)(𝑥2),

(24)

We have already checked in the past the map composition is associative (e.g.,
when checking that Set and Pos are categories).

Solution of Exercise 53. Consider the solution of Exercise 52 as a starting
point. Clearly, given any lattice 𝑋, the identity map id𝑋 is also a bounded lattice
homomorphism, since

id𝑋(⊥𝑋) = ⊥𝑋
id𝑋(⊤𝑋) = ⊤𝑋 .

(25)

This said, the identity map satisfies unitality. Now, given lattice homomorphisms
𝑓∶ 𝑋 → 𝑌 and 𝑔∶ 𝑌 → 𝑍, their composition is also a bounded lattice homo-
morphism, since

(𝑓 # 𝑔)(⊥𝑋) = 𝑔(⊥𝑌)
= ⊥𝑍 ,

(26)

and
(𝑓 # 𝑔)(⊤𝑋) = 𝑔(⊤𝑌)

= ⊤𝑍 .
(27)

We have already checked in the past the map composition is associative (e.g.,
when checking that Set and Pos are categories).
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The Laendler is a folk dance in 3/4 time, popular in Switzerland, Austria, Bavaria, and Slovenia. It is a partner dance, in which one hopps and stamps a lot.
It can purely instrumental, but also include a vocal part, featuring yodeling.
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Schaumkuesse are confections consisting of a biscuit, topped with creamy filling, and then coated in a hard shell of pure milk chocolate.



470 34. Sameness

34.1. Sameness in category theory
One nice thing about the category of sets is that we are all used to working with
sets and functions. And many concepts that are familiar in the setting of sets
and functions can actually be reformulated in a way which makes sense for lots
of other categories, if not for all categories. It can be fun, and insightful, to see
known definitions transformed into “category theory language”. For example:
the notion of a bijective function is a familiar concept. There are least two ways
of saying what it means for a function 𝑓∶ 𝐀→ 𝐁 of sets to be bijective:
Definition 1: “𝑓∶ 𝐀 → 𝐁 is bijective if, for every 𝑦 ∈ 𝐁 there exists precisely
one 𝑥 ∈ 𝐀 such that 𝑓(𝑥) = 𝑦;
Definition 2: “𝑓∶ 𝐀→ 𝐁 is bijective if there exists a function 𝑔∶ 𝐁→ 𝐀 such
that 𝑓 # 𝑔 = id𝐀 and 𝑔 # 𝑓 = id𝐁”.
It is a short proof to show that the above two definitions are equivalent. The first
definition, however, does not lend itself well to generalization in category theory,
because it is formulated using something that is very specific to sets: namely,
it refers to elements of the sets 𝐀 and 𝐁. And we have seen that the objects of
a category need not be sets, and so in general we cannot speak of “elements”
in the usual sense. Definition 2, on the other hand, can easily be generalized to
work in any category. To formulate this version, all we need are morphisms, their
composition, the notion of identity morphisms, and the notion of equality of
morphisms (for equations such as “𝑓 # 𝑔 = id𝑥”). The generalization we obtain is
the fundamental notion of an “isomorphism”.

Definition 34.1 (Isomorphism)
Let C be a category, let 𝑋,𝑌 ∈ ObC be objects, and let 𝑓∶ 𝑋 → 𝑌 be a mor-
phism. We say that 𝑓 is an isomorphism if there exists a morphism 𝑔∶ 𝑌 →
𝑋 such that 𝑓 # 𝑔 = id𝑋 and 𝑔 # 𝑓 = id𝑌 .

Remark 34.2. The morphism 𝑔 in the above definition is called the inverse
of 𝑓. Because of the symmetry in how the definition is formulated, it is easy to
see that 𝑔 is necessarily also an isomorphism, and its inverse is 𝑓.

Exercise54. In the previous remark we wrote the inverse. We do this because
inverses are in fact unique. Can you prove this? That is, show that if 𝑓∶ 𝑋 →
𝑌 is an isomorphism, and if 𝑔1 ∶ 𝑌 → 𝑋 and 𝑔2 ∶ 𝑌 → 𝑋 are morphisms such
that 𝑓 # 𝑔1 = id𝑋 and 𝑔1 # 𝑓 = id𝑌 , and 𝑓 # 𝑔2 = id𝑋 and 𝑔2 # 𝑓 = id𝑌 , then
necessarily 𝑔1 = 𝑔2.

See solution on page 475.

Definition 34.3 (Isomorphic objects)
Let 𝑋,𝑌 be two objects in a category. We say that 𝑋 and 𝑌 are isomorphic if
there exists an isomorphism 𝑋 → 𝑌 or 𝑌 → 𝑋.

For the formulation of the definition of “isomorphic”, mathematicians might
often only require the existence of an isomorphism 𝑋 → 𝑌, say, since by remark
above we know there is then necessarily also an isomorphism in the opposing
direction, namely the inverse. We choose here the longer, perhaps more cum-
bersome formulation just to emphasize the symmetry of the term “isomorphic”.
Also note that the definition leaves unspecified whether there might be just one
or perhaps many isomorphisms 𝑋 → 𝑌.
When two objects are isomorphic, in some contexts we will want to think of
them as “the same”, and in some contexts we will want to keep track of more
information. In fact, in category theory, it is typical to think in terms of different
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kinds of “sameness”. To give a sense of this, we look at some examples using
sets.

Example 34.4 (Semantic coherence). Suppose Francesca and Gabriel want to
share a dish at a restaurant. Francesca only speaks Italian, and Gabriel only
speaks German. Let 𝑀 denote the set of dishes on the menu. For each dish,
Francesca can say if she is willing to eat it, or not. This can be modeled by a
function 𝑓∶ 𝑀 → {Sì, No} which maps a given dish 𝑚 ∈ 𝑀 to the statement
“Sì” (yes, I’d eat it) or “No” (no, I wouldn’t eat it). Gabriel can do similarly, and
this can be modeled as a function 𝑔∶ 𝑀 → {Ja, Nein}. Then, the subset of dishes
of𝑀 that both Francesca and Gabriel are willing to eat (and thus able to share) is

{𝑚 ∈ 𝑀 ∣ 𝑓(𝑚) = Sì and 𝑔(𝑚) = Ja}. (1)

Suppose the server at the restaurant knows no Italian and no German. To help
with the situation, he introduces a new two-element set: {♥,A}. Then Francesca
and Gabriel can each map their respective positive answers (“Sì” and “Ja”) to “♥
”, and their respective negative answers to “A”. This defines isomorphisms

{Sì, No}⟷ {♥,A}⟷ {Ja, Nein} (2)

whose compositions provide a translation between the Italian and German two-
element sets. Using these isomorphisms, we obtain, by composition, new func-
tions

𝑓 ∶ 𝑀 ⟶ {♥,A}, 𝑔 ∶ 𝑀 ⟶ {♥,A}, (3)

and the set of dishes that Francesca and Gabriel would be willing to share can be
written as

{𝑚 ∈ 𝑀 ∣ 𝑓(𝑚) = ♥ and 𝑔(𝑚) = ♥}. (4)

This may all seem unnecessarily complicated. The main point of this example is
the following. There are infinitely many two-element sets; commonly used ones
might be, for example

{0, 1}, {true, false}, {⊥, ⊤}, {left, right}, {−, +}, etc. (5)

They are all isomorphic (for any two such sets, there are precisely two possible
isomorphisms between them) and we can in principle use any one in place of
another. However, in most cases, we should keep precise track of the semantics
of what each of the two elements mean in a given context, such as how they are
being used in interaction with other mathematical constructs.

Example 34.5 (Relabelling). Suppose we want to buy an electric stepper motor
for a robot that we are building, and for this we consult a catalogue of electric
stepper motors*.
The catalogue might be organized as a large table, where on the left-hand side
there is a column listing all available motors (identified with a model ID), and
the remaining columns correspond to different attributes that each of the models
of motor might have, such as the name of the company that manufactures the
motor, the size dimensions, the weight, the maximum power, the price, etc. A
simple illustration is provided in Table 34.1.
Suppose that your old way of listing models of motors has become outdated, and
you need to change to a new system, where each model is identified, say, by a
unique numerical 10-digit code. Relabelling each of themodels with its numerical
code corresponds to an isomorphism, say relabel, from the new set𝑁 of numerical
codes to the old set 𝑀 of model names. In contrast to the previous example,

* See pololu.com for a standard catalogue of electric stepper motors.
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472 34. Sameness
Table 34.1.: A simplified catalogue of motors.

Motor ID Company Size [mm3] Weight [g] Max Power [W] Cost [USD]
1204 SOYO 20 × 20 × 30 60.0 2.34 19.95
1206 SOYO 28 × 28 × 45 140.0 3.00 19.95
1207 SOYO 35 × 35 × 26 130.0 2.07 12.95
2267 SOYO 42 × 42 × 38 285.0 4.76 16.95
2279 Sanyo Denki 42 × 42 × 31.5 165.0 5.40 164.95
1478 SOYO 56.4 × 56.4 × 76 1,000 8.96 49.95
2299 Sanyo Denki 50 × 50 × 16 150.0 5.90 59.95

however, it is of course absolutely necessary to keep track of the isomorphism
relabel that defines the relabelling. This is what holds the information of which
code denotes which model.
Note also that all the other labelling functionalities in our example database may
be updated by precomposing with relabel. For example, the old “Company” label
was described by a function

Company∶ 𝑀 → 𝐶. (6)

The updated version of the “Company” label, using the new set 𝑁 of model IDs,
is obtained by the composition

𝑁
relabel
⟶ 𝑀

Company
⟶ 𝐶. (7)

Example 34.6. Going back to currency exchangers, recall that any currency
exchanger ⟨𝑎, 𝑑⟩, given by

𝑓⟨𝑎, 𝑏⟩ ∶ ℝ → ℝ,
𝑥 ↦ 𝑎𝑥 − 𝑑,

(8)

is an isomorphism, since we can define a currency exchanger
⟨
𝑎′, 𝑏′

⟩
such that

⟨𝑎, 𝑏⟩ #
⟨
𝑎′, 𝑏′

⟩
=
⟨
𝑎′, 𝑏′

⟩
# ⟨𝑎, 𝑏⟩ = ⟨1, 0⟩. (9)

Example 34.7. In FinSet, isomorphisms from a set to itself are automorphisms,
and correspond to permutations of the set. Assuming a cardinality of 𝑛 for the set
(for instance, the set has 𝑛 elements), the number of isomorphisms is given by
the number of ways in which we can “rearrange” 𝑛 elements of the set, which is
𝑛!.

Example 34.8. In Set, isomorphisms between ℝ→ ℝ correspond to invertible
functions.
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34.2. Isomorphism is not identity
Example 34.9. Consider the two currencies B and satoshi. These are both
objects of the category Curr and are isomorphic. Being isomorphic does not
mean to be strictly “the same”. Indeed, even if the amounts correspond, 1 B and
1,000,000 satoshi are different elements of different sets, but there exists an iso-
morphism between the two. For one direction, the isomorphism transforms B into
satoshi (multiplying the real number by 1,000,000); the other direction transforms
satoshi into B (dividing the real number by 1,000,000).

Invertible functions are isomorphisms

Definition 34.10 (Strict monotone functions)
A function 𝑓∶ ℝ→ ℝ is strictly monotone if for all 𝑎, 𝑏 ∈ ℝ:

𝑎 < 𝑏
.

𝑓(𝑎) < 𝑓(𝑏) (10)

Exercise55. Show that strictly monotone maps. 𝑓∶ ℝ→ ℝ are invertible.
See solution on page 475.
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Solutions to selected exercises
Solution of Exercise 54.

Solution is missing.

Solution of Exercise 55. Because of Def. 34.10, given 𝑎, 𝑏 ∈ ℝ, if 𝑓(𝑎) =
𝑓(𝑏), then we must have 𝑎 = 𝑏. Suppose that 𝑓 is strictly monotone, but there
exist elements 𝑎, 𝑏 ∈ ℝ such that 𝑓(𝑎) = 𝑓(𝑏) but 𝑎 ≠ 𝑏. In other words, we
have 𝑓(𝑎) − 𝑓(𝑏) = 0 but 𝑎 − 𝑏 ≠ 0, which implies

(𝑓(𝑎) − 𝑓(𝑏))(𝑎 − 𝑏) = 0. (11)

However, from the definition of monotonicity, one should have

(𝑓(𝑎) − 𝑓(𝑏))(𝑎 − 𝑏) > 0. (12)

Therefore, we have a contradiction, implying that if 𝑓 is strictly monotone,
then 𝑓(𝑎) = 𝑓(𝑏) implies 𝑎 = 𝑏.
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In this chapter we show how the two types of queries 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌
and 𝖥𝗂𝗑𝖱𝖾𝗌𝖬𝖺𝗑𝖥𝗎𝗇 can be seen as functors from the category DP
to two new categories to be defined that represent the types of “so-
lutions”. The specification of these functors represents a complete
solution for DP optimization at the “mathematical level”, without
taking into account questions of computatibility or resource con-
sumption, which will be explored in the successive chapters.



480 35. DP queries as functors
35.1. Queries are functors from problem

statements to solutions
In this and the following chapters we are going to build towards the solution of
co-design problems. We will consider an arbitrary graph of design problems,
in which nodes are design problems and edges are arbitrary interconnections
between functionality and resources, obtained through the operations of a traced
monoidal category (series, parallel, feedback) plus the lattice structure (and, or)
of design problems. On this structure we want to solve the query 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌
(Section 29.3) or, symmetrically, 𝖥𝗂𝗑𝖱𝖾𝗌𝖬𝖺𝗑𝖥𝗎𝗇 (Section 29.3)
We look at this from a compositional point of view. We will assume that we
know the solution to 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌 for each of the components. We think of the
components as primitive blocks, because they are given in a catalogue format as
a DPI, or they are special cases (+,⊗⊗⊗, etc.) which we will solve as special cases.
Given the solution for the primitive blocks, we want to know what is the solution
for 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌 for the entire diagram.
What is the form of the solution that we expect? Given a DP 𝐝∶ 𝐅 ,↦ 𝐑we expect
the solution to 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌 to be a function that, given a fixed functionality 𝑓
∈ 𝐅, returns the minimal resources, which form an upper set. We call this
function𝐻𝐝.

Definition 35.1
Given a DP 𝐝∶ 𝐅 ,↦ 𝐑 we denote by 𝐻𝐝 ∶ 𝐅 → Pos 𝑈𝐑 the map that
associates to each functionality 𝑓 the set of minimal resources sufficient to
realize 𝑓:

𝐻𝐝 ∶ 𝐅→ Pos 𝑈𝐑,
𝑓 ↦ {𝑟 ∈ 𝐑∶ 𝐝(𝑓∗, 𝑟)}.

(1)

If a certain functionality 𝑓 is infeasible, then𝐻(𝑓) = ∅.

Remark 35.2 (Monotonicity). Consider a DP 𝐝∶ 𝐅 ,↦ 𝐑 and 𝑓 ⪯ 𝑓′. We know

𝐻𝐝(𝑓) = {𝑟 ∈ 𝐑∶ 𝐝(𝑓∗, 𝑟)}
⊇ {𝑟 ∈ 𝐑∶ 𝐝(𝑓′∗, 𝑟)}
= 𝐻𝐝(𝑓′),

(2)

showing monotonicity.

Symmetrically, the solution to 𝖥𝗂𝗑𝖱𝖾𝗌𝖬𝖺𝗑𝖥𝗎𝗇 is given by a function thatwe call𝐾𝐝.

Definition 35.3
Given a DP ⟨𝐅,𝐑, 𝐈, 𝗉𝗋𝗈𝗏, 𝗋𝖾𝗊⟩, define the map 𝐾𝐝 ∶ 𝐑 → Pos 𝐿𝐅 that as-
sociates to each resource 𝑟 the set of functionalities which can be realized
with 𝑟:

𝐾𝐝 ∶ 𝐑→ Pos 𝐿𝐅,
𝑟 ↦ {𝑓 ∈ 𝐅∶ 𝐝(𝑓∗, 𝑟)}.

(3)

If a certain resource 𝑟 only leads to infeasible functionalities, then 𝐾(𝑟) = ∅.

Remark 35.4 (Monotonicity). Consider a DP 𝐝∶ 𝐅 ,↦ 𝐑 and 𝑟 ⪯ 𝑟′. We know

𝐾𝐝(𝑟) = {𝑓 ∈ 𝐅∶ 𝐝(𝑓∗, 𝑟)}
⊆ {𝑓 ∈ 𝐅∶ 𝐝(𝑓∗, 𝑟′)}
= 𝐾𝐝(𝑟′),

(4)

showing monotonicity.
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35.1. Queries are functors from problem statements to solutions 481

A question that arises naturally is whether the map𝐻𝐝 is sufficient to reconstruct
the original DP. The answer is yes. We will prove that𝐻𝐝 defines a morphism in
a category called Pos𝑈 , and that this category is equivalent (Def. 24.19) to DP,
therefore being traced monoidal, with a lattice structure. In fact, 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌
can be seen as a functor from DP to Pos𝑈 . Symmetrically, 𝐾𝐝 is a morphism in
a category Pos𝐿 equivalent to DP and 𝖥𝗂𝗑𝖱𝖾𝗌𝖬𝖺𝗑𝖥𝗎𝗇 can be seen as the functor
from DP to Pos𝐿.
This situation is represented in Fig. 1.

Pos𝑈

DP

Pos𝐿

↙

𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌𝖡𝖺𝖼𝗄

𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌

𝖥𝗂𝗑𝖱𝖾𝗌𝖬𝖺𝗑𝖥𝗎𝗇

↗

𝖥𝗂𝗑𝖱𝖾𝗌𝖬𝖺𝗑𝖥𝗎𝗇𝖡𝖺𝖼𝗄 Figure 1.: In this chapter,we show that the queries
𝖥𝗂𝗑𝖱𝖾𝗌𝖬𝖺𝗑𝖥𝗎𝗇 and 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌 can be seen as
functors from DP to two new categories, Pos𝑈
and Pos𝐿 . We show that DP is equivalent to these
categories: a DP is univocally defined by the an-
swers to the two queries.

In the course of this chapter, by defining the two functors 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌 and
𝖥𝗂𝗑𝖱𝖾𝗌𝖬𝖺𝗑𝖥𝗎𝗇, we effectively have solved the problem of optimization for DPs
in the “mathematical” way. However, this is only the first step, because it does
not say anything about whether the functor is actually computable. In the next
chapter (Chapter 36) we will look at finite approximations of DPs and the com-
putational complexity of the solution. Then, we will introduce the theory of
monads, and based on that, we will be able to show how to construct bounded
finite approximations of any DPs.
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482 35. DP queries as functors
35.2. The Pos𝑈 and Pos𝐿 categories
Definition 35.5 (Category Pos𝑈)
The category Pos𝑈 consists of:
1. Objects: objects are posets;
2. Morphisms: given objects 𝑋,𝑌 ∈ Ob Pos𝑈 , morphisms from 𝑓∶ 𝑋 → 𝑌

are monotone maps of the form 𝑓⋆ ∶ 𝑋 → Pos 𝑈𝑌.
3. Composition of morphisms: Given morphisms 𝑓∶ 𝑋 → 𝑌, 𝑔∶ 𝑌 → 𝑍,

their composition 𝑓 # 𝑔∶ 𝑋 → 𝑍 is given by

(𝑓 # 𝑔)⋆ ∶ 𝑋 → Pos 𝑈𝑍

𝑥 ↦
⋃

𝑦∈𝑓⋆(𝑥)
𝑔⋆(𝑦);

(5)

4. Identity morphism: given an object 𝑋 ∈ Ob Pos𝑈 , the identity morphism
id𝑋 ∶ 𝑋 → 𝑋 is given by the application of the upper closure operator:

id⋆𝑋(𝑥) ∶= ↑↑ {𝑥}. (6)

Remark 35.6. Note that the composition of morphisms in this category corre-
sponds to the generalization of the series operator for boolean profunctors.

Analogously, we can define the Pos𝐿 category.

Definition 35.7 (Category Pos𝐿)
The category Pos𝐿 consists of:
1. Objects: objects are posets;
2. Morphisms: given objects 𝑋,𝑌 ∈ Ob Pos𝐿 , morphisms 𝑓∶ 𝑋 → 𝑌 are

monotone maps of the form 𝑓⋆ ∶ 𝑋 → Pos 𝐿𝑌.
3. Composition of morphisms: Given morphisms 𝑓∶ 𝑋 → 𝑌, 𝑔∶ 𝑌 → 𝑍,

their composition 𝑓 # 𝑔∶ 𝑋 → 𝑍 is given by

(𝑓 # 𝑔)⋆ ∶ 𝑋 → Pos 𝐿𝑍

𝑥 ↦
⋃

𝑦∈𝑓⋆(𝑥)
𝑔⋆(𝑦);

(7)

4. Identity morphism: given an object 𝑋 ∈ Ob Pos𝐿 , the identity morphism
id𝑋 ∶ 𝑋 → 𝑋 is given by the application of the lower closure operator:

id⋆𝑋(𝑥) ∶= ↓↓ {𝑥}. (8)

We now show that Pos𝑈 and Pos𝐿 are indeed categories.

Lemma 35.8. Pos𝑈 and Pos𝐿 are categories.

Proof. We prove that Pos𝑈 is a category. The proof for Pos𝐿 is analogous.
In the following, we show unitality and associativity.
Unitality: Given 𝑓∶ 𝑋 → 𝑌, we have:

(𝑓 # id𝑌)
⋆(𝑥) =

⋃
𝑦∈𝑓⋆(𝑥)

id𝑌
⋆(𝑦)

=
⋃

𝑦∈𝑓⋆(𝑥)
↑↑ {𝑦}

=
⋃

𝑦∈𝑓⋆(𝑥)
{𝑦′ ∈ 𝑌∶ 𝑦 ⪯𝑌 𝑦′}.

(9)

You are reading a draft compiled on 2024-12-09 11:28:28Z



35.2. The Pos𝑈 and Pos𝐿 categories 483

We know that 𝑓⋆(𝑥) is an upper set:

𝑓⋆(𝑥) =
⋃

𝑦∈𝑓⋆(𝑥)
{𝑦}

=
⋃

𝑦∈𝑓⋆(𝑥)
{𝑦′ ∈ 𝑌∶ 𝑦 ⪯𝑌 𝑦′}.

(10)

Therefore, (𝑓 # id𝑌)
⋆(𝑥) = 𝑓⋆(𝑥) for all 𝑥 ∈ 𝑋. Similarly, we have:

(id𝑋 # 𝑓)⋆(𝑥) =
⋃

𝑥′∈id𝑋
⋆(𝑥)

𝑓⋆(𝑥′)

=
⋃

𝑥′∈↑↑ {𝑥}
𝑓⋆(𝑥′)

= 𝑓⋆(𝑥),

(11)

where the last equality holds since 𝑓⋆ is a monotone function and 𝑓⋆(𝑥′) ⊆
𝑓⋆(𝑥) for all 𝑥′ ∈ ↑↑ {𝑥}.
Associativity: Consider three morphisms 𝑓∶ 𝑋 → 𝑌, 𝑔∶ 𝑌 → 𝑍, and
ℎ∶ 𝑍 → 𝑈. We have:

((𝑓 # 𝑔) # ℎ)⋆(𝑥) =
⋃

𝑧∈(
⋃
𝑦∈𝑓⋆(𝑥)𝑔

⋆(𝑦))
ℎ⋆(𝑧)

=
⋃

𝑦∈𝑓⋆(𝑥)

⋃
𝑧∈𝑔⋆(𝑦)

ℎ⋆(𝑧)

= (𝑓 # (𝑔 # ℎ))⋆(𝑥).

