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1. A tour of MCDPL

This chapter provides a tutorial on the language MCDPL and related tools.

1.1. What MCDPL is

MCDPL is amodeling language that can be used to formally describemonotone co-design problems. This means that MCDPL allows
describing variables and systems of constraints between variables. MCDPL is not a generic programming language. It is not possible to
write loops or conditional statements.
MCDPL is designed to represent all and only MCDPs (Monotone Co-Design Problems). This means that variables belong to partially
ordered sets, and all relations are monotone. For example, multiplying by a negative number is a syntax error.
MCDPs can be interconnected and composed hierarchically. Several features help organize the models in reusable “libraries”.
Once an MCDP model is described, then we can query it in various ways. Another way to see this is that an MCDP model is not a single
optimization problem, but rather a collection of optimization problems.
This chapter describes the MCDPL modeling language by way of a tutorial. A more formal description is given in Part B.

1.2. Graphical representations of design problems

Monotone design problems are graphically represented as in Fig. 1.
A design problem is represented by a box with curved corners. On the left, solid green arrows represent functionalities; on the right,
dashed red arrows represent requirements.

Functionalities
⟨𝐅, ⪯𝐅⟩ Model

f₁: SB(≥0) g

f₂: SB(≥0) J

f₃: SB(≥0) m

r₁: SB(≥0) lux

r₂: SB(≥0) USD

Requirements
⟨𝐑, ⪯𝐑⟩

Figure 1.: Representation of a design problem with three functionalities (f_1, f_2, f_3) and two requirements (r_1, r_2). In this case, the
functionality space 𝐅 is the product of three copies of ℝ≥0: 𝐅= ℝ≥0[g] × ℝ≥0[J] × ℝ≥0[m] and 𝐑= ℝ≥0[lux] × ℝ≥0[USD].

The graphical representation of a co-design problem is as a set of design problems that are interconnected (Fig. 2). A functionality and a
requirement edge can be joined using a ⪯ sign. This is called a “co-design constraint”.
In the figure below, there are two subproblems called 𝑎 and 𝑏, and the co-design constraints are 𝑟1 ⪯ 𝑓3 and 𝑟3 ⪯ 𝑓2.

≤

≥

f r

a
f₁
f₂ r₁

b

f₃ r₂r₃

Figure 2.: Example of a co-design diagram with two design problems, a and b. The co-design constraints are 𝑟1 ⪯ 𝑓3 and 𝑟3 ⪯ 𝑓2.

1.3. Your first model

An MCDP is described using the keyword mcdp. The simplest MCDP is shown in Listing 1. In this case, the body is empty, and that means
that there are no functionality and no requirements.
The representation of this MCDP is as in Fig. 3: a simple box with no signals in or out.
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Listing 1: empty.mcdp
Figure 3.

mcdp {

}

Adding functionality and requirements

The functionality and requirements of an MCDP are defined using the keywords provides and requires.
The code in Listing 2 defines an MCDP with one functionality, capacity, measured in joules, and one requirement, mass, measured in
grams.
The graphical representation is in Fig. 4.

Listing 2: model1.mcdp
Figure 4.

mcdp {
provides capacity [J]
requires mass [g]

}

capacity mass
⚠

⚠

That is, the functionality space is 𝐅= ℝ≥0[J] and the resource space is 𝐑= ℝ≥0[g]. Here, let ℝ≥0[g] refer to the nonnegative real numbers
with units of grams.
The MCDP defined above is, however, incomplete, because we have not specified how capacity and mass relate to one another. In the
graphical notation, the co-design diagram has unconnected arrows (Fig. 4).

1.3.1. Constraining functionality and requirements

In the body of the mcdp declaration one can refer to the values of the functionality and requirements using the expressions provided
functionality name and required requirement name. For example, Listing 3 shows the completion of the previous MCDP, with hard bounds
given to both capacity and mass.
The visualization of these constraints is as in Fig. 5.

Listing 3
Figure 5.

mcdp {
provides capacity [J]
requires mass [g]
provided capacity ≤ 500 J
required mass ≥ 100 g

}

capacity mass

100 g ≤ r

f ≤ 500 J

It is possible to query this minimal example. For example, we can ask through the command-line interface to solve for the minimal
requirements given the functionality constraint of 400 J, using the command:

mcdp co-design solve minimal "400 J"

The answer is:
Minimal resources needed: mass = ↑ {100 g}

If we ask for more than the MCDP can provide:

mcdp co-design minimal "600 J"

we obtain no solutions: this problem is unfeasible.
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1.3.2. Use of Unicode glyphs in the language