(12)

Therefore, Pos𝑈 is a category.

We can show that Pos𝑈 and Pos𝐿 are equivalent categories (Def. 24.19).

Lemma 35.9. Pos𝑈 and Pos𝐿 are isomorphic: there exists a pair of functors

↙∶ Pos𝑈 → Pos𝐿,
↗∶ Pos𝐿 → Pos𝑈 ,

(13)

such that↙ # ↗= id Pos𝑈 and↗ # ↙= id Pos𝐿 , where id Pos𝑈 and id Pos𝐿 are the
identity functors on Pos𝑈 and Pos𝐿, respectively.

Proof. To prove this, we need to define the needed functors and to show that
they satisfy the listed properties. We choose the functors to be the ones that
map a poset 𝐏 in a category to its opposite version 𝐏 op in another category.
Given a morphism 𝑓∶ 𝑋 → 𝑌 in Pos𝑈 , we have:

(↙ (𝑓))⋆ ∶ 𝑋op → Pos 𝐿𝑌op

𝑥 ↦ 𝑓⋆(𝑥).
(14)

Given a morphism 𝑔∶ 𝑋 → 𝑌 in Pos𝐿, we have:

(↗ (𝑔))⋆ ∶ 𝑋op → Pos 𝑈𝑌op

𝑥 ↦ 𝑔⋆(𝑥).
(15)

↙ and↗ are functors:
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484 35. DP queries as functors
⊳ Preservation of identities: Given 𝑋 ∈ Ob Pos𝑈 , we have:

(↙ (id𝑋))
⋆ = ↑↑𝑋 {𝑥}
= ↓↓𝑋op {𝑥}

= id𝑋op
⋆,

(16)

where id𝑋 is an identity morphism in Pos𝑈 , and id𝑋op is an identity
morphism in Pos𝐿. Similarly, given 𝑋 ∈ Ob Pos𝐿 we have:

(↗ (id𝑋))
⋆ = ↓↓𝑋 {𝑥}
= ↑↑𝑋op {𝑥}

= id⋆𝑋op .
(17)

⊳ Preservation of composition: This can be easily seen as follows. Given any 𝑓
∈ Hom Pos𝑈 (𝑋;𝑌), 𝑔 ∈ Hom Pos𝑈 (𝑌;𝑍):

(↙ (𝑓 # 𝑔))⋆ = (𝑓 # 𝑔)⋆

= (↙ (𝑓)# ↙ (𝑔))⋆.
(18)

Similarly, given any 𝑓 ∈ Hom Pos𝐿 (𝑋;𝑌), 𝑔 ∈ Hom Pos𝐿 (𝑌;𝑍):

(↗ (𝑓 # 𝑔))⋆ = (𝑓 # 𝑔)⋆

= (↗ (𝑓)# ↗ (𝑔))⋆.
(19)

Compositions return identity functors: We want to show that by com-
posing the two functors we obtain the identity functors in Pos𝑈 and Pos𝐿,
respectively. Clearly, composing the two functors returns the identity on
the objects, since for any poset 𝐏, we have (𝐏 op)op = 𝐏. The functors act on
morphisms by “flipping the context”, and “flipping” twice is the “same” as
not flipping.

We can show that Pos𝑈 and Pos𝐿 are monoidal categories.

Lemma 35.10. Pos𝑈 is a monoidal category with the following additional
structure:
1. Tensor product⊗⊗⊗: On objects, the tensor product corresponds to the product

of posets. Given two morphisms 𝑓∶ 𝑋 → 𝑌 and 𝑔∶ 𝑍 → 𝑈, we have 𝑓 ⊗⊗⊗
𝑔∶ 𝑋 × 𝑍 → 𝑌 ×𝑈, with

(𝑓⊗⊗⊗ 𝑔)⋆ ∶ 𝑋 × 𝑍 → Pos 𝑈(𝑌 ×𝑈)
⟨𝑥, 𝑧⟩↦ 𝑓⋆(𝑥) × 𝑔⋆(𝑧).

(20)

Note that the cartesian product of upper sets is an upper set.
2. Unit: The unit is the identity poset: the poset with a singleton carrier set and

only the identity relation. We denote this by 𝟏.
3. Left unitor: The left unitor is given by the pair of morphisms 𝗅𝗎𝑋 ∶ {∙} × 𝑋 →
𝑋 and 𝗅𝗎𝑋−1 ∶ 𝑋 → {∙} × 𝑋, with

𝗅𝗎⋆𝑋 ∶ {∙} × 𝑋 → Pos 𝑈𝑋
⟨∙, 𝑥⟩↦ ↑↑ {𝑥},

(21)
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35.2. The Pos𝑈 and Pos𝐿 categories 485

and
𝗅𝗎−1𝑋

⋆
∶ 𝑋 → Pos 𝑈({∙} × 𝑋)
𝑥 ↦ {∙} × ↑↑ {𝑥},

(22)

respectively.
4. Right unitor: The right unitor is given by the pair ofmorphisms 𝗋𝗎𝑋 ∶ 𝑋×{∙}→
𝑋 and 𝗋𝗎𝑋−1 ∶ 𝑋 → 𝑋 × {∙}, with

𝗋𝗎⋆𝑋 ∶ 𝑋 × {∙}→ Pos 𝑈𝑋
⟨𝑥, ∙⟩↦ ↑↑ {𝑥},

(23)

and
𝗋𝗎−1𝑋

⋆
∶ 𝑋 → Pos 𝑈(𝑋 × {∙})
𝑥 ↦ ↑↑ {𝑥} × {∙},

(24)

respectively.
5. Associator: The associator is given by the pair of morphisms 𝖺𝗌𝑋𝑌,𝑍 ∶ (𝑋×𝑌)×

𝑍 → 𝑋 × (𝑌 × 𝑍) and 𝖺𝗌𝑋,𝑌𝑍 ∶ 𝑋 × (𝑌 × 𝑍)→ (𝑋 × 𝑌) × 𝑍, given by

𝖺𝗌𝑋𝑌,𝑍⋆ ∶ (𝑋 × 𝑌) × 𝑍 → Pos 𝑈𝑋 × (𝑈𝑌 ×𝑈𝑍)
⟨⟨𝑥, 𝑦⟩, 𝑧⟩↦ ↑↑ {𝑥} × (↑↑ {𝑦} × ↑↑ {𝑧}),

(25)

and
𝖺𝗌𝑋,𝑌𝑍⋆ ∶ 𝑋 × (𝑌 × 𝑍)→ Pos (𝑈𝑋 ×𝑈𝑌) ×𝑈𝑍

⟨𝑥, ⟨𝑦, 𝑧⟩⟩↦ (↑↑ {𝑥} × ↑↑ {𝑦}) × ↑↑ {𝑧}.
(26)

We now want to show that Pos𝑈 can be equipped to become a symmetric
monoidal category. To do so, we first need the following two facts.

Lemma 35.11. Given posets 𝐏,𝐐, a monotone maps 𝑓∶ 𝐏→ 𝐐, and a family
of singleton sets {𝑆𝑖}𝑖∈𝐼 , with 𝑆𝑖 = {𝑠𝑖}, 𝑠𝑖 ∈ 𝐏, the following equality holds:

↑↑(
⋃

𝑝∈↑↑
⋃
𝑖∈𝐼𝑆𝑖

{𝑓(𝑝)}) = ↑↑
(⋃

𝑖∈𝐼
{𝑓(𝑠𝑖)}

)
. (27)

Proof. We first want to show that:

↑↑(
⋃

𝑝∈↑↑
⋃
𝑖∈𝐼𝑆𝑖

{𝑓(𝑝)})
⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟

⋆

⊆ ↑↑
(⋃

𝑖∈𝐼
{𝑓(𝑠𝑖)}

)

⏟⎴⎴⎴⏟⎴⎴⎴⏟
⋄

. (28)

Take a
𝑞 ∈ ↑↑(

⋃
𝑝∈↑↑

⋃
𝑖∈𝐼𝑆𝑖

{𝑓(𝑝)}). (29)

If we have such a 𝑞, it means that there exists a

𝑞′ ∈
⋃

𝑝∈↑↑
⋃
𝑖∈𝐼𝑆𝑖

{𝑓(𝑝)} (30)

such that 𝑞′ ⪯𝐐 𝑞, and hence there is a 𝑝′ ∈ ↑↑
⋃

𝑖∈𝐼𝑆𝑖 such that 𝑞
′ =

𝑓(𝑝′). Consequently, there must exist an 𝑖′ ∈ 𝐼 such that 𝑠𝑖′ ⪯𝐏 𝑝′. The
monotonicity of 𝑓 implies:

𝑓(𝑠𝑖′) ⪯𝐏 𝑓(𝑝′) = 𝑞′ ⪯𝐐 𝑞. (31)

We know that 𝑠𝑖′ ∈ ⋄ and any 𝑞∗ ∈ 𝐐 satisfying 𝑓(𝑠𝑖′) ⪯𝐐 𝑞∗ belongs to ↑↑ ⋄.
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486 35. DP queries as functors
Therefore, ⋆ ⊆ ↑↑ ⋄, which proves the validity of (28).
We now want to show that:

↑↑(
⋃

𝑝∈↑↑
⋃
𝑖∈𝐼𝑆𝑖

{𝑓(𝑝)}) ⊇ ↑↑
(⋃

𝑖∈𝐼
{𝑓(𝑠𝑖)}

)
. (32)

By now taking a
𝑞 ∈ ↑↑

(⋃
𝑖∈𝐼
{𝑓(𝑠𝑖)}

)
, (33)

we know that there is an 𝑖′ ∈ 𝐼 such that 𝑓(𝑠𝑖′) ⪯𝐐 𝑞. Furthermore, we know
that 𝑓(𝑠𝑖′) ∈ ⋄. Therefore, any 𝑞∗ ⪯𝐐 𝑓(𝑠𝑖′)must be in ↑↑ ⋄, meaning that 𝑞
∈ ⋆, and proving the validity of (32).
The validity of (28) and (32) implies (27).

Remark 35.12. Given posets 𝐏,𝐐 and a monotone maps 𝑓∶ 𝐏→ 𝐐, we have:

↑↑(
⋃

𝑝′∈↑↑ {𝑝}
{𝑓(𝑝′)}) = ↑↑ {𝑓(𝑝)}. (34)

This follows from Lemma 35.11, by considering a family of singleton sets con-
sisting solely of the set {𝑝}.

Lemma 35.13. The cartesian product of upper sets is an upper set. The cartesian
product of lower sets is a lower set.

Proof. Consider two posets 𝐏,𝐐 and two respective upper sets 𝐀,𝐁. We
have

𝑎 ∈ 𝐀 𝑎 ⪯𝐏 𝑎′ ,
𝑎′ ∈ 𝐀 (35)

and
𝑏 ∈ 𝐁 𝑏 ⪯𝐐 𝑏′ .

𝑏′ ∈ 𝐁 (36)

Therefore:
⟨𝑎, 𝑏⟩ ∈ 𝐀 × 𝐁 ⟨𝑎, 𝑏⟩ ⪯𝐏×𝐐

⟨
𝑎′, 𝑏′

⟩
,⟨

𝑎′, 𝑏′
⟩
∈ 𝐀 × 𝐁 (37)

which proves that 𝐀× 𝐁 is an upper set. The proof for the product of lower
sets is analogous.

Lemma 35.14. ⟨ Pos𝑈 , ⊗⊗⊗, 𝟏⟩ from Lemma 35.10 equipped with the braiding

isomorphism 𝖻𝗋𝑋,𝑌 ∶ 𝑋 × 𝑌
≅
,→ 𝑌 × 𝑋, given by

𝖻𝗋⋆𝑋,𝑌 ∶ 𝑋 × 𝑌 → Pos 𝑈(𝑌 × 𝑋)
⟨𝑥, 𝑦⟩↦ ↑↑ {𝑦} × ↑↑ {𝑥},

(38)

defined for all 𝑋,𝑌 ∈ Ob Pos𝑈 , forms a symmetric monoidal category.

Proof. We first show that the braiding defines an isomorphism. In other
words, we want to show

(𝖻𝗋𝑋,𝑌 # 𝖻𝗋𝑌,𝑋)
⋆ = id𝑋×𝑌

⋆. (39)
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We have
(𝖻𝗋𝑋,𝑌 # 𝖻𝗋𝑌,𝑋)

⋆(𝑥, 𝑦)

=
⋃

⟨𝑥′, 𝑦′⟩∈𝖻𝗋𝑋,𝑌⋆(𝑥,𝑦)
𝖻𝗋𝑌,𝑋

⋆(𝑥′, 𝑦′)

=
⋃

⟨𝑦′, 𝑥′⟩∈↑↑ {𝑦}×↑↑ {𝑥}
↑↑ {𝑥′} × ↑↑ {𝑦′}

= ↑↑ {𝑥} × ↑↑ {𝑦}

= id𝑋×𝑌
⋆(𝑥, 𝑦).

(40)

Note that this comes from the fact that 𝖻𝗋 is an involution. We now show
naturality. Consider 𝑓∶ 𝑋 → 𝑌, 𝑔∶ 𝑍 → 𝑈. We have

(
(𝑓⊗⊗⊗ 𝑔) # 𝖻𝗋𝑌,𝑈

)⋆(𝑥, 𝑧)

=
⟨
𝑓⋆(𝑥), 𝑔⋆(𝑧)

⟩
# 𝖻𝗋𝑌,𝑈

=
⟨⋃

𝑧′∈𝑔⋆(𝑧)
↑↑ 𝑧′,

⋃
𝑥′∈𝑓⋆(𝑥)

↑↑𝑥′
⟩
.

(41)

On the other hand:
(
𝖻𝗋𝑈,𝑌 # (𝑓⊗⊗⊗ 𝑔)

)⋆(𝑥, 𝑧)

= ⟨↑↑ {𝑧}, ↑↑ {𝑥}⟩ # (𝑓⊗⊗⊗ 𝑔)⋆

=
⟨⋃

𝑧′∈↑↑ {𝑧}
𝑔⋆(𝑧′),

⋃
𝑥′∈↑↑ {𝑥}

𝑓⋆(𝑥′)
⟩
.

(42)

Clearly, from Lemma 35.11 and Remark 35.12 we know that (41) and (42) are
equivalent, proving naturality. We now just need to show hexagon identities.
First, we want to show that

(𝖻𝗋𝑋,𝑌 ⊗⊗⊗ id𝑍) # 𝖺𝗌𝑌,𝑋,𝑍 # (id𝑌 ⊗⊗⊗ 𝖻𝗋𝑋,𝑍) = 𝖺𝗌𝑋,𝑌,𝑍 # 𝖻𝗋𝑋,𝑌⊗⊗⊗𝑍 # 𝖺𝗌𝑌,𝑍,𝑋 (43)

To do so, we first look at the left-hand side of (43). We have

((𝖻𝗋𝑋,𝑌 ⊗⊗⊗ id𝑍) # 𝖺𝗌𝑌,𝑋,𝑍)
⋆(⟨𝑥, 𝑦⟩, 𝑧)

=
⋃

⟨⟨𝑦′, 𝑥′⟩, 𝑧′⟩∈(𝖻𝗋𝑋,𝑌⊗⊗⊗id𝑍)
⋆(⟨𝑥, 𝑦⟩,𝑧)

𝖺𝗌⋆𝑌,𝑋,𝑍(𝑦
′, 𝑥′, 𝑧′)

=
⋃

⟨⟨𝑦′, 𝑥′⟩, 𝑧′⟩∈(↑↑ {𝑦}×↑↑ {𝑥})×↑↑ {𝑧}
↑↑ {𝑦′} × (↑↑ {𝑥′} × ↑↑ {𝑧′})

= ↑↑ {𝑦} × (↑↑ {𝑥} × ↑↑ {𝑧}).

(44)

Furthermore, we have

((𝖻𝗋𝑋,𝑌 ⊗⊗⊗ id𝑍) # 𝖺𝗌𝑌,𝑋,𝑍 # (id𝑌 ⊗⊗⊗ 𝖻𝗋𝑋,𝑍))
⋆(⟨𝑥, 𝑦⟩, 𝑧)

=
⋃

⟨𝑦′, ⟨𝑥′, 𝑧′⟩⟩∈↑↑ {𝑦}×(↑↑ {𝑥}×↑↑ {𝑧})
(id𝑌 ⊗⊗⊗ 𝖻𝗋𝑋,𝑍)

⋆(𝑦′,
⟨
𝑥′, 𝑧′

⟩
)

=
⋃

⟨𝑦′, ⟨𝑥′, 𝑧′⟩⟩∈↑↑ {𝑦}×(↑↑ {𝑥}×↑↑ {𝑧})
↑↑ {𝑦′} × (↑↑ {𝑧′} × ↑↑ {𝑥′})

= ↑↑ {𝑦} × (↑↑ {𝑧} × ↑↑ {𝑥}).

(45)
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488 35. DP queries as functors
We now look at the right-hand side of (43). We have

𝖺𝗌𝑋,𝑌,𝑍 # 𝖻𝗋𝑋,𝑌⊗⊗⊗𝑍
⋆(⟨𝑥, 𝑦⟩, 𝑧)

=
⋃

⟨𝑥′, ⟨𝑦′, 𝑧′⟩⟩∈𝖺𝗌⋆𝑋,𝑌,𝑍(⟨𝑥, 𝑦⟩,𝑧)
𝖻𝗋⋆𝑋,𝑌⊗⊗⊗𝑍(𝑥′,

⟨
𝑦′, 𝑧′

⟩
)

=
⋃

⟨𝑥′, ⟨𝑦′, 𝑧′⟩⟩∈↑↑ {𝑥}×(↑↑ {𝑦}×↑↑ {𝑧})
(↑↑ {𝑦′} × ↑↑ {𝑧′}) × ↑↑ {𝑥′}

= (↑↑ {𝑦} × ↑↑ {𝑧}) × ↑↑ {𝑥}.

(46)

Furthermore, we have

(𝖺𝗌𝑋,𝑌,𝑍 # 𝖻𝗋𝑋,𝑌⊗⊗⊗𝑍 # 𝖺𝗌𝑌,𝑍,𝑋)
⋆(⟨𝑥, 𝑦⟩, 𝑧)

=
⋃

⟨⟨𝑦′, 𝑧′⟩, 𝑥′⟩∈(↑↑ {𝑦}×↑↑ {𝑧})×↑↑ {𝑥}
𝖺𝗌⋆𝑌,𝑍,𝑋(

⟨
𝑦′, 𝑧′

⟩
, 𝑥′)

=
⋃

⟨⟨𝑦′, 𝑧′⟩, 𝑥′⟩∈(↑↑ {𝑦}×↑↑ {𝑧})×↑↑ {𝑥}
↑↑ {𝑦′} × (↑↑ {𝑧′} × ↑↑ {𝑥′})

= ↑↑ {𝑦} × (↑↑ {𝑧} × ↑↑ {𝑥}).

(47)

Clearly, since (45) and (47) are equal, the first hexagon identity is checked.
The second hexagon identity can be checked analogously.

Definition 35.15 (Trace in Pos𝑈)
Given a morphism 𝑓∶ 𝑋 × 𝑍 → 𝑌 × 𝑍 in Pos𝑈 , its trace in is defined as a
morphism Tr𝑍𝑋,𝑌(𝑓)∶ 𝑋 → 𝑌, given by

Tr𝑍𝑋,𝑌(𝑓)
⋆
∶ 𝑋 → 𝑈𝑌

𝑥 ↦
{
𝑦 ∈ 𝑌 ∣

⋁
𝑧∈𝑍

⟨𝑦, 𝑧⟩ ∈ 𝑓⋆(𝑥, 𝑧)
}
.

(48)

Lemma 35.16. ⟨ Pos𝑈 , ⊗⊗⊗, 𝟏, 𝖻𝗋⟩ equipped with the trace operation defined in
Def. 35.15 is a traced monoidal category.

Proof. We have already checked that ⟨ Pos𝑈 , ⊗⊗⊗, 𝟏, 𝖻𝗋⟩ forms a symmetric
monoidal category. First, we check that the trace indeed returns a valid
morphism in Pos𝑈 . Given any 𝑋,𝑌, 𝑍 ∈ Ob Pos𝑈 and 𝑓∶ 𝑋 × 𝑍 → 𝑌 × 𝑍,
and any 𝑥 ⪯ 𝑥′ ∈ 𝑋, we need to prove that

Tr𝑍𝑋,𝑌(𝑓)(𝑥) ⪯ Pos𝑈 Tr𝑍𝑋,𝑌(𝑓)(𝑥′)

Tr𝑍𝑋,𝑌(𝑓)
⋆
(𝑥) ⊇ Tr𝑍𝑋,𝑌(𝑓)

⋆
(𝑥′) (49)

We know that 𝑓⋆ is a monotone map, meaning that

⟨𝑦, 𝑧⟩ ∈ 𝑓⋆(𝑥′, 𝑧)

⟨𝑦, 𝑧⟩ ∈ 𝑓⋆(𝑥, 𝑧) (50)

Therefore:
𝑦 ∈ Tr𝑍𝑋,𝑌(𝑓)

⋆
(𝑥′)

𝑦 ∈ Tr𝑍𝑋,𝑌
⋆
(𝑓)(𝑥) (51)

proving that Tr𝑍𝑋,𝑌(𝑓)
⋆
is a monotone function. Furthermore, due to the

You are reading a draft compiled on 2024-12-09 11:28:28Z



35.2. The Pos𝑈 and Pos𝐿 categories 489

monotonicity of 𝑓⋆, for any 𝑦 ⪯ 𝑦′ ∈ 𝑌, 𝑥 ∈ 𝑋, 𝑧 ∈ 𝑍, we have:

⟨𝑦, 𝑧⟩ ∈ 𝑓⋆(𝑥, 𝑧)
⟨
𝑦′, 𝑧

⟩
∈ 𝑓⋆(𝑥, 𝑧) (52)

proving that Tr𝑍𝑋,𝑌(𝑓)
⋆
(𝑥) is an upper set for all 𝑥 ∈ 𝑋. We now check the

trace axioms one by one.
Naturality I: Given any object 𝑋,𝑋′, 𝑌, 𝑍 ∈ Ob Pos𝑈 , a morphism 𝑓∶ 𝑋 ×
𝑍 → 𝑌 × 𝑍, and a morphism 𝑔∶ 𝑋′ → 𝑋, we have:

Tr𝑍𝑋′,𝑌((𝑔⊗⊗⊗ id𝑍) # 𝑓)
⋆
(𝑥′)

=
{
𝑦 ∈ 𝑌 ∣

⋁
𝑧∈𝑍

⟨𝑦, 𝑧⟩ ∈ ((𝑔⊗⊗⊗ id𝑍) # 𝑓)⋆(𝑥′, 𝑧)
}

= {𝑦 ∈ 𝑌 ∣
⋁

𝑧∈𝑍
⟨𝑦, 𝑧⟩ ∈

⋃
⟨𝑥, 𝑧′⟩∈𝑔⋆(𝑥′)×↑↑ {𝑧}

𝑓⋆(𝑥, 𝑧′)}

= {𝑦 ∈ 𝑌 ∣
⋁

𝑧∈𝑍
⟨𝑦, 𝑧⟩ ∈

⋃
𝑥∈𝑔⋆(𝑥′)

𝑓⋆(𝑥, 𝑧)}.

(53)

On the other hand, we have

(𝑔 # Tr𝑍𝑋,𝑍(𝑓))
⋆
(𝑥′) =

⋃
𝑥∈𝑔⋆(𝑥′)

Tr𝑍𝑋,𝑍(𝑓)
⋆
(𝑥)

=
⋃

𝑥∈𝑔⋆(𝑥′)

{
𝑦 ∈ 𝑌 ∣

⋁
𝑧∈𝑍

⟨𝑦, 𝑧⟩ ∈ 𝑓⋆(𝑥, 𝑧)
}

= {𝑦 ∈ 𝑌 ∣
⋁

𝑧∈𝑍
⟨𝑦, 𝑧⟩ ∈

⋃
𝑥∈𝑔⋆(𝑥′)

𝑓⋆(𝑥, 𝑧)}.

(54)

Clearly (53) and (54) are equivalent, proving the first naturality condition.
Naturality II: Given any 𝑋,𝑌, 𝑌′, 𝑍 ∈ Ob Pos𝑈 , 𝑓∶ 𝑋 × 𝑍 → 𝑌 × 𝑍, and
𝑔∶ 𝑌 → 𝑌′, we have:

Tr𝑍𝑋,𝑌′(𝑓 # (𝑔⊗⊗⊗ id𝑍))
⋆
(𝑥)

=
{
𝑦′ ∈ 𝑌′ ∣

⋁
𝑧∈𝑍

⟨
𝑦′, 𝑧

⟩
∈ (𝑓 # (𝑔⊗⊗⊗ id𝑍))

⋆(𝑥, 𝑧)
}

= {𝑦′ ∈ 𝑌′ ∣
⋁

𝑧∈𝑍

⟨
𝑦′, 𝑧

⟩
∈
⋃

⟨𝑦, 𝑧⟩∈𝑓⋆(𝑥,𝑧)
𝑔⋆(𝑦) × ↑↑ {𝑧}}

(55)

On the other hand

(Tr𝑍𝑋,𝑌(𝑓) # 𝑔)
⋆
(𝑥) =

⋃
𝑦∈{𝑦∈𝑌∣

⋁
𝑧∈𝑍⟨𝑦, 𝑧⟩∈𝑓

⋆(𝑥, 𝑧)}
𝑔⋆(𝑦) (56)

Vanishing: Given any 𝑋,𝑌 ∈ Ob Pos𝑈 and 𝑓∶ 𝑋 → 𝑌 in Pos𝑈 , we have

Tr𝟏𝑋,𝑌(𝑓)
⋆
(𝑥)

= {𝑦 ∈ 𝑌 ∣ ⟨𝑦, ∙⟩ ∈ (𝑓⊗⊗⊗ id𝟏)
⋆(𝑥, ∙)}

= 𝑓⋆(𝑥).

(57)

Furthermore, given any𝑋,𝑌, 𝑍,𝑈 ∈ Ob Pos𝑈 and𝑓∶ 𝑋×𝑍×𝑈 → 𝑌×𝑍×𝑈,
we have

Tr𝑍×𝑈𝑋,𝑌 (𝑓)
⋆
(𝑥)

= {𝑦 ∈ 𝑌 ∣
⋁

⟨𝑧, 𝑢⟩∈𝑍×𝑈
⟨𝑦, 𝑧, 𝑢⟩ ∈ 𝑓⋆(𝑥, 𝑧, 𝑢)}

(58)
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To check the second vanishing axiom, we also write:

Tr𝑈𝑋×𝑍,𝑌×𝑍(𝑓)
⋆
(𝑥, 𝑧)

=
{
⟨𝑦, 𝑧⟩ ∈ 𝑌 × 𝑍 ∣

⋁
𝑢∈𝑈

⟨𝑦, 𝑧, 𝑢⟩ ∈ 𝑓⋆(𝑥, 𝑧, 𝑢)
}
.

(59)

Therefore, we can write:
(
Tr𝑍𝑋,𝑌

(
Tr𝑈𝑋×𝑍,𝑌×𝑍(𝑓)

))⋆
(𝑥)

= {𝑦 ∈ 𝑌 ∣
⋁

𝑧∈𝑍
⟨𝑦, 𝑧⟩ ∈ Tr𝑈𝑋×𝑍,𝑌×𝑍(𝑓)

⋆
(𝑥, 𝑧)}

=
{
𝑦 ∈ 𝑌 ∣

⋁
𝑧∈𝑍

⟨𝑦, 𝑧⟩ ∈
{⟨
𝑦′, 𝑧′

⟩
∈ 𝑌 × 𝑍 ∣

⋁
𝑢∈𝑈

⟨
𝑦′, 𝑧′, 𝑈

⟩
∈ 𝑓⋆(𝑥, 𝑧′, 𝑢)

}}

=
{
𝑦 ∈ 𝑌 ∣

⋁
𝑧 ∈ 𝑍

(⋁
𝑢∈𝑈

⟨𝑦, 𝑧, 𝑢⟩ ∈ 𝑓⋆(𝑥, 𝑧, 𝑢)
)}

= {𝑦 ∈ 𝑌 ∣
⋁

⟨𝑧, 𝑢⟩∈𝑍×𝑈
⟨𝑦, 𝑧, 𝑢⟩ ∈ 𝑓⋆(𝑥, 𝑧, 𝑢)}.

(60)
Clearly, (58) and (60) are equivalent, proving the second vanishing axiom.
Superposing: Given any 𝑋,𝑌, 𝑍 ∈ Ob Pos𝑈 and 𝑓∶ 𝑋 × 𝑍 → 𝑌 × 𝑍, we
have:

Tr𝑍𝑈×𝑋,𝑈×𝑌(id𝑈 ⊗⊗⊗ 𝑓)
⋆
(𝑢, 𝑥)

=
{
⟨𝑢, 𝑦⟩ ∈ 𝑈 × 𝑌 ∣

⋁
𝑧∈𝑍

⟨𝑢, 𝑦, 𝑧⟩ ∈ (id𝑈 ⊗⊗⊗ 𝑓)⋆(𝑢, 𝑥, 𝑧)
}

=
{
⟨𝑢, 𝑦⟩ ∈ 𝑈 × 𝑌 ∣

⋁
𝑧∈𝑍

(𝑢 ∈ id𝑈
⋆(𝑢)) ∧ (⟨𝑦, 𝑧⟩ ∈ 𝑓⋆(𝑥, 𝑧))

}

=
{
⟨𝑢, 𝑦⟩ ∈ 𝑈 × 𝑌 ∣

⋁
𝑧∈𝑍

(𝑢 ∈ ↑↑ {𝑢}) ∧ (⟨𝑦, 𝑧⟩ ∈ 𝑓⋆(𝑥, 𝑧))
}

=
{
⟨𝑢, 𝑦⟩ ∈ ↑↑ {𝑢} × 𝑌 ∣

⋁
𝑧∈𝑍

⟨𝑦, 𝑧⟩ ∈ 𝑓⋆(𝑥, 𝑧)
}

= ↑↑ {𝑢} ×
{
𝑦 ∈ 𝑌 ∣

⋁
𝑧∈𝑍

⟨𝑦, 𝑧⟩ ∈ 𝑓⋆(𝑥, 𝑧)
}

(61)

On the other hand, we have:

(id𝑈 ⊗⊗⊗ Tr𝑍𝑋,𝑌(𝑓))
⋆
(𝑢, 𝑥) = ↑↑ {𝑢} ×

{
𝑦 ∈ 𝑌 ∣

⋁
𝑧∈𝑍

⟨𝑦, 𝑧⟩ ∈ 𝑓⋆(𝑥, 𝑧)
}
.
(62)

Clearly, (61) and (62) are equivalent, proving the superposing axiom.
Yanking: Consider 𝑋 ∈ Ob Pos𝑈 . We have

Tr𝑋𝑋,𝑋(𝖻𝗋𝑋,𝑋)
⋆
(𝑥)

= {𝑥′ ∈ 𝑋 ∣
⋁

𝑥′′∈𝑋

⟨
𝑥′, 𝑥′′

⟩
∈ 𝖻𝗋⋆𝑋,𝑋(𝑥, 𝑥′′)}

= {𝑥′ ∈ 𝑋 ∣
⋁

𝑥′′∈𝑋

⟨
𝑥′, 𝑥′′

⟩
∈ ↑↑ {𝑥′′} × ↑↑ {𝑥}}

= {𝑥′ ∈ 𝑋 ∣
⋁

𝑥′′∈𝑋
(𝑥′ ∈ ↑↑ {𝑥′′}) ∧ (𝑥′′ ∈ ↑↑ {𝑥})}

= {𝑥′ ∈ 𝑋 ∣ 𝑥′ ∈ ↑↑ {𝑥}}
= ↑↑ {𝑥}

= id⋆𝑋(𝑥),

(63)

proving the yanking axiom.
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Definition 35.17 (Order on morphisms in Pos𝑈)
Given any two morphisms 𝑓, 𝑔∶ 𝑋 → 𝑌 in Pos𝑈 , we define an order be-
tween them as

𝑓 ⪯ Pos𝑈 𝑔 .
𝑓⋆(𝑥) ⪯𝑈𝑌 𝑔⋆(𝑥), ∀𝑥 ∈ 𝑋 (64)

Definition 35.18 (Order on morphisms in Pos𝐿)
Given any twomorphisms𝑓, 𝑔∶ 𝑋 → 𝑌 in Pos𝐿,we define an orderbetween
them as

𝑓 ⪯ Pos𝐿 𝑔 .
𝑓⋆(𝑥) ⪯𝐿𝑌 𝑔⋆(𝑥), ∀𝑥 ∈ 𝑋 (65)

Definition 35.19 (Intersection of morphisms in Pos𝐿)
Given two morphisms 𝑓, 𝑔∶ 𝑋 → 𝑌 in Pos𝐿, their intersection (meet) is a
morphism 𝑓 ∧ 𝑔∶ 𝑋 → 𝑌, given by

(𝑓 ∧ 𝑔)⋆ ∶ 𝑋 → 𝐿𝑌

𝑥 ↦ 𝑓⋆(𝑥) ∩ 𝑔⋆(𝑥).
(66)

Definition 35.20 (Union of morphisms in Pos𝑈)
Given two morphisms 𝑓, 𝑔∶ 𝑋 → 𝑌 in Pos𝑈 , their union (join) is a mor-
phism 𝑓 ∨ 𝑔∶ 𝑋 → 𝑌, given by

(𝑓 ∨ 𝑔)⋆ ∶ 𝑋 → 𝑈𝑌

𝑥 ↦ 𝑓⋆(𝑥) ∪ 𝑔⋆(𝑥).
(67)

Definition 35.21 (Union of morphisms in Pos𝐿)
Given two morphisms 𝑓, 𝑔∶ 𝑋 → 𝑌 in Pos𝐿, their union (join) is a mor-
phism 𝑓 ∨ 𝑔∶ 𝑋 → 𝑌, given by

(𝑓 ∨ 𝑔)⋆ ∶ 𝑋 → 𝐿𝑌

𝑥 ↦ 𝑓⋆(𝑥) ∪ 𝑔⋆(𝑥).
(68)

Lemma 35.22. Given any 𝑋,𝑌 ∈ Ob Pos𝑈 , Hom Pos𝑈 (𝑋;𝑌) is a bounded lattice
with union ∨ of morphisms in Pos𝑈 as join, intersection ∧ of morphisms in
Pos𝑈 as meet, least upper bound ⊤Hom Pos𝑈 (𝑋;𝑌)

∶ 𝑋 → 𝑌 given by

⊤Hom Pos𝑈 (𝑋;𝑌)
⋆ ∶ 𝑋 → 𝑈𝑌

𝑥 ↦ ∅,
(69)

and greatest lower bound ⊥Hom Pos𝑈 (𝑋;𝑌)
∶ 𝑋 → 𝑌 given by

⊥Hom Pos𝑈 (𝑋;𝑌)
⋆ ∶ 𝑋 → 𝑈𝑌

𝑥 ↦ 𝑌.
(70)
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492 35. DP queries as functors

Proof. First, we need to prove that Hom Pos𝑈 (𝑋;𝑌) forms a poset. To prove
this, we check the following, using the order defined in Def. 35.17
⊳ Reflexivity: Given 𝑓 ∈ Hom Pos𝑈 (𝑋;𝑌), we can write

𝑓⋆(𝑥) ⊇ 𝑓⋆(𝑥), ∀𝑥 ∈ 𝑋, (71)

which implies 𝑓 ⪯ Pos𝑈 𝑓.
⊳ Antisymmetry: Consider

𝑓, 𝑔 ∈ Hom Pos𝑈 (𝑋;𝑌) (72)

with 𝑓 ⪯ Pos𝑈 𝑔 and 𝑔 ⪯ Pos𝑈 𝑓. We know

(𝑓 ⪯ Pos𝑈 𝑔) ⇒ 𝑓⋆(𝑥) ⊇ 𝑔⋆(𝑥), ∀𝑥 ∈ 𝑋, (73)

but also
(𝑔 ⪯ Pos𝑈 𝑓) ⇒ 𝑔⋆(𝑥) ⊇ 𝑓⋆(𝑥), ∀𝑥 ∈ 𝑋, (74)

implying 𝑓 = 𝑔.
⊳ Transitivity: Consider

𝑓, 𝑔, ℎ ∈ Hom Pos𝑈 (𝑋;𝑌) (75)

with 𝑓 ⪯ Pos𝑈 𝑔 and 𝑔 ⪯ Pos𝑈 ℎ. We have, for all 𝑥 ∈ 𝑋,

(𝑓⋆(𝑥) ⊇ 𝑔⋆(𝑥)) ∧ (𝑔⋆(𝑥) ⊇ ℎ⋆(𝑥)) ⇒ 𝑓⋆(𝑥) ⊇ ℎ⋆(𝑥)
⇒ 𝑓 ⪯ Pos𝑈 ℎ.

(76)

Consider now 𝑓, 𝑔 ∈ Hom Pos𝑈 (𝑋;𝑌). Their least upper bound (join) is 𝑓∧𝑔,
since it is the least morphism such that 𝑓 ⪯ Pos𝑈 (𝑓∧𝑔) and 𝑔 ⪯ Pos𝑈 (𝑓∧𝑔).
Their greatest lower bound (meet) is 𝑓 ∨ 𝑔, since it is the greatest morphism
such that (𝑓 ∨ 𝑔) ⪯ Pos𝑈 𝑓 and (𝑓 ∨ 𝑔) ⪯ Pos𝑈 𝑔. Furthermore, for any 𝑓 ∈
Hom Pos𝑈 (𝑋;𝑌), one will have, for all 𝑥 ∈ 𝑋

𝑓⋆(𝑥) ⊇ ∅ = ⊤Hom Pos𝑈 (𝑋;𝑌)
⋆(𝑥), (77)

implying that for all 𝑓 ∈ Hom Pos𝑈 (𝑋;𝑌) we have 𝑓 ⪯ Pos𝑈 ⊤Hom Pos𝑈 (𝑋;𝑌)
.

Finally, for any 𝑓 ∈ Hom Pos𝑈 (𝑋;𝑌), one will have, for all 𝑥 ∈ 𝑋

⊥Hom Pos𝑈 (𝑋;𝑌)
⋆(𝑥) = 𝑌 ⊇ 𝑓⋆(𝑥) (78)

implying that for all 𝑓 ∈ Hom Pos𝑈 (𝑋;𝑌) we have ⊥Hom Pos𝑈 (𝑋;𝑌)
⪯ Pos𝑈

𝑓.

Lemma 35.23. Given any 𝑋,𝑌 ∈ Ob Pos𝑈 , Hom Pos𝐿 (𝑋;𝑌) is a bounded lattice
with intersection ∧ of morphisms in Pos𝐿 as meet, union ∨ of morphisms in
Pos𝐿 as join, least upper bound ⊤Hom Pos𝐿 (𝑋;𝑌)

∶ 𝑋 → 𝑌 given by

⊤Hom Pos𝐿 (𝑋;𝑌)
⋆ ∶ 𝑋 → 𝐿𝑌

𝑥 ↦ 𝑌,
(79)
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and greatest lower bound ⊥Hom Pos𝑈 (𝑋;𝑌)
∶ 𝑋 → 𝑌 given by

⊥Hom Pos𝐿 (𝑋;𝑌)
⋆ ∶ 𝑋 → 𝐿𝑌

𝑥 ↦ ∅.
(80)

Proof. The proof is analogous to the one of Lemma 35.22. Note that meet-
s/joins and top/bottom are switched in meaning, because of the difference
in order between 𝑈𝑋 and 𝐿𝑋.
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494 35. DP queries as functors
35.3. DP queries are functors from problem

statements to solutions
Lemma 35.24. There is a functor

𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌∶ DP→ Pos𝑈 (81)

that maps:
1. An object (poset) in DP to the same object (poset) in Pos𝑈 .
2. A morphism 𝐞 ∈ Hom DP(𝐅;𝐑) to the morphism 𝐻𝐞 ∈ Hom Pos𝑈 (𝐅;𝐑),
where:

𝐻⋆
𝐞 ∶ 𝐅→ Pos 𝑈𝐑

𝑓 ↦ {𝑟 ∈ 𝐑 ∣ 𝐞(𝑓∗, 𝑟)}.
(82)

Proof. We prove the two conditions.
Preservation of identities: We have

𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(id DP𝑋 )
⋆
(𝑥) = {𝑦 ∈ 𝑌 ∣ id DP𝑋 (𝑥∗, 𝑦)}

= {𝑦 ∈ 𝑌 ∣ 𝑥 ⪯ 𝑦}
= ↑↑ {𝑥}

= id Pos𝑈𝑋
⋆
(𝑥).

(83)

Preservation of composition: On one hand, we have

𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(𝐝 # DP 𝐞)
⋆(𝑥)

= {𝑧 ∈ 𝑍 ∣ (𝐝 # 𝐞)(𝑥∗, 𝑧)}

= {𝑧 ∈ 𝑍 ∣
⋁

𝑦∈𝑌
𝐝(𝑥∗, 𝑦) ∧ 𝐞(𝑦∗, 𝑧)}.

(84)

On the other hand:

(𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(𝐝) # Pos𝑈 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(𝐞))
⋆(𝑥)

=
⋃

𝑦∈𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(𝐝)⋆(𝑥)
𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(𝐞)⋆(𝑦)

=
⋃

𝑦∈{𝑦∈𝑌∣𝐝(𝑥∗, 𝑦)}
{𝑧 ∈ 𝑍 ∣ 𝐞(𝑦∗, 𝑧)}

= {𝑧 ∈ 𝑍 ∣ (𝑦 ∈ 𝑌) ∧ 𝐝(𝑥∗, 𝑦) ∧ 𝐞(𝑦∗, 𝑧)}

= {𝑧 ∈ 𝑍 ∣
⋁

𝑦∈𝑌
𝐝(𝑥∗, 𝑦) ∧ 𝐞(𝑦∗, 𝑧)}.

(85)

Clearly, (84) and (85) coincide.

Lemma 35.25. There is a functor

𝖥𝗂𝗑𝖱𝖾𝗌𝖬𝖺𝗑𝖥𝗎𝗇∶ DP→ Pos𝐿 (86)

which maps:
1. An object (poset) of DP to the same object (poset) in Pos𝐿.
2. A morphism 𝐞 ∈ Hom DP(𝐅;𝐑) to the morphism 𝐾𝐞 ∈ Hom Pos𝐿 (𝐑;𝐅),
where:

𝐾⋆
𝐞 ∶ 𝐑→ Pos 𝐿𝐅

𝑟 ↦ {𝑓 ∈ 𝐅 ∣ 𝐞(𝑓∗, 𝑟)}.
(87)
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Proof. The proof is analogous to the one of Lemma 35.24.

Lemma 35.26. There is a functor 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌𝖡𝖺𝖼𝗄∶ Pos𝑈 → DP which
maps:
1. An object (poset) in Pos𝑈 to the same object (poset) in DP.
2. A morphism 𝑔 ∈ Hom Pos𝑈 (𝐅;𝐑) to the morphism 𝐝𝑔 ∈ Hom DP(𝐅;𝐑),
where:

𝐝𝑔 ∶ 𝐅op ×𝐑→ Pos Bool
⟨𝑓∗, 𝑟⟩↦ 𝑟 ∈ 𝑔⋆(𝑓).

(88)

Proof. We prove the two conditions.
Preservation of identities: We have

𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌𝖡𝖺𝖼𝗄(id Pos𝑈𝑋 )(𝑥∗, 𝑦)

= 𝑦 ∈ id Pos𝑈𝑌
⋆

= 𝑦 ∈ ↑↑ {𝑥}

= id DP𝑋 (𝑥∗, 𝑦).

(89)

Preservation of composition: On one hand, we have

𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌𝖡𝖺𝖼𝗄(𝑓 # Pos𝑈 𝑔)(𝑥
∗, 𝑧) = 𝑧 ∈ (𝑓 # Pos𝑈 𝑔)

⋆(𝑥)

= 𝑧 ∈
⋃

𝑦∈𝑓⋆(𝑥)
𝑔⋆(𝑦).

(90)

On the other hand:

(𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌𝖡𝖺𝖼𝗄(𝑓) # DP 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌𝖡𝖺𝖼𝗄(𝑔))(𝑥∗, 𝑧)

=
⋁

𝑦∈𝑌
(𝑦 ∈ 𝑓⋆(𝑥)) ∧ (𝑧 ∈ 𝑔⋆(𝑦))

= 𝑧 ∈
⋃

𝑦∈𝑓⋆(𝑥)
𝑔⋆(𝑦).

(91)

Clearly, (90) and (91) coincide.

Lemma 35.27. There is a functor 𝖥𝗂𝗑𝖱𝖾𝗌𝖬𝖺𝗑𝖥𝗎𝗇𝖡𝖺𝖼𝗄∶ Pos𝐿 → DP which
maps:
1. An object (poset) in Pos𝑈 to the same object (poset) in DP.
2. Amorphism 𝑔 ∈ Hom Pos𝐿 (𝐅;𝐑) to themorphism 𝐝𝑔 ∈ Hom DP(𝐅;𝐑), where:

𝐝𝑔 ∶ 𝐅op ×𝐑→ Pos Bool
⟨𝑓∗, 𝑟⟩↦ 𝑓 ∈ 𝑔⋆(𝑟).

(92)

Proof. The proof is analogous to the one of Lemma 35.26.

Lemma 35.28. The pair of functors 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌 and 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌𝖡𝖺𝖼𝗄 to-
gether with the natural isomorphisms

𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌 # 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌𝖡𝖺𝖼𝗄 ≅ id DP, (93)

and
𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌𝖡𝖺𝖼𝗄 # 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌 ≅ id Pos𝑈 , (94)

form an equivalence for DP and Pos𝑈 .
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Figure 2.: From DP to Pos𝑈 and Pos𝐿 , and back.