To describe the inequality constraints, MCDPL allows to use “<=”, “>=”, as well as the Unicode versions “≤”, “≥”, “⪯”, “⪰”.
These two snippets are equivalent:

using ASCII characters using Unicode characters

provided capacity <= 500 J
required mass >= 100g

provided capacity ≤ 500 J
required mass ≥ 100g

MCDPL also allows to use some special letters in identifiers, such as Greek letters and subscripts.
These two snippets are equivalent:

using ASCII characters using Unicode characters

alpha_1 = beta^3 + 9.81 m/s^2
α₁ = β³ + 9.81 m/s²

1.3.3. Aside: a helpful compiler

The MCDPL compiler tries to be very helpful by being liberal in what it accepts and suggests fixes to common mistakes.
For example, if one forgets the keyword provided, the compiler will give the following warning:
Please use "provided capacity" rather than just "capacity".

line 2 | provides capacity [J]
line 3 | requires mass [g]
line 4 |
line 5 | capacity <= 500 J
...... | ^^^^^^^^

The web IDE will automatically insert the keyword using the “beautify” function.
All inequalities are of the kind:

resources ⪯ functionality. (1)
If you mistakenly put functionality and requirements on the wrong side of the inequality, as in:

provided capacity ≥ 500 J # incorrect expression

then the compiler will display an error like the following:
DPSemanticError: This constraint is invalid.
Both sides are requirements.
line 5 | provided capacity <= 500 J
------------------------------^

1.4. Describing relations between functionality and resources

In MCDPs, functionality and requirements can depend on each other using any monotone relations.
MCDPL implements some primitive relations, such as addition, multiplication, and exponentiation by a constant.
For example, we can describe a linear relation between mass and capacity, given by the specific energy 𝜌:

capacity = 𝜌 ×mass. (2)

This relation can be described in MCDPL as either of the following:

provided capacity ≤ ρ · required mass provided capacity / ρ ≤ required mass

In the graphical representation (Fig. 6), there is now a connection between capacity and mass, with a DP that multiplies by the inverse of
the specific energy.
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Listing 4: model4.mcdp
Figure 6.

mcdp {
provides capacity [J]
requires mass [g]
ρ = 4 J / g
required mass ≥ provided capacity / ρ

}

capacity massf / 4 ≤ r

For example, if we ask for 600 J:
mcdp co-design solve linear "600 J"

we obtain this answer:
Minimal resources needed: mass = ↑{150 g}

1.4.1. Units

Units are taken seriously. The compiler will complain if there is any dimensionality inconsistency in the expressions. However, as long as
the dimensionality is correct, it will automatically convert to and from equivalent units.
For example, in Listing 5 the specific energy is given in

|

kWh/kg . PyMCDP will take care of the needed conversions, and will introduce a
conversion from

|

J*kg/kWh to

|

g (Fig. 7).
Listing 5: model5.mcdp

Figure 7.
mcdp {

''' Model of a battery '''
provides capacity [J]
requires mass [g]
ρ = 200 kWh / kg 'Specific energy (kWh/kg)'
required mass ≥ provided capacity / ρ

}

≤capacity: SB(≥0) J mass: SB(≥0) gf [J*kg/kWh] ≤ r [g]f / 200 ≤ r

Listing 5 also shows the syntax for comments. MCDPL allows adding a Python-style documentation string at the beginning of the model,
delimited by three quotes. It also allows giving a short description for each functionality, requirement, or constant declaration, by writing
a Python-style string at the end of the line.

1.5. Catalogs

The previous example used a linear relation between functionality and requirement. However, in general, MCDPs do not make any
assumption about continuity and differentiability of the functionality-requirement relation. The MCDPL language has a construct called
catalog that allows defining an arbitrary discrete relation.
Recall from the theory that a design problem is defined from a triplet of functionality space, implementation space, and requirement space.
According to the diagram in Fig. 8, one should define the two maps 𝗋𝖾𝗊 and 𝗉𝗋𝗈𝗏, which map an implementation to the functionality it
provides and the requirements it requires.

𝐈𝐅 𝐑

implementationsfunctionality requirements

𝗉𝗋𝗈𝗏 𝗋𝖾𝗊

Figure 8.: A design problem is defined from an implementation space 𝐈, a functionality space 𝐅, a requirement space 𝐑, and the maps 𝗋𝖾𝗊
and 𝗉𝗋𝗈𝗏 that relate the three spaces.

MCDPL allows defining arbitrary maps 𝗋𝖾𝗊 and 𝗉𝗋𝗈𝗏, and therefore arbitrary relations from functionality to requirements, using the
catalog construction.
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An example is shown in Listing 6. In this case, the implementation space contains the three elements model1,model2, model3. Each model is
explicitly associated with a value in the functionality and the requirements space.
The icon for this construction is meant to remind us of a spreadsheet (Fig. 9).