Pos𝑈

DP

Pos𝐿

↙

𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌𝖡𝖺𝖼𝗄

𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌

𝖥𝗂𝗑𝖱𝖾𝗌𝖬𝖺𝗑𝖥𝗎𝗇

↗

𝖥𝗂𝗑𝖱𝖾𝗌𝖬𝖺𝗑𝖥𝗎𝗇𝖡𝖺𝖼𝗄

Proof. First, consider any morphism in Hom DP(𝑋;𝑌). We have

(𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌 # 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌𝖡𝖺𝖼𝗄)(𝐝)(𝑥∗, 𝑦)

= 𝑦 ∈ 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(𝐝)⋆(𝑥)
= 𝑦 ∈ {𝑦′ ∈ 𝑌 ∣ 𝐝(𝑥∗, 𝑦)}
= 𝐝(𝑥∗, 𝑦)
= id DP(𝐝)(𝑥∗, 𝑦).

(95)

Now consider any morphism𝐻𝐝 ∈ Hom Pos𝑈 (𝑋;𝑌). We have

(𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌𝖡𝖺𝖼𝗄 # 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌)(𝐻𝐝)(𝑥)
= {𝑦 ∈ 𝑌 ∣ 𝑦 ∈ 𝐻𝐝

⋆(𝑥)}
= {𝑦 ∈ 𝑌 ∣ 𝐝(𝑥∗, 𝑦)}
= id Pos𝑈 (𝐻𝐝)(𝑥).

(96)

Lemma 35.29. 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌 preserves the bounded lattice structure.

Proof. Given 𝑋,𝑌 ∈ Ob DP and 𝐝, 𝐞 ∈ Hom DP(𝑋;𝑌), we want to check the
following properties.
Order reversing: We want to check

𝐝 ⪯ DP 𝐞 .
𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(𝐝) ⪰ Pos𝑈 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(𝐞) (97)

We have:
𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(𝐝)⋆(𝑥) = {𝑦 ∈ 𝑌 ∣ 𝐝(𝑥∗, 𝑦)}

⊆ {𝑦 ∈ 𝑌 ∣ 𝐞(𝑥∗, 𝑦)}

= 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(𝐞)⋆(𝑥),
(98)

implying 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(𝐝) ⪰ Pos𝑈 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(𝐞).
Meet and join preservation: We want to check

𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(𝐝 ∧ 𝐞) = 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(𝐝) ∧ Pos𝑈 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(𝐞), (99)
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and

𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(𝐝 ∨ 𝐞) = 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(𝐝) ∨ Pos𝑈 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(𝐞). (100)

We have

𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(𝐝 ∧ 𝐞)⋆(𝑥)
= {𝑦 ∈ 𝑌 ∣ (𝐝 ∧ 𝐞)(𝑥∗, 𝑦)}
= {𝑦 ∈ 𝑌 ∣ (𝐝(𝑥∗, 𝑦) ∧ DP 𝐞(𝑥∗, 𝑦))}
= {𝑦 ∈ 𝑌 ∣ 𝐝(𝑥∗, 𝑦)} ∩ {𝑦 ∈ 𝑌 ∣ 𝐞(𝑥∗, 𝑦)}

= 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(𝐝)⋆(𝑥) ∧ Pos𝑈 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(𝐞)
⋆(𝑥).

(101)

Similarly:

𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(𝐝 ∨ DP𝐞)⋆(𝑥)
= {𝑦 ∈ 𝑌 ∣ (𝐝 ∨ 𝐞)(𝑥∗, 𝑦)}
= {𝑦 ∈ 𝑌 ∣ (𝐝(𝑥∗, 𝑦) ∨ DP 𝐞(𝑥∗, 𝑦))}
= {𝑦 ∈ 𝑌 ∣ 𝐝(𝑥∗, 𝑦)} ∪ {𝑦 ∈ 𝑌 ∣ 𝐞(𝑥∗, 𝑦)}

= 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(𝐝)⋆(𝑥) ∨ Pos𝑈 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(𝐞)
⋆(𝑥).

(102)

Top and bottom preservation: We want to check

𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(⊥Hom DP(𝑋;𝑌)) = ⊥Hom Pos𝑈 (𝑋;𝑌)
, (103)

and
𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(⊤Hom DP(𝑋;𝑌)) = ⊤Hom Pos𝑈 (𝑋;𝑌)

. (104)

We have

𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(⊥Hom DP(𝑋;𝑌))
⋆(𝑥) = ∅

= ⊥Hom Pos𝑈 (𝑋;𝑌)
⋆(𝑥)

(105)

Similarly

𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(⊤Hom DP(𝑋;𝑌))
⋆(𝑥) = 𝑌

= ⊤Hom Pos𝑈 (𝑋;𝑌)
⋆(𝑥).

(106)

Lemma 35.30. 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌 preserves traces. In other words:

Proof. We want to show that

𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(Tr𝑍𝑋,𝑌(𝐝)) = Tr𝑍𝑋,𝑌(𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(𝐝)), (107)

for all 𝐝 ∈ Hom DP(𝑋 × 𝑍;𝑌 × 𝑍), and 𝑋,𝑌, 𝑍 ∈ Ob DP. On one hand, we
have

𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(Tr𝑍𝑋,𝑌(𝐝))
⋆
(𝑥) = {𝑦 ∈ 𝑌 ∣ Tr𝑍𝑋,𝑌(𝐝)(𝑥∗, 𝑦)}

= {𝑦 ∈ 𝑌 ∣
⋁

𝑧∈𝑍
𝐝(⟨𝑥, 𝑧⟩∗, ⟨𝑦, 𝑧⟩)} (108)
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On the other hand, we have

Tr𝑍𝑋,𝑌(𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(𝐝))
⋆
(𝑥)

= {𝑦 ∈ 𝑌 ∣
⋁

𝑧∈𝑍
⟨𝑦, 𝑧⟩ ∈ 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌(𝐝)⋆(𝑥, 𝑧)}

= {𝑦 ∈ 𝑌 ∣
⋁

𝑧∈𝑍
⟨𝑦, 𝑧⟩ ∈ {⟨𝑦, 𝑧⟩ ∈ 𝑌 × 𝑍 ∣ 𝐝(⟨𝑥, 𝑧⟩∗, ⟨𝑦, 𝑧⟩}}

= {𝑦 ∈ 𝑌 ∣
⋁

𝑧∈𝑍
𝐝(⟨𝑥, 𝑧⟩∗, ⟨𝑦, 𝑧⟩)}.

(109)
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In this chapter we discuss the solution of finite design problem. A
finite co-design problem is one inwhich the upper set of the solutions
can be described as the upper closure of a finite antichain. Therefore,
the solution can be represented with finite memory.

Yodel is a singing technique which features repeated and abrupt changes of pitch between low-pitch chest-voice and high-pitch falsetto. It became opular in
the 1830s as entertainment in Switzerland, Austria, and sourthern Germany.



500 36. Solving finite co-design problems

36.1. Domain theory and fixed points
In this section we recall some fundamentals of domain theory. It is used in
computer science for defining denotational semantics (see e.g., [19]). It is used
in embedded systems for defining the semantics of models of computation (see,
e.g., [14]). What we need from domain theory is the least necessary to define
least fixed points and to use Kleene’s theorem.
Domain theory builds on order theory by defining “directed” and “complete”
partial orders. These attributes play the same role as compactness in analysis:
they will be used to make sure that certain sequences can converge to a fixed
point.

Directed and complete partial orders

Definition 36.1 (Directed set)
In a poset 𝐏 = ⟨𝐏, ⪯𝐏⟩, we say that a set 𝐒 ⊆ 𝐏 is directed if each pair of
elements in 𝐒 has an upper bound: for all 𝑥, 𝑦 ∈ 𝐒, there exists 𝑧 ∈ 𝐒 such
that 𝑥 ⪯ 𝑧 and 𝑦 ⪯ 𝑧.

Definition 36.2 (Completeness)
A poset is a directed complete partial order (DCPO) if each of its directed
subsets has a supremum (least of upper bounds). It is a complete partial
order (CPO) if it also has a bottom.

Example 36.3 (Completion of ℝ≥0 to ℝ≥0). The poset ⟨ℝ, ≤⟩ is not a CPO,
because it lacks a bottom.
The non-negative reals ℝ≥0 = {𝑥 ∈ ℝ∶ 𝑥 ≥ 0} have a bottom ⊥ = 0, however,
they are not a DCPO because some of their directed subsets do not have an upper
bound. For example, take ℝ≥0, which is a subset of ℝ≥0. Then ℝ≥0 is directed,
because for each 𝑎, 𝑏 ∈ ℝ≥0, there exists 𝑐 = max {𝑎, 𝑏} ∈ ℝ≥0 for which 𝑎 ≤ 𝑐
and 𝑏 ≤ 𝑐.
One way to make ⟨ℝ≥0, ≤⟩ a CPO is by adding an artificial top element ⊤ that
we think as “a point at infinitely”. We can define then the completion

ℝ≥0 ∶= ℝ≥0 ∪ {⊤}, (1)

and extending the partial order ≤ so that 𝑎 ≤ ⊤ for all 𝑎 ∈ ℝ≥0.

Example 36.4. Any lattice is a DCPO.

Example 36.5. For any poset 𝐏, 𝑈𝐏 is a CPO, because it is a bounded lattice.

Scott continuity
Scott continuity is a property of maps on DCPOs that is slightly stronger than
monotonicity.

Definition 36.6 (Scott continuity)
Amap𝑓∶ 𝐏→ Pos 𝐐 betweenDCPOs is Scott continuous iff for each directed
subset 𝐒 ⊆ 𝐏, the image 𝑓(𝐒) is directed, and

𝑓(𝖲𝗎𝗉 𝐒) = 𝖲𝗎𝗉𝑓(𝐒). (2)

Lemma 36.7. Scott continuity implies monotonicity.
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Figure 1.: The ceiling function is Scott continuous.

Gioele Andrea

Emilio

Alessandro Jonathan

Figure 2.: Party invite relation.

Proof. Consider a map 𝑓∶ 𝐏 → Pos 𝐐 that is Scott continuous. Take two
elements 𝑥, 𝑦 ∈ 𝐏 such that 𝑥 ⪯ 𝑦. The set 𝐒 = {𝑥, 𝑦} is directed. From (2),
we know that

𝑓(𝖲𝗎𝗉 𝐒) = 𝑓(𝑦) = 𝖲𝗎𝗉 {𝑓(𝑥), 𝑓(𝑦)}, (3)

which implies that 𝑓(𝑥) ⪯ 𝑓(𝑦). Therefore, 𝑓 is monotone.

Remark 36.8. Scott continuity is not the same as the notion of continuity as
used in analysis you might be familiar with. A map from the CPO ⟨ℝ≥0, ≤⟩ to
itself is Scott continuous iff it is nondecreasing and left-continuous. For example,
the ceiling function 𝑥 ↦ ⌈𝑥⌉ is not continuous in the usual sense, but it is Scott
continuous (Fig. 1).
However, the name “continuity” for this property is aptly chosen. In analysis, a
function is continuous if it preserves limits, in the sense that

lim
𝑛→∞

𝑓(𝑎𝑛) = 𝑓( lim
𝑛→∞

𝑎𝑛), (4)

which is, in spirit, the same as (2).

Least fixed points

Definition 36.9 (Fixed points)
A fixed point of 𝑓∶ 𝐏→ Pos 𝐏 is a point 𝑥 such that 𝑓(𝑥) = 𝑥.

Definition 36.10 (Least fixed points)
A least fixed point of 𝑓∶ 𝐏→ Pos 𝐏 is the minimum (if it exists) of the set of
fixed points of 𝑓:

lfp(𝑓) ∶= min
⪯

{𝑥 ∈ 𝐏∶ 𝑓(𝑥) = 𝑥}. (5)

In general, a function need not have a fixed point. It also might have multiple
fixed points; and also it that case there are might not be a least fixed point.
However, the conditions for a least fixed point to exist are quite weak. Mono-
tonicity of the map 𝑓 plus completeness is sufficient to ensure existence.

Lemma 36.11. If 𝐏 is a CPO and 𝑓∶ 𝐏→ Pos 𝐏 is monotone, then lfp(𝑓) exists
and is unique.

This is given as CPO Fixpoint Theorem II, 8.22 in [3].
With the additional assumption of Scott continuity, Kleene’s algorithm is a
systematic procedure to find the least fixed point.

Lemma36.12 (Kleene’s fixed-point theorem). Assume𝐏 is aCPO, and𝑓∶ 𝐏→ Pos
𝐏 is Scott continuous. Then the least fixed point of 𝑓 is the supremum of the
Kleene ascent chain

⊥ ⪯ 𝑓(⊥) ⪯ 𝑓(𝑓(⊥)) ⪯⋯ ⪯ 𝑓(𝑛)(⊥) ≤⋯ . (6)

This is given as CPO fixpoint theorem I, 8.15 in [3].

Example: party invite
Consider again the party scenario of Example 4.29. Consider the case where a
subset 𝐒 ⊆ 𝐀 of people decide to throw a party. They then proceed to call all their
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friends, who accept, and, if they were not invited already, enthusiastically call
their friends to extend the invite. We want to find out what is the final group of
people that will show up at the party. We call this map 𝜙∶ 𝖯𝗈𝗐𝐀→ 𝖯𝗈𝗐𝐀, so
that if 𝐒 is the initial group, 𝜙(𝐒) is the complete set of invites.
Note that this is related to the transitive closure operation, but we are only
interested in the transitive closure from a certain initial set 𝐒.
For example, consider the case in which the relation is as in Fig. 2. In this case,
we would have

𝜙(∅) = ∅, (7)

which means that, if nobody starts a party, no party takes place. Jonathan does
not invite anybody, so we would have

𝜙({Jonathan}) = {Jonathan} (8)

If Gioele and Alessandro start the party, everybody will get invited:

𝜙({Alessandro, Gioele}) = everybody. (9)

We can show that
1. The function 𝜙 can be computed as a fixed point.
2. The recursive invite strategy corresponds to Kleene’s iteration.
We summarize the properties that we want the function 𝜙 to have. Given an
initial subset 𝐒, we would like to find the set of people 𝐓 = 𝜙(𝐒) such that:
1. 𝐓 contains the initial set 𝐒:

𝐒 ⊆ 𝐓 (10)

2. 𝐓 is closed with respect to a certain invite relation 𝑅∶ 𝐀→ 𝐀. If 𝑥𝑅𝑦, then 𝑥
invites 𝑦 to the party. Define the function

𝑚∶ 𝖯𝗈𝗐𝐀 → 𝖯𝗈𝗐𝐀,

𝐓 ↦ 𝐓 ∪
⋃

𝑥∈𝐓
{𝑦 ∈ 𝐀∶ 𝑥𝑅𝑦}. (11)

This represents one iteration of the invite process: given a set 𝐓, we add to 𝐓
all invitees of each of the elements of 𝐓.
We are looking for a set 𝐓 such that it is a fixed point of the invite function:

𝐓 = 𝑚(𝐓). (12)

3. 𝜙(𝐒) is the smallest among all such sets that satisfy the two conditions above.
Let 𝐏 be the upper principal set of 𝐒: given (10), we know that we want sets that
contain at least 𝐒:

𝐏 = ↑↑ 𝐒 = {𝐓 ∈ 𝖯𝗈𝗐𝐀∶ 𝐒 ⊆ 𝐓}. (13)

The poset 𝐏 is a sublattice of 𝖯𝗈𝗐𝐀. Note also that the bottom of 𝐏 is 𝐒.
In summary, we are looking for the smallest point of 𝐏 that is closed to𝑚:

𝜙(𝐒) = min
⊆

{𝐓 ∈ 𝐏∶ 𝐓 = 𝑚(𝐓)} (14)

Comparing this with (5), we see that 𝜙(𝐒) is the least fixed point of𝑚:

𝜙(𝐒) = lfp(𝑚). (15)
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Take Kleene’s iteration in (6):

⊥ ⪯ 𝑓(⊥) ⪯ 𝑓(𝑓(⊥)) ⪯⋯ ⪯ 𝑓(𝑛)(⊥) ≤⋯ . (16)

Because the bottom of 𝐏 = ↑↑ 𝐒 is 𝐒, we can rewrite it as:

𝐒 ⊆ 𝑚(𝐒) ⊆ 𝑚(𝑚(𝐒)) ⊆ 𝑚(𝑚(𝑚(𝐒))) … . (17)

Each element of the sequence corresponds to one iteration of the invite algo-
rithm.
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36.2. Finite co-design problems
If we want a computable algorithm for solving co-design queries, it is necessary
that the solution can be finitely representable. One way to do this is to zero-in
on those design problems that are guaranteed, by construction, to have a finite
solution. This is what we do in this section. In the next chapters, we will see how
we can construct bounded finite solutions to non-finitely-representable DPs.
In the 𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌 queries, the solution lives in an upper set of resources. We
now look at upper sets that can be represented as the upper closure of a finite
antichains.

Definition 36.13 (Finitely-supported upper sets)
Given a poset 𝐏, we call an upper set 𝐒 ∈ 𝑈𝐏 finitely supported if it can be
written as the upper closure of a finite antichain:

𝐒 = (↑↑𝛼), for 𝛼 ∈ 𝖠𝗇𝗍𝗂𝐏, 𝖼𝖺𝗋𝖽(𝛼) <∞. (18)

We call 𝑈f𝐏 the set of finitely-supported upper sets of a poset 𝐏.
We call 𝖠𝗇𝗍𝗂f 𝐏 the set of finite antichains.

Definition 36.14 (Finite design problems)
We call a design problem finite if, in its representation𝐻∶ 𝐅→ 𝑈𝐑, ℎ(𝑓)
∈ 𝑈f𝐑 for all 𝑓 ∈ 𝐅.

We show that finite co-design problems form a subcategory of DP that is also
monoidal and locally posetal. (Note that we are leaving out “traced” for now.) To
show this, we just need to check that all the ways to compose finite DPs result
in finite DPs. The formulas that we derive work also describe an algorithm to
compute the solution to the queries.

Definition 36.15 (Category of finite design problems Pos𝑈f
)

The category of finite design problems Pos𝑈f
consists of the following con-

stituents:
1. Objects: The objects are posets.
2. Morphisms: The morphisms are finite design problems (Def. 36.14).
3. Identity morphism: The identity morphism id𝐏 ∶ 𝐏 ,↦ 𝐏 is as in DP.
4. Composition operation: Given morphisms 𝐝∶ 𝐏 ,↦ 𝐐 and 𝐞∶ 𝐐 ,↦ 𝐑,

their composition 𝐝 # 𝐞∶ 𝐏 ,↦ 𝐑 is as in DP.
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eval
R

Figure 3.

36.3. Handling loops
We are close to having a complete solution. The only part that is missing is dealing
with loops (trace).
First, we will work with a particular form of loops, called “the Conway form”,
shown in Fig. 3. This corresponds to working with design problems of the type

𝐝∶ 𝐀 × 𝐁 ,↦ 𝐁, (19)

The new feedback operator has signature

𝗅𝗈𝗈𝗉∶ (𝐀 × 𝐁 ,↦ 𝐁)→ (𝐀 ,↦ 𝐁) (20)

We can do this without loss of generality, because we can re-write the trace
with this new operator. We leave Fig. 4 as a graphical proof that this is possible.
Hagesawa [10] discusses the equivalence in detail.

(a) (b)

Figure 4.:We can rewrite the trace in Conway’s form.

The following theorem establishes a closed form for ℎ𝗅𝗈𝗈𝗉(𝐝) as a least fixed point.
Here on we consider 𝖠𝗇𝗍𝗂f 𝐑 as a poset with the order given by

𝛼1 ⪯𝖠𝗇𝗍𝗂f 𝐑 𝛼2
.

↑↑𝛼1 ⪯𝑈f𝐑 ↑↑𝛼2 (21)

Theorem 36.16. For any DP 𝐝 of the right shape, we can compute ℎ𝗅𝗈𝗈𝗉(𝐝) as
follows:

ℎ𝗅𝗈𝗈𝗉(𝐝) ∶ 𝑓1 ↦ ↑↑ lfp(Φ𝑓1), (22)

that is, as the least fixed point of a map Φ𝑓1 defined as

Φ𝑓1 ∶ 𝖠𝗇𝗍𝗂f 𝐑 → 𝖠𝗇𝗍𝗂f 𝐑, (23)

𝛼 ↦ Min
⪯𝐑

⋃
𝑟∈𝛼

ℎ𝐝(𝑓1, 𝑟) ∩ ↑↑ 𝑟.

Proof. The diagram in Fig. 3 implies that the map ℎ𝗅𝗈𝗈𝗉(𝐝) can be described
as:

ℎ𝗅𝗈𝗈𝗉(𝐝) ∶ 𝐅1 → 𝖠𝗇𝗍𝗂f 𝐑, (24)

𝑓1 ↦

⎧
⎪
⎨
⎪
⎩

using 𝑟, 𝑓2 ∈ 𝐑,
Min⪯𝐑 𝑟,
s.t. 𝑟 ∈ ℎ𝐝(𝑓1, 𝑓2),

𝑟 ⪯𝐑 𝑓2.

(25)

Denote by ℎ𝑓1 the map ℎ𝐝 with the first element fixed:

ℎ𝑓1 ∶ 𝑓2 ↦ ℎ𝐝(𝑓1, 𝑓2). (26)
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Rewrite 𝑟 ∈ ℎ𝐝(𝑓1, 𝑓2) in (24) as

𝑟 ∈ ℎ𝑓1(𝑓2). (27)

Let 𝑟 be a feasible solution, but not necessarily minimal. Lemma 36.17
implies that the constraint (27) can be rewritten as

{𝑟} = ℎ𝑓1(𝑓2) ∩ ↑↑ 𝑟. (28)

Because 𝑓2 ⪰ 𝑟, and ℎ𝑓1 is Scott continuous, it follows that ℎ𝑓1(𝑓2) ⪰𝖠𝗇𝗍𝗂f 𝐑
ℎ𝑓1(𝑟). Therefore, by Lemma 36.18, we have

{𝑟} ⪰𝖠𝗇𝗍𝗂f 𝐑 ℎ𝑓1(𝑟) ∩ ↑↑ 𝑟. (29)

This is a recursive condition that all feasible 𝑟 must satisfy.
Let 𝛼 ∈ 𝖠𝗇𝗍𝗂f 𝐑 be an antichain of feasible resources, and let 𝑟 be a generic
element of𝐑. Tautologically, rewrite 𝛼 as the minimal elements of the union
of the singletons containing its elements:

𝛼 = Min
⪯𝐑

⋃
𝑟∈𝛼

{𝑟}. (30)

Substituting (29) in (30) we obtain (cf Lemma 36.19)

𝛼 ⪰𝖠𝗇𝗍𝗂f 𝐑 Min
⪯𝐑

⋃
𝑟∈𝛼

ℎ𝑓1(𝑟) ∩ ↑↑ 𝑟. (31)

Converse: It is also true that if an antichain 𝛼 satisfies (31) then all 𝑟 ∈ 𝛼 are
feasible. The constraint (31) means that for any 𝑟0 ∈ 𝛼 on the left side, we
can find a 𝑟1 on the right side so that 𝑟0 ⪰𝐑 𝑟1. The point 𝑟1 needs to belong
to one of the sets of which we take the union; say that it comes from 𝑟2 ∈ 𝛼,
so that 𝑟1 ∈ ℎ𝑓1(𝑟2) ∩ ↑↑ 𝑟2. Summarizing:

∀𝑟0 ∈ 𝛼∶ ∃𝑟1 ∶ (𝑟0 ⪰𝐑 𝑟1) ∧ (∃𝑟2 ∈ 𝛼∶ 𝑟1 ∈ ℎ𝑓1(𝑟2) ∩ ↑↑ 𝑟2). (32)

Because 𝑟1 ∈ ℎ𝑓1(𝑟2) ∩ ↑↑ 𝑟2, we can conclude that 𝑟1 ∈ ↑↑ 𝑟2, and there-
fore 𝑟1 ⪰𝐑 𝑟2, which together with 𝑟0 ⪰𝐑 𝑟1, implies 𝑟0 ⪰𝐑 𝑟2. We have con-
cluded that there exist two points 𝑟0, 𝑟2 in the antichain 𝛼 such that 𝑟0 ⪰𝐑 𝑟2;
therefore, they are the same point: 𝑟0 = 𝑟2. Because 𝑟0 ⪰𝐑 𝑟1 ⪰𝐑 𝑟2, we also
conclude that 𝑟1 is the same point as well. We can rewrite (32) by using 𝑟0
in place of 𝑟1 and 𝑟2 to obtain ∀𝑟0 ∈ 𝛼∶ 𝑟0 ∈ ℎ𝑓1(𝑟0), which means that 𝑟0
is a feasible resource.
We have concluded that all antichains of feasible resources 𝛼 satisfy (31),
and conversely, if an antichain 𝛼 satisfies (31), then it is an antichain of
feasible resources.
Equation (31) is a recursive constraint for 𝛼, of the kind

Φ𝑓1(𝛼) ⪯𝖠𝗇𝗍𝗂f 𝐑 𝛼, (33)

with the map Φ𝑓1 defined by

Φ𝑓1 ∶ 𝖠𝗇𝗍𝗂f 𝐑 → 𝖠𝗇𝗍𝗂f 𝐑, (34)

𝛼 ↦ Min
⪯𝐑

⋃
𝑟∈𝛼

ℎ𝑓1(𝑟) ∩ ↑↑ 𝑟.
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If we want theminimal resources, we are looking for the least antichain:

min
⪯𝖠𝗇𝗍𝗂f 𝐑

{𝛼 ∈ 𝖠𝗇𝗍𝗂f 𝐑∶ Φ𝑓1(𝛼) ⪯𝖠𝗇𝗍𝗂f 𝐑 𝛼 }, (35)

which is equal to the least fixed point of Φ𝑓1 . Therefore, the map ℎ𝗅𝗈𝗈𝗉(𝐝) can
be written as

ℎ𝗅𝗈𝗈𝗉(𝐝) ∶ 𝑓1 ↦ lfp(Φ𝑓1). (36)

Lemma 36.20 shows that lfp(Φ𝑓1) is Scott continuous in 𝑓1.

Lemma 36.17. Let 𝐒 be an antichain in 𝐏. Then

𝑥 ∈ 𝐒
.

{𝑥} = 𝐒 ∩ ↑↑𝑥 (37)

Lemma 36.18. For 𝐒,𝐓 ∈ 𝖠𝗇𝗍𝗂f 𝐏, and 𝐀 ⊆ 𝐁, 𝐒 ⪯𝖠𝗇𝗍𝗂f 𝐑 𝐓 implies 𝐒 ∩𝐀 ⪯𝖠𝗇𝗍𝗂f 𝐑
𝐓 ∩𝐀.

Lemma 36.19. For 𝐒,𝐓,𝐔,𝐕 ∈ 𝖠𝗇𝗍𝗂f 𝐏, 𝐒 ⪯𝖠𝗇𝗍𝗂f 𝐑 𝐔 and𝐓 ⪯𝖠𝗇𝗍𝗂f 𝐑 𝐕 implies 𝐒∪
𝐓 ⪯𝖠𝗇𝗍𝗂f 𝐑 𝐔 ∪𝐕.

Lemma 36.20. Let 𝑓∶ 𝐏 × 𝐐 → Pos 𝐐 be Scott continuous. For each 𝑥 ∈ 𝐏,
define the map

𝑓𝑥 ∶ 𝑦 ↦ 𝑓(𝑥, 𝑦) (38)

Then the map
𝑓† ∶ 𝑥 ↦ lfp(𝑓𝑥) (39)

is Scott continuous.

Proof. Davey and Priestly [3] leave this as Exercise 8.26. A proof is found in
Gierz et al. [6, Exercise II-2.29].
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𝗅𝗈𝗈𝗉

𝗌𝖾𝗋𝗂𝖾𝗌

𝗌𝖾𝗋𝗂𝖾𝗌 𝐝1

𝐝3 𝗉𝖺𝗋

𝐝2 𝐝2

Figure 6.

36.4. Example: Optimizing over the natural
numbers

This is a simple example that can show two interesting properties of CDPIs:
1. the ability to work with discrete posets; and
2. the ability to treat multi-objective optimization problems.
Consider the family of optimization problems indexed by 𝑐 ∈ ℕ:

{
Min⪯ℕ×ℕ ⟨𝑥, 𝑦⟩,
s.t. 𝑥 + 𝑦 ≥ ⌈

√
𝑥 ⌉ + ⌈

√
𝑦 ⌉ + 𝑐.

(40)

One can show that this optimization problem is a CDP by producing a co-design
diagram with an equivalent semantics, such as the one in Fig. 5.

Figure 5.: Co-design diagram equivalent to (40)

The diagram contains three primitive DPIs: 𝐝1, 𝐝2 (used twice), and 𝐝3. Their ℎ
maps are:

ℎ1 ∶ ℕ × ℕ × ℕ → 𝖠𝗇𝗍𝗂f ℕ,
⟨𝑓1, 𝑓2, 𝑓3⟩ ↦ {𝑓1 + 𝑓2 + 𝑓3},

ℎ2 ∶ ℕ → 𝖠𝗇𝗍𝗂f ℕ,
𝑓 ↦ {⌈

√
𝑓 ⌉},

ℎ3 ∶ ℕ → 𝖠𝗇𝗍𝗂f (ℕ × ℕ),
𝑓 ↦ {⟨𝑎, 𝑏⟩ ∈ ℕ × ℕ∶ 𝑎 + 𝑏 = 𝑓}.

The tree decomposition (Fig. 6) corresponds to the expression

𝐝 = 𝗅𝗈𝗈𝗉(𝗌𝖾𝗋𝗂𝖾𝗌(𝗉𝖺𝗋(𝐝2,𝐝2), 𝗌𝖾𝗋𝗂𝖾𝗌(𝐝1,𝐝3))). (41)

From (41) we obtain an expression for ℎ:

ℎ = ((ℎ2 � ℎ2)� ℎ1 � ℎ3)
†. (42)

This problem is small enough that we can write down an explicit expression for ℎ.
By substituting in (42) the definitions for �, †,�, we obtain that evaluating ℎ(𝑐)
means finding the least fixed point of a map Ψ𝑐:

ℎ ∶ 𝑐 ↦ lfp(Ψ𝑐). (43)

ThemapΨ𝑐 ∶ 𝖠𝗇𝗍𝗂f (ℕ × ℕ)→ 𝖠𝗇𝗍𝗂f (ℕ × ℕ) can be obtained fromTheorem36.16
as follows:

Ψ𝑐 ∶ 𝛼 ↦ Min
⋃

⟨𝑥, 𝑦⟩∈𝛼
↑↑⟨𝑥, 𝑦⟩∩ (44)

∩
{
⟨𝑎, 𝑏⟩ ∈ ℕ2 ∶ (𝑎 + 𝑏 ≥ ⌈

√
𝑥 ⌉ + ⌈

√
𝑦 ⌉ + 𝑐)

}
. (45)
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We know this area is unfeasible.

“Maybe” - there might be minimal solutions here.

“Don’t care” - Not necessarily feasible, but we know 

that there are no feasible points that are not dominated 

by the minimal points already found.

The current antichain

These points are minimal solutions.

(a)

(c) (d)

(e) (f)

Figure 7.: Kleene ascent to solve the problem (40)
for 𝑐 = 20. The sequence converges in five steps to
𝛼5 = 𝛼∞.

Kleene’s algorithm is the iteration 𝛼𝑘+1 = Ψ𝑐(𝛼𝑘) starting from

𝛼0 = ⊥𝖠𝗇𝗍𝗂f (ℕ×ℕ) = {⟨0, 0⟩}. (46)

For 𝑐 = 0, the sequence converges immediately:

𝛼0 = {⟨𝟎, 𝟎⟩} = ℎ(0). (47)

For 𝑐 = 1, the sequence converges at the sixth step; however, some solutions (in
bold) converge sooner:

𝛼0 = {⟨0, 0⟩}, (48)
𝛼1 = {⟨0, 1⟩, ⟨1, 0⟩}, (49)
𝛼2 = {⟨0, 2⟩, ⟨1, 1⟩, ⟨2, 0⟩}, (50)
𝛼3 = {⟨𝟎, 𝟑⟩, ⟨1, 2⟩, ⟨2, 1⟩, ⟨𝟑, 𝟎⟩}, (51)
𝛼4 = {⟨𝟎, 𝟑⟩, ⟨2, 2⟩, ⟨𝟑, 𝟎⟩}, (52)
𝛼5 = {⟨𝟎, 𝟑⟩, ⟨𝟑, 𝟎⟩} = ℎ(1). (53)

For 𝑐 = 2, the sequence converges at the fifth step; however, some solutions (in
bold) converge sooner:

𝛼0 = {⟨0, 0⟩}, (54)
𝛼1 = {⟨0, 2⟩, ⟨1, 1⟩, ⟨2, 0⟩}, (55)
𝛼2 = {⟨𝟎, 𝟒⟩, ⟨1, 3⟩, ⟨2, 2⟩, ⟨3, 1⟩, ⟨𝟒, 𝟎⟩}, (56)
𝛼3 = {⟨𝟎, 𝟒⟩, ⟨3, 2⟩, ⟨2, 3⟩, ⟨𝟒, 𝟎⟩} (57)
𝛼4 = {⟨𝟎, 𝟒⟩, ⟨𝟑, 𝟑⟩, ⟨𝟒, 𝟎⟩} = ℎ(2). (58)
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The next values in the sequence are:

ℎ(3) = {⟨𝟎, 𝟔⟩, ⟨𝟑, 𝟒⟩, ⟨𝟒, 𝟑⟩, ⟨𝟔, 𝟎⟩}, (59)
ℎ(4) = {⟨𝟎, 𝟕⟩, ⟨𝟑, 𝟔⟩, ⟨𝟒, 𝟒⟩, ⟨𝟔, 𝟑⟩, ⟨𝟕, 𝟎⟩}. (60)

Figure 7 shows the sequence for 𝑐 = 20.

Guarantees of Kleene ascent
Solving an CDP with cycles reduces to computing a Kleene ascent sequence 𝛼𝑘.
At each instant 𝑘 we have some additional guarantees.
For any finite 𝑘, the resources “below” 𝛼𝑘 (the set 𝐑 ∖ ↑↑𝛼𝑘,) are infeasible. (In
Fig. 7, those are colored in red.)
If the iteration converges to a non-empty antichain 𝛼∞, the antichain 𝛼∞ di-
vides 𝐑 in two. Below the antichain, all resources are infeasible. However, above
the antichain (purple area), it is not necessarily true that all points are feasible,
because there might be holes in the feasible set. Note that this method does
not compute the entire feasible set, but rather only theminimal elements of the
feasible set, which might be much easier to compute.
Finally, if the sequence converges to the empty set, it means that there are no
solutions. The sequence 𝛼𝑘 can be considered a certificate of infeasibility.

You are reading a draft compiled on 2024-12-09 11:28:28Z



36.5. Extended Numerical Examples 511

36.5. Extended Numerical Examples
This example considers the choice of different battery technologies for a robot.
The goals of this example are: 1) to show how design problems can be composed;
2) to show how to define hard constraints and precedence between resources
to be minimized; 3) to show how even relatively simple models can give very
complex trade-offs surfaces; and 4) to introduce MCDPL, a formal language for
the description of co-design problems.

Language and interpreter/solver
MCDPL is a modeling language to describe CDPs and their compositions. It is
inspired by CVX and “disciplined convex programming” [8]. MCDPL is even
more disciplined than CVX; for example, multiplying by a negative number is a
syntax error. The figures are generated by PyMCDP, an interpreter and solver for
CDPs, which implements the techniques described in these sections. An in-depth
description of MCDPL is available in the next volume of this series.

Model of a battery
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!!

!

(a) MCDPL code equivalent to equations Eqs. (64) to (66).

! 0.03333 kg/Wh

[J*kg/Wh]

! 0.13333 USD/Wh

[J*USD/Wh]

! 0.00200 

ceil(R[]->R[])

mass [g]

[J][J]

maintenance 

cost [USD]

[J*USD/Wh]

[J*kg/Wh][J*USD/Wh]

[J*USD/Wh]

[J][J]

capacity [J]

missions 

splitter

unit

conversion

(b) Co-design diagram generated by PyMCDP from code in panel (b).

WrapAMap
Identity

WrapAMap
! 0.00133 

GenericUnary(<built-in function ceil>)

series

R[]
!

R[]

R[]
!

R[]

par

R[J]
!

R[J]

R[]
!

R[]

WrapAMap
MuxMap:R[J]!R[]"R[]!((R[J]!R[J])!R[])

WrapAMap
Identity

WrapAMap
Identity

WrapAMap
! 0.35211 USD/Wh

par

R[J]
!

R[J]

R[J]
!

R[J*USD/Wh]

WrapAMap
Identity

par

R[J]!R[J]
!

R[J]!R[J*USD/Wh]

R[]
!

R[]

WrapAMap
MuxMap:(R[J]!R[J*USD/Wh])!R[]"R[J]!(R[J*USD/Wh]!R[])

WrapAMap
Identity

ProductN

par

R[J]
!

R[J]

R[J*USD/Wh]!R[]
!

R[J*USD/Wh]

series

(R[J]!R[J*USD/Wh])!R[]
!

R[J]!(R[J*USD/Wh]!R[])

R[J]!(R[J*USD/Wh]!R[])
!

R[J]!R[J*USD/Wh]

series

(R[J]!R[J])!R[]
!

(R[J]!R[J*USD/Wh])!R[]

(R[J]!R[J*USD/Wh])!R[]
!

R[J]!R[J*USD/Wh]

par

R[]
!

R[]

(R[J]!R[J])!R[]
!

R[J]!R[J*USD/Wh]

WrapAMap
MuxMap:R[]!(R[J]!R[J*USD/Wh])"(R[]!R[J])!R[J*USD/Wh]

WrapAMap
Identity

WrapAMap
J*USD/Wh-to-USD

par

R[]!R[J]
!

R[]!R[J]

R[J*USD/Wh]
!

R[USD]

WrapAMap
MuxMap:(R[]!R[J])!R[USD]"(R[]!R[USD])!R[J]

WrapAMap
Identity

WrapAMap
! 0.00513 kg/Wh

WrapAMap
J*kg/Wh-to-g

series

R[J]
!

R[J*kg/Wh]

R[J*kg/Wh]
!

R[g]

par

R[]!R[USD]
!

R[]!R[USD]

R[J]
!

R[g]

WrapAMap
MuxMap:(R[]!R[USD])!R[g]"R[g]!R[USD]!R[]

series

(R[]!R[USD])!R[J]
!

(R[]!R[USD])!R[g]

(R[]!R[USD])!R[g]
!

R[g]!R[USD]!R[]

series

(R[]!R[J])!R[USD]
!

(R[]!R[USD])!R[J]

(R[]!R[USD])!R[J]
!

R[g]!R[USD]!R[]

series

(R[]!R[J])!R[J*USD/Wh]
!

(R[]!R[J])!R[USD]

(R[]!R[J])!R[USD]
!

R[g]!R[USD]!R[]

series

R[]!(R[J]!R[J*USD/Wh])
!

(R[]!R[J])!R[J*USD/Wh]

(R[]!R[J])!R[J*USD/Wh]
!

R[g]!R[USD]!R[]

series

R[]!((R[J]!R[J])!R[])
!

R[]!(R[J]!R[J*USD/Wh])

R[]!(R[J]!R[J*USD/Wh])
!

R[g]!R[USD]!R[]

series

R[J]!R[]
!

R[]!((R[J]!R[J])!R[])

R[]!((R[J]!R[J])!R[])
!

R[g]!R[USD]!R[]

series

R[J]!R[]
!

R[J]!R[]

R[J]!R[]
!

R[g]!R[USD]!R[]

R[J]!R[]
!

R[g]!R[USD]!R[]

(c) Tree representation using 𝗉𝖺𝗋/𝗌𝖾𝗋𝗂𝖾𝗌 of diagram in panel (c).

Figure 8.: Panel (c) shows the co-design diagram generated from the code in (b). Panel (d) shows a tree representation (series, parallel) for the diagram. The
edges show the types of functionality and resources. The leaves are labeled with the Python class used internally by the interpreter PyMCDP.
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!

specific!
specific!

!

cost [$]

maintenance

capacity [J]

# missions

mass [g]

Figure 9.: Interface of battery design problem.

The choice of a battery can be modeled as a DPI (Fig. 9) with functionalities
capacity [J] and number of missions and with resources mass [kg], cost [$] and
“maintenance”, defined as the number of times that the battery needs to be repl-
aced over the lifetime of the robot.
Each battery technology is described by the three parameters specific energy,
specific cost, and lifetime (number of cycles):

𝜌 ∶= specific energy [Wh/kg], (61)
𝛼 ∶= specific cost [Wh/$], (62)
𝑐 ∶= battery lifetime [# of cycles]. (63)

The relation between functionality and resources is described by three nonlinear
monotone constraints:

mass ≥ capacity∕𝜌, (64)

maintenance ≥
⌈
missions∕𝑐

⌉
, (65)

cost ≥
⌈
missions∕𝑐

⌉
(capacity∕𝛼). (66)

Figure 8a shows the MCDPL code that describes the model corresponding to
Eqs. (64) to (66). The diagram in Fig. 8b is automatically generated from the
code. Fig. 8c shows a tree representation of the diagram using the 𝗌𝖾𝗋𝗂𝖾𝗌/𝗉𝖺𝗋
operators.

Competing battery technologies

The parameters for the battery technologies used in this example are shown
in Table 36.1.

technology
energy density specific cost operating life

[ Wh/kg] [Wh/$] # cycles
NiMH 100 3.41 500
NiH2 45 10.50 20000
LCO 195 2.84 750
LMO 150 2.84 500
NiCad 30 7.50 500
SLA 30 7.00 500
LiPo 250 2.50 600
LFP 90 1.50 1500

Table 36.1.: Specifications of common batteries
technologies

Each row of the table is used to describe a model as in Fig. 8a by plugging in the
specific values in lines 12–14.
Given the different models, we can define their coproduct (Fig. 10a) using the
MCDPL code in Fig. 10b.

8

maintenance

maint.

cost

maint.

maint.

maintenance

maintenance

costBatteries

mass

cost

maintenance
missions

capacity Batteries

LiPo LCO

# missions

endurance

extra power

payload

(a) Co-product of battery technologies (b) Batteries.mcdp
Figure 10.: The coproduct of design problems de-
scribes the choices among different technologies.
TheMCDPL keyword for the coproduct is “choose”.
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Figure 11.: Composition of DPs can express hard
constraints and precedence of objectives. In this
case, there is a hard constraint on the mass. Be-
cause there is only one outgoing edge for mass,
and the cost and maintenance are terminated by
a dummy constraint (𝑥 ⪯ ⊤), the semantics of the
diagram is that the objective is to minimize the
mass as primary objective.

cost

maintenance

mass
Batteries

missions

capacity

(a) Co-design diagram that expresses hard constraints for mass.

maintenance

maint.

maintenance

maintenance

Batteries

Batteries

Batteries

# missions

endurance

extra power

payload
(b) MCDPL code equivalent to diagram in (a).

Introducing other variations or objectives

The design problem for the battery has two functionalities (capacity and number
of missions) and three resources (cost, mass, andmaintenance). Thus, it describes
a family ofmulti-objective optimization problems, of the type “Given capacity and
missions, minimize ⟨cost,mass,maintenance⟩”. We can further extend the class
of optimization problems by introducing other hard constraints and by choosing
which resource to prioritize. This can be done by composition of design problems;
that is, by creating a larger DP that contains the original DP as a subproblem, and
contains some additional degenerate DPs that realize the desired semantics.
For example, suppose that we would like to find the optimal solution(s) such
that: 1) The mass does not exceed 3 kg; 2) The mass is minimized as a primary
objective, while cost/maintenance are secondary objectives.
This semantics can be described by the co-design diagram in Fig. 11a, which
contains two new symbols. The DP labeled “3 kg” implements the semantics of

hard constraints. It has one functionality (𝐅 = ℝ
kg
≥0) and zero resources (𝐑 =

𝟏). The poset 𝟏 = {⟨⟩} has exactly two antichains: ∅ and {⟨⟩}. These repre-
sent “infeasible” and “feasible”, respectively. The DP is described by the map

ℎ ∶ ℝ
kg
≥0 → 𝖠𝗇𝗍𝗂 𝟏, (67)

𝑓 ↦ {
{⟨⟩}, if 𝑓 ≤ 3 kg,
∅, if 𝑓 > 3 kg.

(68)

maintenance

maint.

cost

maint.

maintenance

Batteries
Batteries

# missions

endurance

extra power

payload

The block labeled “⊤” is similarly defined and always returns “feasible”, so it has
the effect of ignoring cost and maintenance as objectives. The only resource edge
is the one for mass, which is then the only objective.
The MCDPL code is shown in Fig. 11b. Note the intuitive interface: the user
can directly write “mass required by battery ≤ 3 kg” and “ignore maintenance
required by battery”, which is compiled to “maintenance required by battery
≤ ⊤”.
This relatively simple model for energetics already shows the complexity of CDPs.
Figure 14 shows the optimal choice of the battery technology as a function of
capacity and number of missions, for several slight variations of the problem
that differ in constraints and objectives. For each battery technology, the figures
show whether at each operating point the technology is the optimal choice, and
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how many optimal choices there are. Some results are intuitive. For example,
Fig. 14f shows that if the only objective is minimizing mass, then the optimal
choice is simply the technology with the largest specific energy (LiPo). The de-
cision boundaries become complex when considering nonlinear objectives. For
example, Fig. 14d shows the case where the objective is to minimize the cost,
which, defined by (66), is nonlinearly related to both capacity and number of
missions. When consideringmulti-objective problems, such asminimizing jointly
⟨mass, cost⟩ (Fig. 14h) or ⟨mass, cost,maintenance⟩ (Fig. 14h), there are multiple
non-dominated solutions.

From component to system co-design

The rest of the section reuses the battery DP into a larger co-design problem that
considers the co-design of actuation togetherwith energetics for a drone (Fig. 12a).
We will see that the decision boundaries change dramatically, which shows that
the optimal choices for a component cannot be made in isolation from the sys-
tem.
The functionality of the drone’s subsystem considered (Fig. 12a) are parametrized
by endurance, number of missions, extra power to be supplied, and payload. We
model “actuation” as a design problem with functionality lift [N] and resources
cost, mass and power, and we assume that power is a quadratic function of
lift (Fig. 13). Any other monotone map could be used.

Figure 13.

!

specific!
specific!