Listing 6: catalog1.mcdp
Figure 9.

catalog {
provides capacity [kWh]
requires mass [g]
500 kWh ↤ model1 ↦ 100 g
600 kWh ↤ model2 ↦ 200 g
700 kWh ↤ model3 ↦ 400 g

}

mass : {400,100,200} g
capacity

SB({500, 600, 700}) kWh

In Fig. 9 we can see how the type of the mass is not just grams, but rather given as {100, 200, 400 g}. The solver propagates the bounds
information about functionalities and requirements and uses this information to prune the search space during querying.

1.5.1. Multiple minimal solutions

The catalog construct is the first construct we encountered that allows defining MCDPs that havemultiple minimal solutions. To see this,
let’s expand the model in Listing 6 to include a few more models and one more requirement, cost.

Listing 7: catalog2.mcdp

catalog {
provides capacity [kWh]
requires mass [g]
requires cost [USD]

500 kWh ↤ model1 ↦ 100 g, 10 USD
600 kWh ↤ model2 ↦ 200 g, 200 USD
600 kWh ↤ model3 ↦ 250 g, 150 USD
700 kWh ↤ model4 ↦ 400 g, 400 USD

}

The numbers (not realistic) were chosen so that model2 and model3 do not dominate each other: they provide the same functionality (600 kWh)
but one is cheaper but heavier, and the other is more expensive but lighter. This means that for the functionality value of 600 kWh there are
two minimal solutions: either ⟨200 g, 200 USD⟩ or ⟨250 g, 150 USD⟩.
The number of minimal solutions is not constant: for this example, we have four cases as a function of 𝑓 (Table 1.1). As 𝑓 increases, there
are 1, 2, 1, and 0 minimal solutions.

Table 1.1.: Solution cases for the model in Listing 7.
Functionality required Optimal implementation(s) Minimal resources needed
0 kWh ≤ 𝑓 ≤ 500 kWh model1 ⟨100 g, 10 USD⟩

500 kWh < 𝑓 ≤ 600 kWH model2 or model3 ⟨200 g, 200 USD⟩ or ⟨250 g, 150 USD⟩
600 kWh < 𝑓 ≤ 700 kWH model4 ⟨400 g, 400 USD⟩

700 kWh < 𝑓 ≤ Top kWh (unfeasible) ∅

We can verify these with mcdp co-design solve. We also use the switch --imp to ask the program to give the name of the implementations;
without the switch, it only prints the value of the minimal resources.
For example, for 𝑓 = 50 kWH:

mcdp co-design solve --imp catalog2 "50 kWh"

we obtain one solution:
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Minimal resources needed: mass, cost = ↑{⟨mass:100 g, cost:10 USD⟩}
r = ⟨mass:100 g, cost:10 USD⟩
implementation 1 of 1: m = 'model1'

For 𝑓 = 550 kWH:

mcdp co-design solve --imp catalog2 "550 kWh"

we obtain two solutions:
Minimal resources needed:
mass, cost = ↑{⟨mass:200 g, cost:200 USD⟩, ⟨mass:250 g, cost:150 USD⟩}

r = ⟨mass:250 g, cost:150 USD⟩
implementation 1 of 1: m = 'model3'

r = ⟨mass:200 g, cost:200 USD⟩
implementation 1 of 1: m = 'model2'

The solver displays first the set of minimal resources required; then, for each value of the resource, it displays the name of the implementa-
tions; in general, there could be multiple implementations that have the same resource consumption.

1.6. Union/choice of design problems

The “choice” construct allows describing the idea of "alternatives".
As an example, let us consider how to model the choice between different battery technologies.
Consider the model of a battery, in which we take the functionality to be the capacity and the requirements to be the mass [g] and the
cost [USD].
Consider two different battery technologies, characterized by their specific energy (

|

Wh/kg ) and specific cost (

|

Wh/USD ).
Specifically, consider Nickel-Hidrogen batteries (NiH2) and Lithium-Polymer (LiPo) batteries. One technology is cheaper but leads to
heavier batteries and vice versa. Because of this fact, there might be designs in which we prefer either.
First, we model the two battery technologies separately as two MCDPs that have the same interface (same requirements and same
functionalities).

Listing 8: Battery1_LiPo.mcdp
Figure 10.

mcdp {
provides capacity [J]
requires mass [g]
requires cost [USD]
ρ = 150 Wh/kg
α = 2.50 Wh/USD
required mass ≥ provided capacity / ρ
required cost ≥ provided capacity / α

}

Battery1_LiPo
capacity: SB(≥0) J

mass: SB(≥0) g

cost: SB(≥0) USD

Listing 9: Battery1_NiH2.mcdp
Figure 11.

mcdp {
provides capacity [J]
requires mass [g]
requires cost [USD]
ρ = 45 Wh/kg
α = 10.50 Wh/USD
required mass ≥ provided capacity / ρ
required cost ≥ provided capacity / α

}

Battery1_NiH2
capacity: SB(≥0) J

mass: SB(≥0) g

cost: SB(≥0) USD
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Listing 10: Batteries.mcdp
Figure 12.

choose(
NiH2: `Battery1_LiPo,
LiPo: `Battery1_NiH2
)

capacity

mass

cost

NiH2
Battery1_LiPo

LiPo
Battery1_NiH2

1.7. Composing design problems

The MCDPL language encourages composition and code reuse through composition of design problems.