!

cost [$]

lift [N] mass [g]
power [W]

The co-design constraints that combine energetics and actuation are

battery capacity ≥ total power × endurance, (69)
total power = actuation power + extra power,

weight = total mass × gravity,
actuation lift ≥ weight,

labor cost = cost per replacement × battery maintenance,
total cost = battery cost + actuation cost + labor cost,
total mass = batterymass + actuationmass + payload. (70)

The co-design graph contains recursive constraints: the power for actuation
depends on the total weight, which depends on the mass of the battery, which
depends on the capacity to be provided,which depends on the power for actuation.
The MCDPL code for this model is shown in Fig. 12b; it refers to the previously
defined models for “batteries” and “actuation”.
The co-design problem is now complex enough that we can appreciate the compo-
sitional properties of CDPs to perform a qualitative analysis. Looking at Fig. 12a,
we know that there is a monotone relation between any pair of functionality
and resources, such as payload and cost, or endurance and mass, even without
knowing exactly what are the models for battery and actuation.
When fully expanded, the co-design graph (too large to display) contains 110
nodes and 110 edges. It is possible to remove all cycles by removing only one edge
(e.g., the energy ≤ capacity constraint), so the design complexity (Def. 36.25) is
equal to 𝗐𝗂𝖽𝗍𝗁(ℝ≥0) = 1. The tree representation is shown in Fig. 12c. Because
the co-design diagram contains cycles, there is a 𝗅𝗈𝗈𝗉 operator at the root of the
tree, which implies we need to solve a least fixed point problem. Because of the
scale of the problem, it is not possible to show the map ℎ explicitly, like we did in
(41) for the previous example. The least fixed point sequence converges to 64
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lift

battery

capacity

# missions

[$]

mass

Choice of batteries

# replace-!
   ments

power

gravitypayload

endurance

labor

[$]

mass

specific!
specific!

battery lifetime

total !
mass

actuation

weight

extra power
cost

# missions

endurance
extra power

payload

mass

cost

(a) Co-design diagram corresponding to Eqs. (69) to (70).

!

specific!
specific!

battery lifetime

!

(b) MCDPL code for Eqs. (69) to (70). The “instance” statements refer to
previously defined models for batteries (Fig. 10b) and actuation (not shown).

co-product

loop

(c) Tree representation for the CDP. Yellow/green rounded ovals are
𝗌𝖾𝗋𝗂𝖾𝗌/𝗉𝖺𝗋 junctions. There is one coproduct junction, signifying the choice
between different battery technologies, and one 𝗅𝗈𝗈𝗉 junction, at the root of
the tree.

(d) Relation between endurance and number of missions and cost and mass.

(e) Relation between endurance and payload and cost and mass.

Figure 12.: In panel (c), the payload is fixed to 100 g and extra power is set to 1 W. In panel (d), the number of missions is fixed to 400 and extra power is set
to 1 W. The last two values, marked with “×”, are not feasible.
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bits machine precision in 50–100 iterations.
To visualize the multidimensional relation

ℎ∶ ℝ≥0 ×ℝ
s
≥0 ×ℝ

W
≥0 ×ℝ

g
≥0 → 𝖠𝗇𝗍𝗂 (ℝ

kg
≥0 ×ℝ

USD
≥0 ), (71)

we need to project across 2D slices. Fig. 12d shows the relation when the func-
tionality varies in a chain in the space endurance/missions, and Fig. 12e shows
the results for a chain in the space endurance/payload.
Finally, Fig. 15 shows the optimal choices of battery technologies in the en-
durance/missions space, when one wants to minimize mass, cost, or ⟨mass, cost⟩.
The decision boundaries are completely different from those in Fig. 14. This
shows that it is not possible to optimize a component separately from the rest of
the system, if there are cycles in the co-design diagram.
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Figure 14.: This figure shows the optimal decision boundaries for the different battery technologies for the design problem “batteries”, defined as the
coproduct of all battery technologies (Fig. 10). Each row shows a different variation of the problem. The first row (panels a–b) shows the case where
the objective function is the product of ⟨mass, cost,maintenance⟩. The shape of the symbols shows how many minimal solutions exists for a particular
value of the functionality ⟨capacity,missions⟩. In this case, there are always three or more minimal solutions. The second row (panels c–d) shows the
decision boundaries when minimizing only the scalar objective cost, with a hard constraint on mass. The hard constraints make some combinations of the
functionality infeasible. Note how the decision boundaries are nonconvex, and how the formalism allows defining slight variations of the problem.
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Figure 15.: This figure shows the decision boundaries for the different values of battery technologies for the integrated actuation-energetics model described
in Fig. 12. Please see the caption of Fig. 14 for an explanation of the symbols. Notice how in most cases the decision boundaries are different from those
in Fig. 14: this is an example in which one component cannot be optimized by itself without taking into account the rest of the system.
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36.6. Complexity of the solution
Complexity of fixed point iteration
Consider first the case of an DP that can be described as 𝐝 = 𝗅𝗈𝗈𝗉(𝐝0), where 𝐝0
is an DP that is described only using the 𝗌𝖾𝗋𝗂𝖾𝗌 and 𝗉𝖺𝗋 operators. Suppose that 𝐝0
has resource space 𝐑. Then evaluating ℎ for 𝐝 is equivalent to computing a
least fixed point iteration on the space of antichains 𝖠𝗇𝗍𝗂𝐑. This allows to give
worst-case bounds on the number of iterations.

Proposition 36.21. Suppose that 𝐝 = 𝗅𝗈𝗈𝗉(𝐝0) and 𝐝0 has resource space𝐑0 and
evaluating ℎ0 takes at most 𝑐 computation. Then we can obtain the following
bounds for the algorithm’s resources usage:

memory 𝑂(𝗐𝗂𝖽𝗍𝗁(𝐑0))
number of steps 𝑂(𝗁𝖾𝗂𝗀𝗁𝗍(𝖠𝗇𝗍𝗂𝐑0))
total computation 𝑂(𝗐𝗂𝖽𝗍𝗁(𝐑0) ⋅ 𝗁𝖾𝗂𝗀𝗁𝗍(𝖠𝗇𝗍𝗂𝐑0) ⋅ 𝑐)

Proof. The memory utilization is bounded by 𝗐𝗂𝖽𝗍𝗁(𝐑0), because the state is
an antichain, and𝗐𝗂𝖽𝗍𝗁(𝐑0) is the size of the largest antichain. The iteration
happens in the space 𝖠𝗇𝗍𝗂𝐑0, and we are constructing an ascending chain,
so it can take at most 𝗁𝖾𝗂𝗀𝗁𝗍(𝖠𝗇𝗍𝗂𝐑0) steps to converge. Finally, in the worst
case themap ℎ0 needs to be evaluated once for each element of the antichain
for each step.

These worst case bounds are strict.

Example 36.22. Consider solving 𝐝 = 𝗅𝗈𝗈𝗉(𝐝0)with 𝐝0 defined by ℎ0 ∶ ⟨⟨⟩, 𝑥⟩↦
𝑥 + 1 with 𝑥 ∈ ℕ. Then the least fixed point equation is equivalent to solv-
ing min {𝑥∶ Ψ(𝑥) ≤ 𝑥} with Ψ ∶ 𝑥 ↦ 𝑥 + 1. The iteration 𝑅𝑘+1 = Ψ(𝑅𝑘) con-
verges to ⊤ in 𝗁𝖾𝗂𝗀𝗁𝗍(ℕ) = ℵ0 steps.

Remark 36.23. Making more precise claims requires additional more restrictive
assumptions on the spaces involved. For example, without adding a metric on 𝐑,
it is not possible to obtain properties such as linear or quadratic convergence.

Remark 36.24 (Invariance to re-parameterization). All the results given in this
paper are invariant to any order-preserving re-parameterization of all the variables
involved.

Relating complexity to the graph properties
Prop. 36.21 above assumes that the DP is already in the form 𝐝 = 𝗅𝗈𝗈𝗉(𝐝0), and
relates the complexity to the poset 𝐑0. Here we relate the results to the graph
structure of an DP.
Take a DP 𝐝 = ⟨𝐅,𝐑, ⟨𝒱 , ℰ⟩⟩. To put 𝐝 in the form 𝐝 = 𝗅𝗈𝗈𝗉(𝐝0) according
to the procedure in Section 36.7, we need to find an arc feedback set (AFS) of
the graph ⟨𝒱 , ℰ⟩. Given an AFS 𝐹 ⊂ ℰ, then the resource space 𝐑 for a 𝐝0
such that 𝐝 = 𝗅𝗈𝗈𝗉(𝐝0) is the product of the resources spaces along the edges:
𝐑0 =

∏
𝑒∈𝐹 𝐑𝑒.

Now that we have a relation between the AFS and the complexity of the iteration,
it is natural to ask what is the optimal choice of AFS—which, so far, was left
as an arbitrary choice. The AFS should be chosen as to minimize one of the
performance measures in Prop. 36.21.
Of the three performance measures in Prop. 36.21, the most fundamental appears
to be 𝗐𝗂𝖽𝗍𝗁(𝐑0), because that is also an upper bound on the number of distinct
minimal solutions. Hence, we can call it “design complexity” of the DP.
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Definition 36.25 (Design complexity)
Given a graph ⟨𝒱 , ℰ⟩ and a labeling of each edge 𝑒 ∈ ℰ with a poset 𝐑𝑒, the
design complexity DC(⟨𝒱 , ℰ⟩) is defined as

DC(⟨𝒱 , ℰ⟩) = min
𝐹 is an AFS

𝗐𝗂𝖽𝗍𝗁(
∏

𝑒∈𝐹
𝐑𝑒). (72)

In general, thewidth andheight of posets are not additivewith respect to products;
therefore, this problem does not reduce to any of the known variants of the
minimum arc feedback set problem, in which each edge has a weight and the
goal is to minimize the sum of the weights.

Considering relations with infinite cardinality
This analysis shows the limitations of the simple solution presented so far: it is
easy to produce examples for which 𝗐𝗂𝖽𝗍𝗁(𝐑0) is infinite, so that one needs to
represent a continuum of solutions.

Example 36.26. Suppose that the platform to be designedmust travel a distance 𝑑
[m], and we need to choose the endurance 𝑇 [s] and the velocity 𝑣 [m/s]. The
relation among the quantities is 𝑑 ≤ 𝑇 𝑣. This is a design problem described by
the map

ℎ ∶ ℝ≥0 → 𝖠𝗇𝗍𝗂ℝ≥0 ×ℝ≥0,
𝑑 ↦ {⟨𝑇, 𝑣⟩ ∈ ℝ≥0 ×ℝ≥0 ∶ 𝑑 = 𝑇 𝑣}.

For each value of 𝑑, there is a continuum of solutions.

One approach to solving this problem would be to discretize the functionality 𝐅
and the resources 𝐑 by sampling and/or coarsening. However, sampling and
coarsening makes it hard to maintain completeness and consistency.
One effective approach that we will develop lateris to approximate the design
problem itself, rather than the spaces 𝐅,𝐑, which are left as possibly infinite. The
basic idea is that an infinite antichain can be bounded from above and above
by two antichains that have a finite number of points. This idea leads to an
algorithm that, given a prescribed computation budget, can compute an inner
and outer approximation to the solution antichain.
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36.7. Decomposition of CDPs
This section shows how to describe an arbitrary interconnection of design prob-
lems using only three composition operators. More precisely, for eachCDPIwith a
set of atoms𝒱 , there is an equivalent one that is built from 𝗌𝖾𝗋𝗂𝖾𝗌/𝗉𝖺𝗋/𝗅𝗈𝗈𝗉 applied
to the set of atoms 𝒱 plus some extra “plumbing” (identities, multiplexers).

Proposition 36.27. Given a CDPI ⟨𝐅,𝐑, ⟨𝒱 , ℰ⟩⟩, we can find an equivalent CDPI
obtained by applying the operators 𝗉𝖺𝗋∕𝗌𝖾𝗋𝗂𝖾𝗌∕𝗅𝗈𝗈𝗉 to a set of atoms 𝒱 ′ that
contains𝒱 plus a set of trivialDPIs. Furthermore, one instance of 𝗅𝗈𝗈𝗉 is sufficient.

Proof. We show this constructively. We will temporarily remove all cycles
from the graph, to be reattached later. To do this, find an arc feedback set
(AFS) 𝐹 ⊆ ℰ. An AFS is a set of edges that, when removed, remove all cycles
from the graph (see [7]). For example, the CDPI represented in Fig. 18a has
a minimal AFS that contains the edge c→ a (Fig. 18b).
Remove the AFS 𝐹 from ℰ to obtain the reduced edge set ℰ′ = ℰ ∖ 𝐹.
The resulting graph

⟨
𝒱 , ℰ′

⟩
does not have cycles, and can be written as a

series-parallel graph, by applying the operators 𝗉𝖺𝗋 and 𝗌𝖾𝗋𝗂𝖾𝗌 from a set of
nodes 𝒱 ′. The nodes 𝒱 ′ will contain 𝒱 , plus some extra “connectors” that
are trivial DPIs.

ca

b

b b

Id !

Figure 16.

Find aweak topological ordering of𝒱 . Then the graph
⟨
𝒱 , ℰ′

⟩
can bewritten

as the series of |𝒱| subgraphs, each containing one node of 𝒱 . In the exam-
ple, the weak topological ordering is ⟨a, b, c⟩ and there are three subgraphs
(Fig. 16).

b b

Id
added!

 identity

Figure 17.

Each subgraph can be described as the parallel interconnection of a node 𝑣 ∈
𝒱 and some extra connectors. For example, the second subgraph in the graph
can be written as the parallel interconnection of node b and the identity
𝖳𝗋𝗂𝗏(id) (Fig. 17).
After this is done, we just need to “close the loop” around the edges in the
AFS 𝐹 to obtain a CDPI that is equivalent to the original one. Suppose the
AFS 𝐹 contains only one edge. Then one instance of the 𝗅𝗈𝗈𝗉𝖻 operator is
sufficient (Fig. 19a). In this example, the tree representation (Fig. 19b) is

𝗅𝗈𝗈𝗉𝖻(𝗌𝖾𝗋𝗂𝖾𝗌(𝗌𝖾𝗋𝗂𝖾𝗌(a, 𝗉𝖺𝗋(id, b)), c). (73)

If the AFS containsmultiple edges, then, instead of closing one loop at a time,
we can always rewrite multiple nested loops as only one loop by taking the
product of the edges. For example, a diagram like the one in Fig. 20a can be
rewritten as Fig. 20b. This construction is analogous to the construction used
for the analysis of process networks [14] (and any other construct involving
a traced monoidal category). Therefore, it is possible to describe an arbitrary
graph of design problems using only one instance of the 𝗅𝗈𝗈𝗉 operator.

Figure 18.: An example co-design diagram with
three nodes 𝒱 = {a, b, c}, in which a minimal arc
feedback set is {c→ a}.

a

b

c

a

b

b

!

(a)

c

a

b

c

arc feedback set

a

b

b b

Id

a

b

c

!

(b)

c

a

b

c

a

b

b b

Id

a

b

c a

b

c

!

arc feedback set removed

(c)
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c

a

b

c

Id

a

b

b b

Id !

(a)
c

b

Id

a

b

c

a

b

b b

Id

a

b Id

c

a

b

c a

b

c

!

(b) Figure 19.: Tree representation for the co-design
diagram in Fig. 18a.

(a) (b)
Figure 20.: If there are nested loops in a co-design
diagram, they can be rewritten as one loop, by tak-
ing the product of the edges.
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In this chapter, we introduce the concept of monad. We introduce
monads using the computer science perspective, in which they are
interpreted as “generalized computation”.

When one thinks about Switzerland and the alps, one usually thinks about snow. Starting from 1,500 m height, most areas are covered in snow during
winter (from December to March). Some areas (above 3,000 m), are always covered in snow.



526 37. Monads

37.1. Generalized objects and operations
The definition of monads is very powerful because it is very abstract and can fit
many possible scenarios. Before getting to the formal definition, it is useful to
build up some intuition using several examples.
Monads are a type of algebraic structure that is well-suited to represent general-
ized objects and operations. We begin by giving several examples.

Modeling nondeterministic uncertainty
For the engineer, one intuitive scenario where generalization is necessary is han-
dling uncertainty. We have seen the category Set of sets and functions between
sets. A function

𝑓∶ 𝑋 → 𝑌 (1)

between sets is “deterministic”, in the sense that, given as input an element of 𝑋,
it always produces the same output in 𝑌.
Suppose now we want to deal with nondeterministic functions: functions that
return, for each input, a set of possible values. We can model nondeterministic
functions from 𝑋 to 𝑌 as functions of the type

𝑓∶ 𝑋 → 𝖯𝗈𝗐𝑌. (2)

Note that this is a generalization, in the sense that any deterministic function is a
special nondeterministic function. For example, the function

𝛼∶ ℕ → ℕ,
𝑥 ↦ 𝑥2,

(3)

can be rewritten as the function

𝛼′ ∶ ℕ → 𝖯𝗈𝗐ℕ,
𝑥 ↦ {𝑥2},

(4)

which maps each element to a singleton set.
Once we have these generalized functions,we really want them to form a category,
so that they can compose. To do this, we need extra information: additional
structure. So far we know the rules of composition for functions:

𝑓∶ 𝑋 → 𝑌 𝑔∶ 𝑌 → 𝑍

(𝑓 # 𝑔)∶ 𝑋 → 𝑍,
𝑥 ↦ 𝑔(𝑓(𝑥)),

(5)

but this does not help for the generalized functions. How can we compose non-
deterministic function? What to fill in the space below?

𝑓∶ 𝑋 → 𝖯𝗈𝗐𝑌 𝑔∶ 𝑌 → 𝖯𝗈𝗐𝑍

(𝑓 # 𝑔)∶ 𝑋 → 𝖯𝗈𝗐𝑍,
𝑥 ↦ ?.

(6)

There is one natural way to define this operation. Did you notice the following?

Lemma 37.1. Functions from 𝑋 to 𝖯𝗈𝗐𝑌 are in one-to-one correspondence
with relations from 𝑋 to 𝑌.

Therefore, we expect that nondeterministic functions can be composed like rela-
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tions. Ifwe have𝑓∶ 𝑋 → 𝖯𝗈𝗐𝑌 and 𝑔∶ 𝑌 → 𝖯𝗈𝗐𝑍 thenwe define the composite
non-deterministic function to be

(𝑓 # 𝑔)∶ 𝑋 → 𝖯𝗈𝗐𝑍,

𝑥 ↦
⋃

𝑦∈𝑓(𝑥)
𝑔(𝑦). (7)

Figure 1.

We should also check that this composition is associative; however, this comes
automatically from the fact that we already know that Rel is a category.
To summarize:
⊳ Wewanted to extend Set from functions𝑋 → 𝑌 to nondeterministic functions
of type 𝑋 → 𝖯𝗈𝗐𝑌.

⊳ To do this, we needed three things:
1. The particular choice of 𝖯𝗈𝗐 as what maps a set to another set.
2. A way to lift a function of type 𝑋 → 𝑌 to a function of type 𝑋 → 𝖯𝗈𝗐𝑌,

so that we can say that nondeterministic functions are a generalization of
deterministic functions. This lifting operation is a family of functions of
type

lift𝑋,𝑌 ∶ (𝑋 → 𝑌)→ (𝑋 → 𝖯𝗈𝗐𝑌). (8)

3. A way to define composition, through a map, traditionally called “fish”, of
type

fish𝑋,𝑌,𝑍 ∶ (𝑋 → 𝖯𝗈𝗐𝑌) × (𝑌 → 𝖯𝗈𝗐𝑍)→ (𝑋 → 𝖯𝗈𝗐𝑍) (9)

⊳ And we needed these pieces to satisfy the conditions:
1. fish is associative. This ensures the generalized functions form a semicat-

egory.
2. The composition of the lifted functions are the lifting of the composition:

𝑓∶ 𝑋 → 𝖯𝗈𝗐𝑌 𝑔∶ 𝑌 → 𝖯𝗈𝗐𝑍

lift𝑋,𝑌(𝑓) # lift𝑌,𝑍(𝑔) = lift𝑋,𝑍(𝑓 # 𝑔) . (10)

This ensures that inside the generalized functions, the composition of reg-
ular functions continues to work as it should.

Modeling interval uncertainty
We continue to build intuition considering another type of uncertainty.
We have seen the category Pos of posets and monotone functions between
posets (Def. 14.8).
In this category it is easy to propagate uncertainty if the uncertain sets are repre-
sented by intervals.
Recall that for a poset 𝐏, we can define the poset of intervals𝐀𝐫𝐫 𝐏 (see Def. 6.10)
and 𝐓𝐰 𝐏 (see Def. 6.9).
Analogously to the previous case, here we want to generalize from monotone
functions to nondeterministic monotone functions, where the uncertainty is
represented by intervals.
We recall the notation for intervals:
⊳ The interval

{𝑥∶ 𝑎 ⪯ 𝑥 ⪯ 𝑏} (11)
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is denoted
[𝑎, 𝑏]. (12)

⊳ 𝗟⋅ and 𝗨⋅ extract the lower and upper bound from the interval, so that we have

𝗟[𝑎, 𝑏] = 𝑎 (13)

𝗨[𝑎, 𝑏] = 𝑏 (14)

Because an interval is defined by two values, a function that returns an interval
is a pair of functions, whose results are constrained to be ordered. For example,
one such function is

𝑓∶ ℝ → 𝐀𝐫𝐫 ⟨ℝ, ≤⟩,
𝑥 ↦ [𝑥 − 1, 𝑥 + 1].

(15)

In the example above, we always have 𝑥 − 1 ≤ 𝑥 + 1.
We now retrace the steps of the previous example.
First, we need to ensure that we can see regular monotone functions as special
cases of interval functions. For example, the function

𝛼∶ ⟨ℕ, ≤⟩ → ⟨ℕ, ≤⟩,
𝑥 ↦ 𝑥2,

(16)

can be rewritten as the function

𝛼′ ∶ ⟨ℕ, ≤⟩ → 𝐀𝐫𝐫 ⟨ℕ, ≤⟩,
𝑥 ↦ [𝑥2, 𝑥2],

(17)

Generically, this is the definition of the lift function

lift𝑋,𝑌 ∶ (𝑋 → Pos 𝑌) → (𝑋 → Pos 𝐀𝐫𝐫 𝑌),

𝑓 ↦ {lift𝑋,𝑌𝑓∶ 𝑋 → 𝐀𝐫𝐫 𝑌
𝑥 ↦ [𝑓(𝑥), 𝑓(𝑥)] .

(18)

What is the “fish” function? Note that an interval-valued monotone map is also
a special relation. Therefore, we want that composition continues to work in the
same manner.
Therefore, we obtain for the fish operation:

𝑓∶ 𝑋 → 𝐀𝐫𝐫 𝑌 𝑔∶ 𝑌 → 𝐀𝐫𝐫 𝑍

(𝑓 # 𝑔)∶ 𝑋 → 𝐀𝐫𝐫 𝑍
𝑥 ↦ [𝗟𝑔(𝗟𝑓(𝑥)), 𝗨𝑔(𝗨𝑓(𝑥))]

(19)

Upper sets
We have seen that to solve DPs we encountered functions of type

𝑓∶ 𝐅→ Pos 𝑈𝐑 (20)

We can see this as another example of generalization from a function

𝑓∶ 𝑋 → Pos 𝑌 (21)

to functions
𝑓∶ 𝑋 → Pos 𝑈𝑌 (22)

Once again we see these as particular types of relations.

You are reading a draft compiled on 2024-12-09 11:28:28Z



37.1. Generalized objects and operations 529

The lift operation is

lift𝑋,𝑌 ∶ (𝑋 → Pos 𝑌) → (𝑋 → Pos 𝑈𝑌)

𝑓 ↦ {lift𝑋,𝑌𝑓∶ 𝑋 → 𝑈𝑌
𝑥 ↦ ↑↑𝑓(𝑥)

(23)

The fish operation is

𝑓∶ 𝑋 → 𝑈𝑌 𝑔∶ 𝑌 → 𝑈𝑍

(𝑓 # 𝑔)∶ 𝑋 → 𝑈𝑍

𝑥 ↦
⋃

𝑦∈𝑓(𝑥)
𝑔(𝑦) (24)

Note that the expression is the same as in (7) - only we are guaranteed to obtain
upper sets.

Keeping track of resource usage

As another example, we consider the case where we want to attach additional
information to a category.
Suppose we want to consider not functions, but procedures which have resource
consumption. A function is a mathematical entity - a procedure is a program
that implements a function. Suppose we want to model execution time - and, that
execution time might depend on the input of the procedure.
In this case, we would like to extend a function

𝑓∶ 𝑋 → 𝑌 (25)

into a procedure
𝑓∶ 𝑋 → (𝑌 ×ℝ≥0) (26)

which gives both result and the execution time.
We consider the ideal functions to be procedures that have zero execution time.
We can define the lift map as follows:

lift𝑋,𝑌 ∶ (𝑋 → 𝑌) → (𝑋 → 𝑌 ×ℝ≥0)

𝑓 ↦ {lift𝑋,𝑌𝑓∶ 𝑋 → 𝑌 ×ℝ≥0
𝑥 ↦ ⟨𝑥, 0⟩

(27)

As for the fish function, we have

𝑓∶ 𝑋 → (𝑌 ×ℝ≥0) 𝑔∶ 𝑌 → (𝑍 ×ℝ≥0)

(𝑓 # 𝑔)∶ 𝑋 → (𝑍 ×ℝ≥0)
𝑥 ↦

⟨
𝑔1(𝑓1(𝑥)), 𝑔2(𝑓1(𝑥)) + 𝑓2(𝑥)

⟩ (28)

Note that we can recover the naked function by taking the first component of the
tuple.

Generalization with monoid

This can be further generalized from the real numbers to an arbitrary monoid
structure

M =
⟨
𝐌, #M, idM

⟩
. (29)
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For the lift function we have

lift𝑋,𝑌 ∶ (𝑋 → 𝑌) → (𝑋 → 𝑌 ×𝐌),

𝑓 ↦ {lift𝑋,𝑌𝑓∶ 𝑋 → 𝑌 ×𝐌
𝑥 ↦ ⟨𝑥, idM⟩

.
(30)

As for the fish function we have

𝑓∶ 𝑋 → (𝑌 ×𝐌) 𝑔∶ 𝑌 → (𝑍 ×𝐌)

(𝑓 # 𝑔)∶ 𝑋 → (𝑍 ×𝐌)
𝑥 ↦

⟨
𝑔1(𝑓1(𝑥)), 𝑔2(𝑓1(𝑥)) #M 𝑓2(𝑥)

⟩ . (31)
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37.2. Monads
Definition 37.2 (Monad)
Let C be a category. Amonad on C is specified by:
Constituents
1. A functor𝑀∶ C→ C;
2. A natural transformation 𝗆𝗎∶ 𝑀 #𝑀 ⇒ 𝑀, called the composition or

multiplication;
3. A natural transformation 𝗎𝗇∶ idC ⇒ 𝑀, called the unit.
Conditions
1. Associativity: the following diagram must commute:

𝑀 #𝑀 #𝑀 𝑀 #𝑀

𝑀 #𝑀 𝑀

𝑀𝗆𝗎

𝗆𝗎𝑀 𝗆𝗎
𝗆𝗎

(32)

2. Left and right unitality: the following diagrams must commute:

𝑀 𝑀 #𝑀

𝑀

𝗎𝗇𝑀

id𝑀
𝗆𝗎

𝑀 𝑀 #𝑀

𝑀

𝑀𝗎𝗇

id𝑀
𝗆𝗎

(33)

Remark 37.3. In terms of components, the unitality conditions state that for
every object 𝑋 ∈ ObC, the following diagram commutes:

𝑀(𝑋) (𝑀 #𝑀)(𝑋)

𝑀(𝑋)

𝗎𝗇𝑀𝑋

id𝑀
𝗆𝗎𝑋

𝑀(𝑋) (𝑀 #𝑀)(𝑋)

𝑀(𝑋)

𝑀𝗎𝗇𝑋

id𝑀
𝗆𝗎𝑋

(34)

The associativity condition states that for every object 𝑋 ∈ ObC, the following
diagram commutes:

(𝑀 #𝑀 #𝑀)(𝑋) (𝑀 #𝑀)(𝑋)

(𝑀 #𝑀)(𝑋) 𝑀(𝑋)

𝑀𝗆𝗎𝑋

𝗆𝗎𝑀(𝑋) 𝗆𝗎𝑋
𝗆𝗎𝑋

(35)

Graded exercise K.1 (PowersetMonad)
The aim of this exercise is to prove in full detail that the powerset functor
𝖯𝗈𝗐 ∶ Set→ Set is a monad, when equipped with the following unit and
multiplication. We define 𝗎𝗇∶ id Set ⇒ 𝖯𝗈𝗐 and 𝗆𝗎∶ 𝖯𝗈𝗐 # 𝖯𝗈𝗐 ⇒ 𝖯𝗈𝗐 in
terms of components: given an object 𝐀 ∈ Set, let

𝗆𝗎𝐀 ∶ (𝖯𝗈𝗐 # 𝖯𝗈𝗐)(𝐀) → 𝖯𝗈𝗐(𝐀)

𝐃 ↦
⋃

𝐒∈𝐃
𝐒

(36)
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532 37. Monads

and
𝗎𝗇𝐀 ∶ 𝐀 → 𝖯𝗈𝗐(𝐀),

𝑥 ↦ {𝑥}.
(37)

To show that ⟨𝖯𝗈𝗐,𝗆𝗎, 𝗎𝗇⟩ is a monad,
1. prove that 𝗎𝗇, as defined in components in (37), is a natural transforma-

tion;
2. prove that 𝗆𝗎, as defined in components in (36), is a natural transforma-

tion;
3. prove that 𝗎𝗇 and 𝗆𝗎 satisfy the associativity condition and the left and

right unitality conditions given in Def. 37.2. For this, work in components,
as in Remark 37.3.

Graded exercise K.2 (FinProbMonad)
Let Set denote the category of sets, let 𝐼𝑑 Set ∶ Set → Set be the identity
functor, and let 𝒫∶ Set→ Set be the functor defined as follows. Given a
set 𝐀, the set 𝒫(𝐀) is the set of finitely supported probability measures on
𝐀. We recall that these are functions 𝑝∶ 𝐀→ [0, 1] with only finitely-many
non-zero values and such that these values sum to 1:

∑

𝑥∈𝐀
𝑝(𝑥) = 1. (38)

On morphisms, 𝒫 is defined thus: for any function 𝑓∶ 𝐀→ 𝐁, the function
𝒫(𝑓)∶ 𝒫(𝐀)→ 𝒫(𝐁) is

𝒫(𝑓)(𝑝)∶ 𝐁 → [0, 1],
𝑦 ↦

∑

𝑥∈𝑓−1({𝑦})

𝑝(𝑥). (39)

Your tasks:
1. Given a set 𝐀, let 𝛿𝐀 ∶ 𝐀→ 𝒫𝐀 be the function

𝛿𝐀(𝑥)(𝑦) = { 1 if 𝑦 = 𝑥
0 else. 𝑥, 𝑦 ∈ 𝐀. (40)

Check that the collection of functions {𝛿𝐀}𝐀∈Ob Set defines a natural trans-
formation 𝛿∶ 𝐼𝑑 Set ⇒ 𝒫.

2. Given a set 𝐀, let 𝜇𝐀 ∶ 𝒫𝒫𝐀→ 𝒫𝐀 be the function defined by

𝜇𝐀(𝑓)(𝑥) =
∑

𝑝∈𝒫𝐀
𝑓(𝑝)𝑝(𝑥) 𝑓 ∈ 𝒫𝒫𝐀, 𝑥 ∈ 𝐀. (41)

Check that the collection of functions {𝜇𝐀}𝐀∈Ob Set defines a natural trans-
formation 𝜇∶ 𝒫𝒫 ⇒ 𝒫.

3. Show that ⟨𝒫, 𝜇, 𝛿⟩ defines a monad on the category Set.

Example: interval construction In the following, we analyze the interval
construction and show that it gives rise to a monad. Given Pos, we define the
action of the 𝐀𝐫𝐫 functor on objects (posets) as

𝐀𝐫𝐫 ∶ Ob Pos → Ob Pos
𝐏↦ 𝐀𝐫𝐫 𝐏

(42)
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and on morphisms as

𝐀𝐫𝐫 𝑓∶ 𝐀𝐫𝐫 𝐏→ 𝐀𝐫𝐫 𝐐
[𝑎, 𝑏]↦ [𝑓(𝑎), 𝑓(𝑏)].

(43)

Furthermore, we define the multiplication as

𝗆𝗎𝑋 ∶ 𝐀𝐫𝐫(𝐀𝐫𝐫 𝑋) → 𝐀𝐫𝐫 𝑋
[[𝛼, 𝛽], [𝛾, 𝛿]] ↦ [min(𝛼, 𝛾), max(𝛽, 𝛿)] = [𝛼, 𝛿],

(44)

and the unit as
𝗎𝗇𝑋 ∶ 𝑋 → 𝐀𝐫𝐫 𝑋

𝑥 ↦ [𝑥, 𝑥].
(45)

First,we need to show that both themultiplication and the unit are indeed natural
transformations. We start with multiplication. On the one hand, we have:

((𝐀𝐫𝐫 #𝐀𝐫𝐫)(𝑓) #𝗆𝗎𝑌)([[𝑎, 𝑏], [𝑐, 𝑑]]) = 𝗆𝗎𝑌([[𝑓(𝑎), 𝑓(𝑏)], [𝑓(𝑐), 𝑓(𝑑)]])
= [𝑓(𝑎), 𝑓(𝑑)].

(46)
On the other hand we have:

(𝗆𝗎𝑋 #𝐀𝐫𝐫)([[𝑎, 𝑏], [𝑐, 𝑑]]) = (𝐀𝐫𝐫 𝑓)([𝑎, 𝑑])
= [𝑓(𝑎), 𝑓(𝑑)].

(47)

The equivalence of (46) and (47) proves naturality. We now check that the unit
defines a natural transformation. We have

(𝑓 # 𝗎𝗇𝑌)(𝑥) = 𝑓(𝑥) # 𝗎𝗇𝑌
= [𝑓(𝑥), 𝑓(𝑥)]

(48)

and
(𝗎𝗇𝑋 #𝐀𝐫𝐫 𝑓)(𝑥) = (𝐀𝐫𝐫 𝑓)([𝑥, 𝑥])

= [𝑓(𝑥), 𝑓(𝑥)]
(49)

Again, equivalence of (48) and (49) proves naturality.
We now need to check associativity and left and right unitality. We start with
associativity. To clearly see the property holding, we need to define intermediate
quantities. We have

𝐀𝐫𝐫𝗆𝗎𝑋 ∶ 𝐀𝐫𝐫(𝐀𝐫𝐫(𝐀𝐫𝐫(𝑋))) → 𝐀𝐫𝐫(𝐀𝐫𝐫 𝑋)
[[[𝛼1, 𝛽1], [𝛾1, 𝛿1]], [[𝛼2, 𝛽2], [𝛾2, 𝛿2]]] ↦ [[𝛼1, 𝛿1], [𝛼2, 𝛿2]]

(50)
and

𝗆𝗎𝐀𝐫𝐫 𝑋 ∶ 𝐀𝐫𝐫(𝐀𝐫𝐫(𝐀𝐫𝐫 𝑋)) → 𝐀𝐫𝐫(𝐀𝐫𝐫 𝑋),
[[[𝛼1, 𝛽1], [𝛾1, 𝛿1]], [[𝛼2, 𝛽2], [𝛾2, 𝛿2]]] ↦ [[𝛼1, 𝛽1], [𝛾2, 𝛿2]].

(51)
With this in mind, it is easy to see that the following diagram commutes.

For left and right unitality, we need to work out two additional quantities:

𝗎𝗇𝐀𝐫𝐫 𝑋 ∶ 𝐀𝐫𝐫 𝑋 → 𝐀𝐫𝐫 𝐀𝐫𝐫 𝑋)
[𝑎, 𝑏] ↦ [[𝑎, 𝑏], [𝑎, 𝑏]],

(52)
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534 37. Monads

and
𝐀𝐫𝐫(𝗎𝗇𝑋)∶ 𝐀𝐫𝐫 𝑋 → 𝐀𝐫𝐫(𝐀𝐫𝐫 𝑋)

[𝑎, 𝑏] ↦ [[𝑎, 𝑎], [𝑏, 𝑏]].
(53)

Monads, computer science definition
For reference, we give the definition of a monad in functional programming, as a
set of operations with particular types.

Definition 37.4 (Monad in functional programming)
A monad ⟨

return, join, fmap, bind, fish, lift
⟩

(54)

is a set of operations with the following signature:

return ∶ 𝑋 → 𝑀𝑋 (55)
lift ∶ (𝑋 → 𝑌)→ (𝑋 → 𝑀𝑌) (56)
fish ∶ (𝑋 → 𝑀𝑌)→ (𝑌 → 𝑀𝑍)→ (𝑋 → 𝑀𝑍) (57)
join ∶ 𝑀𝑀𝑋 → 𝑀𝑋 (58)
fmap ∶ (𝑋 → 𝑌)→ (𝑀𝑋 → 𝑀𝑌) (59)
bind ∶ 𝑀𝑋 → (𝑋 → 𝑀𝑌)→ 𝑀𝑌 (60)

These maps satisfy the equivalent axioms of unitality and associativity:
⊳ return is a left identity for bind;
⊳ return is a right identity for bind;
⊳ bind is associative.
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37.3. The Kleisli construction
We return now to the discussion from the opening section of this chapter, in order
to spell out further the relationship to monads.

Definition 37.5 (Kleisli morphisms)
Let ⟨𝑀,𝗆𝗎, 𝗎𝗇⟩ be a monad on a category C, and let 𝑋,𝑌 ∈ ObC. A Kleisli
morphism 𝑋 → 𝑌 is a morphism of C of the form 𝑋 → 𝑀𝑌.

Definition 37.6 (Kleisli composition)
Let ⟨𝑀,𝗆𝗎, 𝗎𝗇⟩ be amonadon a categoryC, let𝑋,𝑌, 𝑍 ∈ ObC, and let𝑓∶ 𝑋 →
𝑀𝑌 and 𝑔∶ 𝑌 → 𝑀𝑍 be morphisms in C (so, they are Kleisli morphisms).
Their Kleisli composition is the morphism in C given by the composition

𝑋
𝑓
→ 𝑀(𝑌)

𝑀𝑔
→ (𝑀 #𝑀)(𝑍)

𝗆𝗎𝑍→ 𝑀(𝑍). (61)

Definition 37.7 (Kleisli category)
Let ⟨𝑀,𝗆𝗎, 𝗎𝗇⟩ be a monad on a category C. The Kleisli category C𝑀 of the
monad𝑀 is specified by:
1. Objects: Ob(C𝑀) ∶= Ob(C);
2. Morphisms: HomC𝑀 (𝑋,𝑌) ∶= HomC(𝑋,𝑀(𝑌));
3. Identities: id𝑋 ∶= 𝗎𝗇𝑋 ;
4. Composition: Kleisli composition.

Graded exercise K.3 (HwkRelKleisli)
Let Set denote the category of sets and 𝖯𝗈𝗐 ∶ Set → Set the powerset
functor which assigns, to any given set 𝐀, the set of subsets of 𝐀. The endo-
functor 𝖯𝗈𝗐may be equipped with the structure of a monad ⟨𝖯𝗈𝗐,𝗆𝗎, 𝗎𝗇⟩,
where the components of the natural transformations 𝗆𝗎 and 𝗎𝗇 are given,
respectively, by the functions

𝗆𝗎𝐀 ∶ 𝖯𝗈𝗐 𝖯𝗈𝗐𝐀 → 𝖯𝗈𝗐𝐀

𝐂 ↦
⋃

𝐁∈𝐂
𝐁

(62)

and
𝗎𝗇𝐀 ∶ 𝐀 → 𝖯𝗈𝗐𝐀,

𝑥 ↦ {𝑥}.
(63)

Let Set𝖯𝗈𝗐 denote the Kleisli category of the monad ⟨𝖯𝗈𝗐,𝗆𝗎, 𝗎𝗇⟩. The aim
of this exercise is to show that the category Set𝖯𝗈𝗐 and the category Rel of
sets and relations are isomorphic as categories.
We define functors 𝐹∶ Set𝖯𝗈𝗐 → Rel and 𝐺∶ Rel → Set𝖯𝗈𝗐 as follows.
On objects 𝐹 is the identity function, and given a function 𝑓∶ 𝐀→ Set 𝖯𝗈𝗐𝐁
(in other words, a Kleisli morphism 𝑓∶ 𝐀 → Set𝖯𝗈𝗐 𝐁) we let 𝐹(𝑓) be the
relation

𝐹(𝑓) = {⟨𝑥, 𝑦⟩ ∈ 𝐀 × 𝐁 ∣ 𝑦 ∈ 𝑓(𝑥)}. (64)

The functor𝐺 is also defined to be the identity function on objects, and given
a relation 𝑅∶ 𝐀→ 𝐁, we let 𝐺(𝑅) be the Kleisli morphisms represented by
the following function:

𝐺(𝑅)∶ 𝐀→ Set 𝖯𝗈𝗐𝐁, 𝑥 ↦ {𝑦 ∈ 𝐁 ∣ ⟨𝑥, 𝑦⟩ ∈ 𝑅}. (65)
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536 37. Monads

Your tasks:
1. Prove that 𝐹 ∶ Set𝖯𝗈𝗐 → Rel and 𝐺 ∶ Rel → Set𝖯𝗈𝗐 are in fact

functors.
2. Prove that 𝐹 is an isomorphism of categories, with inverse 𝐺.
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37.4. Algebras of a monad
In the context of Kleisli morphisms, we developed the intuition that monads can
be used to encode “generalized objects” and “generalized morphisms”. In this
section we will introduce a different intuition for monads: that they can be used
to provide coherent way to encode “formal expressions”, together with a way to
“evaluate” or “compute” such expressions.
Let us explain what we mean using an example. Given a set 𝐀, say

𝐀 = { , , }, (66)

let’s define a certain type of “formal expressions”, using elements of 𝐀 and using
a “formal composition symbol”, which we choose to be “∗”. Now, the “formal
expressions” we consider are all finite expressions which have a form such as

∗ ∗ , (67)

or
∗ ∗ ∗ ∗ ∗ , (68)

and so on. These expressions are “formal” (or “purely symbolic”) in the sense that,
a priori, the symbol “∗” does not have anymeaning beyond simply being a symbol,
a “marking”. After all, so far, 𝐀 is just a set, and we did not assume that it comes
equipped with any sort of “multiplication operation”, for instance. In the follow-
ing we will discuss a way of giving such formal expressions a “computational
meaning” by specifying a way to evaluate them.
Before we come to this however, let us introduce a notation to explicitly dis-
tinguish when we are thinking about as an element of 𝐀, or as a “formal
expression”. For the latter situation we write “[ ]”. In other words, the square
brackets indicate that [ ] is a formal expression. And we’ll say that formal ex-
pressions can be combined, using ∗, to larger formal expressions. So, following
this convention, [ ] ∗ [ ] is also a formal expression. And in particular, instead
of (68), we’ll write

[ ] ∗ [ ] ∗ [ ] ∗ [ ] ∗ [ ] ∗ [ ]. (69)

In an expression such as (69) we’ll think of the components [ ] and [ ] as if
they are “letters” (but we won’t count “∗” as a letter) and we’ll think of the whole
expression (69) like a “word”. For any suchword, we’ll say its length is the number
of letters it is built from. So, for instance, the word in (69) has a length of 6. In
our notion of formal expression, we’ll choose to include a unique special word of
length 0, which we call the “empty formal expression” and denote by “[ ]”.
Using square brackets we can also build “formal expressions of formal expres-
sions” or “second-order formal expressions”. For example, given the formal ex-
pression [ ] ∗ [ ], we can turn it into a second-order formal expression by
putting brackets around it:

[[ ] ∗ [ ]]. (70)

And given another second-order formal expression, say [[ ] ∗ [ ] ∗ [ ]], we
can “compose” it with the one in (70) like so:

[[ ] ∗ [ ]] ∗ [[ ] ∗ [ ] ∗ [ ]]. (71)

The notion of length will also apply to second-order expressions. For instance,
the second-order expression (71) has length 2, and is composed of one first-order
expression of length 2 and one first-order expression of length 3.
This whole game can continue ad infinitum: we define third-order formal ex-
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538 37. Monads

pressions to be those with three-layers of square brackets, fourth-order formal
expressions have four layers of brackets, and so on. In the following,we’ll probably
only ever consider up to three layers.
We started our story just with the set 𝐀 = { , , }. However, we can do the
same construction – using “∗” and building formal expressions of any order –
with any set. In fact, we can define a functor 𝐹 ∶ Set→ Setwhich maps any set
𝐀 to the set 𝐹𝐀 whose elements are all finite first-order formal expressions built
from elements of 𝐀. We also include this to mean the empty formal expression
“[]”. What might this functor do on the level of morphisms? For concreteness,
let 𝐀 = { , , } and 𝐁 = { , }. Given a function 𝑓∶ 𝐀→ 𝐁, we define

𝐹(𝑓) ∶ 𝐹(𝐀)→ 𝐹(𝐀) (72)

to act on (first-order) expressions like so

𝐹(𝑓)([ ] ∗ [ ]) = [𝑓( )] ∗ [𝑓( )]. (73)

It turns out that this functor 𝐹 ∶ Set→ Set can be made into a monad!
Let us explain how the unit and multiplication for this monad are defined. For
any set 𝐀, the component of the unit at 𝐀 is

𝗎𝗇𝐀 ∶ 𝐀 → 𝐹𝐀,
𝑥 ↦ [𝑥].

(74)

The multiplication is a bit more of a mouthful. Its component at 𝐀,

𝗆𝗎𝐀 ∶ (𝐹 # 𝐹)𝐀→ 𝐹𝐀, (75)

is the function which takes a second-order formal expression
[
[𝑥11] ∗ [𝑥12] ∗⋯ ∗ [𝑥1𝑘1]

]
∗⋯ ∗

[
[𝑥𝑛1] ∗ [𝑥𝑛2] ∗⋯ ∗ [𝑥𝑛𝑘𝑛 ]

]
(76)

and “collapses” it to the first-order expression

[𝑥11] ∗ [𝑥12] ∗⋯ ∗
[
𝑥1𝑘1

]
∗⋯ ∗ [𝑥𝑛1] ∗ [𝑥𝑛2] ∗⋯ ∗

[
𝑥𝑛𝑘𝑛

]
. (77)

In other words, this operation simply “removes the outer brackets” from a second-
order formal expression.

Graded exercise K.4 (ListMonad)
Let 𝐹 ∶ Set→ Set be the functor above that sends any set 𝐀 to the set of
first-order formal expressions of the form

[𝑥1] ∗ [𝑥2] ∗⋯ ∗ [𝑥𝑛] 𝑥𝑖 ∈ 𝐀, 𝑛 ∈ ℤ≥0, (78)

and let 𝗆𝗎𝐀 and 𝗎𝗇𝐀 be defined as above.
Show that:
1. the components 𝗆𝗎𝐀 define a natural transformation 𝗆𝗎 ∶ 𝐹 # 𝐹 ⇒ 𝐹;
2. the components 𝗎𝗇𝐀 define a natural transformation 𝗎𝗇 ∶ Id Set → 𝐹;
3. 𝗆𝗎 and 𝗎𝗇 satisfy the conditions for ⟨𝐹,𝗆𝗎, 𝗎𝗇⟩ to be a monad.

Now let’s finally talk about giving formal expressions a computational meaning: a
way to evaluate them. The way we will do this is to define a notion of “evaluation
map” 𝑎 ∶ 𝐹𝐀 → 𝐀 which we will interpret as a way of specifying how any
formal expression – an element of 𝐹𝐀 – should be evaluated (or: computed) to an
element of 𝐀. We will require such evaluation maps to additionally satisfy two
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coherence conditions, and the resulting mathematical structure will be what is
called an algebra of the monad 𝐹.

Definition 37.8 (Algebra of a monad)
Let ⟨𝑀,𝗆𝗎, 𝗎𝗇⟩ be a monad on a category C. An algebra of𝑀 (also called
an𝑀-algebra) is specified by:
Constituents
1. an object 𝑋 of C;
2. a morphism 𝑎∶ 𝑀(𝑋)→ 𝑋 of C.
Conditions
1. Composition: the following diagram commutes:

(𝑀 #𝑀)(𝑋) 𝑀(𝑋)

𝑀(𝑋) 𝑋

𝑀𝑎

𝗆𝗎𝑋 𝑎

𝑎

(79)

2. Unit: the following diagram commutes:

𝑋 𝑀(𝑋)

𝑋

𝗎𝗇𝑋

id
𝑎

(80)

Definition 37.9 (𝑀-algebra morphism)
Let ⟨𝑀, 𝗎𝗇,𝗆𝗎⟩ be a monad on a category C, and let ⟨𝑋1, 𝑎1⟩ and ⟨𝑋2, 𝑎2⟩ be
algebras of𝑀. A morphism ⟨𝑋1, 𝑎1⟩→ ⟨𝑋2, 𝑎2⟩ of𝑀-algebras is specified
by:
Constituents
1. A morphism 𝑓∶ 𝑋1 → 𝑋2 in C.
Conditions
1. The following diagram commutes:

𝑀(𝑋1) 𝑀(𝑋2)

𝑋1 𝑋2

𝑀𝑓

𝑎1 𝑎2

𝑓

(81)

Definition 37.10 (Category of𝑀-algebras)
Let ⟨𝑀, 𝗎𝗇,𝗆𝗎⟩ be a monad on a category C. The category of𝑀-algebras C𝑀
of the monad𝑀 is specified by:
1. Objects:𝑀-algebras;
2. Morphisms:𝑀-algebra morphisms;
3. Identities: given an𝑀-algebra ⟨𝑋, 𝑎⟩, its identity morphism is id𝑋 ;
4. Composition: is induced by the composition of morphisms in C.

Proposition 37.11. There is an𝑀-algebra structure on 𝑋 if and only if there is a
monoidal structure on 𝑋. The correspondence is as follows:
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⊳ The neutral element of 𝑋 corresponds to 𝑎([]).
⊳ The composition in 𝑋 corresponds to the action of 𝑎:

[𝑥1] ∗ [𝑥2]
𝑎
→ 𝑥1 # 𝑥2. (82)

⊳ The associativity and unitality of monoid composition are encoded by the
𝑀-algebra axioms.

𝑋 = {0, 1, 2, 3, …} (83)

𝑎∶ 𝑀𝑋 → 𝑋
[]↦ 0
[𝑥]↦ 𝑥

[𝑥] ∗ [𝑦]↦ 𝑥 + 𝑦

(84)

Graded exercise K.5 (HwkFreeAlgebras)
Let ⟨𝑀,𝗆𝗎, 𝗎𝗇⟩ be a monad on a category C, and let 𝑋 be an object of C.
Your task is to prove that the object𝑀𝑋, together with the morphism

𝗆𝗎𝑋 ∶ 𝑀𝑀𝑋 → 𝑀𝑋 (85)

defines an algebra for the monad𝑀. Hint: use the axioms/conditions in the
definition of a monad.
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37.5. Monads from Adjunctions
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Solutions to selected exercises
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Example exams 555

When one thinks about Switzerland and the alps, one usually thinks about snow. Starting from 1,500 m height, most areas are covered
in snow during winter (from December to March). Some areas (above 3,000 m), are always covered in snow.





Nomenclature

symbol meaning defined in
Generic symbols

Booleans
⊤ True
⊥ False
∧ Boolean and
∨ Boolean or
⇒ Implies
⇔ Equivalence

Categories

Adjunctions
𝐿 Left adjunct functor →Def. 24.18 on p.334
𝑅 Right adjunct functor →Def. 24.18 on p.334
𝐿 ⊣ 𝑅 𝐿 and 𝑅 are adjoint functors. →Def. 24.18 on p.334
𝜏 Adjunction isomorphism →Def. 24.18 on p.334
un Unit →Def. 24.20 on p.335
co Co-unit →Def. 24.20 on p.335

Arrows
→ Set arrow
→ Morphism arrow
⟶ Morphism arrow
← Morphism arrow
→ Functors arrow
⇒ Natural transformation arrow
≅
,→
,↦ profunctor arrow

Companion/conjoints

Composition
𝑓 # 𝑔 Composition of morphisms
# Composition for functors
# Composition for natural transformations
𝐹 # 𝐺 Composition of functors
ObA Objects of the category A. →Def. 13.9 on p.192
MorA Collection of all morphisms of the category A. →Def. 13.9 on p.192
id𝑋 Identity morphism for the object 𝑋 →Def. 13.9 on p.192
HomA(𝑋;𝑌) Hom-set between 𝑋 and 𝑌. →Def. 13.9 on p.192

Constructors
Free free construction →Def. 13.18 on p.198
𝐀𝐫𝐫A Arrow construction on category A.
𝐓𝐰A Twisted arrow construction on category A. →Def. 16.10 on p.240

Generic names
𝑓, 𝑔, ℎ, 𝑖 Generic morphisms →Def. 13.9 on p.192
𝐹, 𝐺,𝐻,𝐾 Generic functors →Def. 19.2 on p.280
idA Identity functor for category A



symbol meaning defined in
𝛼, 𝛽, 𝛾, 𝛿 Generic natural transformations →Def. 23.1 on p.310
id𝐹 Identity natural transformation for functor 𝐹

Monoidal categories
⊗⊗⊗ Stacking category objects semigroup operation
⊗⊗⊗ Stacking category morphisms semigroup operation
⊗⊗⊗A Monoidal product for category A. →Def. 25.26 on p.359
𝟏 Identity object for monoidal operation →Def. 25.26 on p.359
𝗅𝗎 Left unitor →Def. 25.26 on p.359
𝗋𝗎 Right unitor →Def. 25.26 on p.359
𝖺𝗌 Associator →Def. 25.26 on p.359
𝖻𝗋 Braiding →Def. 25.26 on p.359
𝜇 Isomorphism for strong monoidal functor →Def. 25.31 on p.364
𝑢 Natural isomorphism for strong monoidal functor →Def. 25.31 on p.364
ev evaluation map for dualizable objects
coev coevaluation map for dualizable objects

Well-known categories
DP Category of design problems →Def. 15.12 on p.226
Feas Synonym of DP →Def. 15.12 on p.226
UDP
DPI Semi-category DPI →Def. 29.1 on p.414
Bool Posets/category of Booleans
Cat Category of small categories →Def. 22.3 on p.301
FinVect Category of finite-dimensional vector spaces
Vectℝ Category of real vector spaces →Def. 25.13 on p.352
Rel Category of sets and relations →Def. 14.1 on p.203
FinSet Category of finite sets and functions →Example 20.2 on p.290
Set Category of sets and functions →Def. 13.11 on p.193
InjSet Category of sets and injective functions →Example 20.5 on p.292
ℙrof Category of profunctors
Pos Category of posets and monotone maps →Def. 14.8 on p.206
Lat Category of lattices and lattice homomorphisms →Def. 31.18 on p.448
BoundedLat Category of lattices and lattice homomorphisms →Def. 31.19 on p.448
Grph Category of directed graphs →Def. 14.14 on p.208
Eff The effects category →Def. 25.13 on p.352
EndSet Category of endofunctions
Set∗ Category of pointed sets
EquivRel Category of equivalence relations
Euc∗ Category of pointed Euclidean spaces
Grph Category of graphs →Def. 12.2 on p.180
LTI →Def. 18.22 on p.271
Beh
LBeh
⦉ Rel⦊ category of tuple-sets and relations →Def. 25.35 on p.367
⦉ Set⦊ →Def. 18.3 on p.258
⦉ Pos⦊ category of tuple-posets and monotone maps →Def. 25.33 on p.367
⦉ DP⦊ Category of lists of DPs →Def. 25.37 on p.368

Operations
× Product in a category
+ Product in a category
+ Disjoint union of posets
+ Co-product in a category
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× Product in a category
+ Product in a category

Traced monoidal categories
Tr Trace operator →Def. 27.1 on p.384
Fb Feedback operator →Def. 27.1 on p.384
𝖢𝗈𝗇𝗐 Conway operator

DP

Computational representation
𝑘
𝐾
ℎ
𝐻

Formalization
𝑓 A generic functionality in 𝐅. →Def. 29.1 on p.414
𝑟 A generic cost in 𝐑.
𝑖 A generic implementation in in 𝐈. →Def. 29.1 on p.414
𝐅 Functionality space
𝐑 Requirements space →Def. 29.1 on p.414
𝐈 Implementation space →Def. 29.1 on p.414
𝗉𝗋𝗈𝗏∶ 𝐈→ 𝐅 functionality of an implementation →Def. 29.1 on p.414
𝗋𝖾𝗊∶ 𝐈→ 𝐑 requirements of an implementation →Def. 29.1 on p.414

Queries in 𝐷𝑃
𝖥𝖾𝖺𝗌𝗂𝖻𝗂𝗅𝗂𝗍𝗒 →Section 29.3 on p.424
𝖥𝖾𝖺𝗌𝗂𝖻𝗅𝖾𝖨𝗆𝗉 →Section 29.3 on p.423
𝖥𝗂𝗑𝖥𝗎𝗇𝖬𝗂𝗇𝖱𝖾𝗌 →Section 29.3 on p.423
𝖥𝗂𝗑𝖥𝗎𝗇𝖥𝖾𝖺𝗌𝖱𝖾𝗌
𝖥𝗂𝗑𝖱𝖾𝗌𝖬𝖺𝗑𝖥𝗎𝗇 →Section 29.3 on p.423
𝖥𝗂𝗑𝖱𝖾𝗌𝖥𝖾𝖺𝗌𝖥𝗎𝗇

DP
𝐝, 𝐞, 𝐠 Generic design problems as profunctors
𝗏𝖽𝖼 Van Der Corput sequence

Groups
id identity for group →Def. 9.34 on p.144
G,H Generic group names →Def. 9.34 on p.144
𝐆,𝐇 Underlying set of groups. →Def. 9.16 on p.141
𝗂𝗇𝗏 Group inverse →Def. 9.34 on p.144
𝑥, 𝑦, 𝑧 Generic group elements
# Group composition operation →Def. 9.34 on p.144

Linear Algebra
𝟎 Zero matrix
𝟏 Identity matrix
𝖽𝖾𝗍𝐴 matrix determinant (as functor)
𝒫+ Positive-definite matrices

Monoids
id identity for monoid →Def. 9.16 on p.141
M,N,… Generic monoid names →Def. 9.16 on p.141
𝐌,𝐍,… Underlying sets for the monoids. →Def. 9.16 on p.141
𝑥, 𝑦, 𝑧 Generic monoid elements →Def. 9.16 on p.141
𝑚, 𝑛 Generic monoid elements →Def. 9.16 on p.141
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# Semigroup/monoid/group operation →Def. 9.16 on p.141

Posets

Attributes
𝗐𝗂𝖽𝗍𝗁(𝐏) Width of the poset 𝐏. →Def. 5.19 on p.99
𝗁𝖾𝗂𝗀𝗁𝗍(𝐏) Height of the poset 𝐏. →Def. 5.20 on p.99

Poset constructors
× Product of posets
𝐀𝐫𝐫 𝐏 Arrow construction on poset 𝐏. →Def. 6.10 on p.108
𝐓𝐰 𝐏 Twisted arrow construction on poset 𝐏. →Def. 6.9 on p.106
𝔼 expectedvalue
𝟏 singleton poset
⊥ global dualizing object
P a polycategory
Q a polycategory
𝚪 a polycategory
Γ a polycategory
𝚫 a polycategory
∆ a polycategory
𝚲 a polycategory
𝚺 a polycategory

Constructors
𝖠𝗇𝗍𝗂𝐏 The set of antichains of a poset 𝐏. →Def. 5.14 on p.97
𝖠𝗇𝗍𝗂f 𝐏 The set of finite antichains of a poset 𝐏.
𝐿𝐏 = ⟨𝖴𝖲𝖾𝗍𝗌𝐏, ⊆⟩ Poset of upward-closed lowerset of 𝐏 ordered

by ⊆.
→Def. 8.11 on p.127

𝑈𝐏 =
⟨
𝖴𝗉𝖲𝖾𝗍𝗌𝐏, ⊇

⟩
Poset of downward-closed uppersets of 𝐏

ordered by ⊇.
𝑈f𝐏 ⊆ 𝑈𝐏 Poset of finitely-supported upper sets of a poset 𝐏. →Def. 36.13 on p.504

Domain theory
lfp Least fixed point
CPO Complete partial order →Def. 36.2 on p.500
DCPO Directed-complete partial order →Def. 36.2 on p.500

Generic poset names
𝐏,𝐐,𝐑 Generic posets →Def. 5.3 on p.91
𝐏,𝐐,𝐑 Underlying set for the posets →Def. 5.3 on p.91
⪯𝐏 Order on poset 𝐏
𝖯𝗈𝗐𝐀 Power poset of 𝐀. →Def. 5.12 on p.96

Monoidal posets
⊗ Monoidal poset operation

Operations on elements
𝑥 ∨ 𝑦 Join of two elements 𝑥, 𝑦 →Def. 31.8 on p.444
𝑥 ∧ 𝑦 Meet of two elements 𝑥, 𝑦 →Def. 31.8 on p.444

Operations on sets
Min⪯𝐏 𝐒 Minimal elements of the subset 𝐒. →Def. 8.1 on p.124
Max⪯𝐏 𝐒 Maximal elements of the subset 𝐒. →Def. 8.2 on p.124
𝖨𝗇𝖿 ⪯𝐏𝐒 Infimum element of the subset 𝐒. →Def. 8.7 on p.125
𝖲𝗎𝗉 ⪯𝐏𝐒 Supremum element of the subset 𝐒. →Def. 8.3 on p.125
↑↑ 𝐒 Upper closure of 𝐒. →Def. 8.12 on p.128
↓↓ 𝐒 Lower closure of 𝐒. →Def. 8.16 on p.128
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Symbols

⊤𝐏 Top of poset 𝐏 →Def. 8.9 on p.126
⊥𝐏 Bottom of poset 𝐏 →Def. 8.9 on p.126

Relations

-

Rings
1 identity for ring →Def. 9.58 on p.149
0 identity for ring →Def. 9.58 on p.149
R Generic ring names
𝐑, 𝐒 Underlying set of rings.
𝐒 Underlying set of S.
K Generic ring names
𝐑, 𝐒 Underlying set of rings.
𝐋 Underlying set of L.

Semigroups

Semigroups
S,T,U Generic semigroup names.
𝐒,𝐓,𝐔 Generic names for underlying carrier set of a semigroup.
log Matrix logarithm
exp Matrix exponential
𝑥, 𝑦, 𝑧 Generic semigroup elements
𝐹, 𝐺 Generic semigroup morphisms.

Sets

Constructors
𝖯𝗈𝗐𝐀 Powerset of 𝐀
𝖯𝗈𝗐𝐀 Power set of 𝐀. →Def. 3.6 on p.37

Generic sets and elements
|𝑥| norm of vector 𝑥
cod𝑓 Codomain of function 𝑓 →Section 3.4 on p.42
dom𝑓 Domain of function 𝑓 →Section 3.4 on p.42
∩ Set intersection
∪ Set union
𝑥 ∈ 𝐀 The element 𝑥 belongs to the set 𝐀.
𝑥 ̸∈ 𝐀 The element 𝑥 does not belong to the set 𝐀.
𝐀 ⊆ 𝐁 The set 𝐀 is a subset of 𝐁.
⊂ subset
𝐀 ⊇ 𝐁 The set 𝐀 is a superset of 𝐁.

Well-known sets.
∅ Empty set
ℂ Complex numbers
ℝ Real numbers
ℕ Natural numbers: 0, 1, 2,…
ℤ Integers: 0, 1,−1, 2,−2,…
ℚ Rational numbers
ℝ>𝟎 Positive real numbers
ℝ≥0 Non-negative real numbers
ℝ≥0 Completion of non-negative real numbers.
𝟏 Singleton set, containing the element ∙.
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ℝ[m] A copy of ℝ with units of meters

Operations
𝐀 × 𝐁 Cartesian product of two sets. →Def. 3.7 on p.39
𝑓 × 𝑔 Product of two functions
𝑓 + 𝑔 Direct sum of two functions
𝐀+ 𝐁 Disjoint union of two sets.
⟨1, 𝑎⟩, ⟨1, 𝑏⟩ Decorated elements of disjoint union
𝗂𝗇1, 𝗂𝗇2 Injections into 𝐀+ 𝐁.

Well-known functions
id𝐀 Identity map on 𝐀
𝖼𝖾𝗂𝗅 ceiling function →Example 7.17 on p.121
𝖿 𝗅𝗈𝗈𝗋 floor function →Example 7.17 on p.121
𝗋𝗍𝗇𝗍𝗍𝖾 Round to nearest, ties to even →Example 7.17 on p.121

Tuples
⟨ ⟩ zero-size tuple
[ ] zero-size list

Specific use in Volume 1
Part D - Algebra

Chapter 10 - Morphisms

ASCII example
emchar includes spaces

Morse code
∙ Morse dot
−−− Morse dash
𝑠1 Silence between dots and dashes
𝑠3 Silence between letters
𝑠7 Silence between words

Beep of 𝓁
Beep of 3𝓁
Silence of 𝓁
Silence of 3𝓁
Silence of 7𝓁

Chapter 11 - Actions
Moo Category of Moore machines →Def. 18.6 on p.261
Mor Category of More machines →Def. 18.12 on p.268
𝑃effort effort
𝑃track tracking

Matrix groups
O(𝑛,ℝ) Orthogonal group →Def. 9.49 on p.146
SO(𝑛,ℝ) Special orthogonal group →Def. 9.51 on p.146
GL(𝑛,ℝ) General linear group →Def. 9.48 on p.146
SL(𝑛,ℝ) Special linear group →Def. 9.50 on p.146
E(𝑛,ℝ) Euclidean group →Def. 11.14 on p.171
SE(𝑛,ℝ𝑛) Special euclidean group →Def. 11.15 on p.171

Part E - Categories

-
Curr Currency category →Def. 15.3 on p.217
Temp Temperature category →Exercise 36 on p.218
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Berg The category of Swiss mountains →Def. 15.2 on p.214
BergAma →Section 20.4 on p.293
BergLazy →Section 20.4 on p.293

Chapter 18 - (Semi)Category actions

Procedures
ProcTime Procedures with execution time →Def. 15.13 on p.230
𝗌𝗂𝗓𝖾 Size of datatype →Def. 15.13 on p.230
ProcSize Procedures with sized sets →Def. 15.15 on p.231
𝜎 →Def. 15.15 on p.231
ProcSizeTime Procedures with size-dependent durations →Def. 15.16 on p.231
𝖽𝗎𝗋 →Def. 15.16 on p.231

Part F - Functors

Chapter 19 - Translation
Plans

Chapter 20 - Specialization

drawings
Draw Category of drawings →Def. 20.4 on p.291

Part I - Co-Design

Construction
𝖽𝗂𝖺𝗀𝑃 Diagonal function →Def. 33.1 on p.460
𝖼𝗈𝖽𝗂𝖺𝗀𝑃 Co-diagonal function →Def. 33.2 on p.460

Part K - Compositional computation

Chapter 37 - Monads
𝑀,𝑁 Generic monads. →Def. 37.2 on p.531
𝗎𝗇 Monad unit →Def. 37.2 on p.531
𝗆𝗎 Monad identity →Def. 37.2 on p.531
fish →Def. 37.4 on p.534
lift →Def. 37.4 on p.534
join →Def. 37.4 on p.534
bind →Def. 37.4 on p.534
fmap →Def. 37.4 on p.534
return →Def. 37.4 on p.534
𝑈 upper-set endofunctor
𝑈 upper-set monad
𝐿 lower-set endofunctor
𝐿 lower-set monad

To categorize
∶= “defined as”





Example exams

1 Exam 1 . . . . . . . . . . . . . . . . 556This chapter contains some examples of the style of the ETH class
exam. Both sample exams are thought to last 90 minutes and to be
open book (all notes allowed).



1. Exam 1
Example 1: Uncertain Machines
Consider the category of Moore machines acting on signals as described in the
course. Assuming the input/output sets are also ordered sets (posets), construct
the Kleisli category corresponding to the interval monad 𝑈. That is, the signals
are closed intervals of values. Call this categoryUMoore.
1. (30%) IsUMoore a monoidal category?
2. (20%) IsUMoore a traced monoidal category?
3. (50%) Would the answers be the same if asked about the More category?

Example 2: Machines with resources consumption
Consider the category of Moore machines. We want to be more precise about
resource consumption and want to define an extension of Moore machines in
which each machine also has associated a certain time 𝑇1 ≥ 0 to run the dynamic
function dyn and a certain time 𝑇2 ≥ 0 for running the readout function ro. We
call these resource-Moore machines (RMoore).
1. (30%) Formalize the RMoore category giving formulas for identities, compo-

sitions, and proof of associativity.
2. (70%) Suppose that you want to design the software for a robot. You are given

the wiring diagram of the architecture, in which you have to plug in specific
RMooremachines to implement the algorithmic functionality. Assume that
the wiring diagram does not contain any loop - only series and parallel com-
position, and that there is only one input (robot observations) and one output
(robot commands). For each hole in the diagram, you are given a set of 1 or
more RMooremachines that can implement the functionality. Assume that
the computer on which to run everything has𝑁 ≥ 1 processors. Think of each
processor as a “lane” in which the operations of each machine are cars that
must run sequentially.
Formalize the design problem in the category DPI that corresponds to choos-
ing the best combination of machines and the best assignment to proces-
sors. Include as a resource the number of processors and as functionality the
throughput of the system (how many commands are generated per second).
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