1.7.1. Implicit composition of design problems from formulas

All the mathematical operations (addition, multiplication, power, etc.) are each represented by their own design problem, even though
they do not have explicit names.
For example, let’s define the MCDP Actuation1 to represent the actuation in a drone. We model it as a quadratic relation from lift to power,
as in Listing 11.

Listing 11: Actuation1.mcdp
Figure 13.

mcdp {
provides lift [N]
requires power [W]

l = provided lift
p₀ = 5 W
p₁ = 6 W/N
p₂ = 7 W/N²
required power ≥ p₀ + p₁ · l + p₂ · l²

}

Actuation1
lift: SB(≥0) N power: SB(≥5) W

Note that the relation between lift and power is described by the polynomial relation

required power ≥ p₀ + p₁ · l + p₂ · l²

This relation can be written as the composition of several DPs, corresponding to sum, multiplication, and exponentiation (Fig. 13).

≤

≤

≤

≤lift power

f ⋅ 6 ≤ r

f ⋅ 7 ≤ r

f + 5 ≤ r

f² ≤ r

f₁ + f₂ ≤ r

In the following, we will use icons for the operations:

≤
≤

≤

≤lift power

f ⋅ 6 ≤ r

f ⋅ 7 ≤ r

f + 5 ≤ r

f² ≤ r

1.7.2. Explicit composition of design problems

The other way to compose design problems is for the user to define them separately and then connect them explicitly.
Suppose we define a model called Battery as in Fig. 14.
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Listing 12: Battery1.mcdp
Figure 14.

mcdp {
provides capacity [J]
requires mass [g]
ρ = 100 kWh / kg # specific_energy
required mass ≥ provided capacity / ρ

}

≤capacity massf [J*kg/kWh] ≤ r [g]f / 100 ≤ r

We can now put the battery model and the actuation model using the following syntax.
Listing 13: combined1.mcdp

Figure 15.

mcdp {
sub actuation = instance `Actuation1
sub battery = instance `Battery1

}

actuation
Actuation1
lift power

battery
Battery1

capacity mass

⚠ ⚠

⚠ ⚠

The syntax to re-use previously defined MCDPs is instance `Name. The backtick means “load the MCDP from the library, from the file
called Name.mcdp”.
Simply instancing the models puts them side-to-side in the same box; we need to connect them explicitly. The model in Listing 13 is not
usable yet because some of the edges are unconnected (Fig. 15). We can create a complete model by adding co-design constraints.

1.7.3. Adding co-design constraints

For example, suppose that we know the desired endurance for the design. Then we know that the capacity provided by the batterymust
exceed the energy required by actuation, which is the product of power and endurance. All of this can be expressed directly in MCDPL
using the syntax:

energy = provided endurance · (power required by actuation)
capacity provided by battery ≥ energy

The visualization of the resulting model has a connection between the two design problems representing the co-design constraint
(Listing 14).

Listing 14: combined2.mcdp
Figure 16.

mcdp {
provides endurance [s]

sub actuation = instance `Actuation1
sub battery = instance `Battery1

# battery must provide power for actuation
energy = provided endurance · power required by actuation
capacity provided by battery ≥ energy

# still incomplete...
}

≤

≤

endurance

actuation
Actuation1
lift power

battery
Battery1

capacity mass

⚠

⚠

We can create a model with a loop by introducing another constraint.
Take payload to represent the user payload that we must carry.
Then the lift provided by the actuator must be at least the mass of the battery plus the mass of the payload times gravity:

constant gravity = 9.81 m/s²
total_mass = (mass required by battery + provided payload)
weight = total_mass · gravity
lift provided by actuation ≥ weight
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Now there is a loop in the co-design diagram (Fig. 17).
Listing 15: Composition.mcdp

from library . import model Battery1, Actuation1
mcdp {

provides endurance [s]
provides payload [g]

sub actuation = instance Actuation1
sub battery = instance Battery1

# battery must provide power for actuation
energy = provided endurance · (power required by actuation)

capacity provided by battery ≥ energy

# actuation must carry payload + battery
constant gravity = 9.81 m/s²
total_mass = (mass required by battery + provided payload)
weight = total_mass · gravity
lift provided by actuation ≥ weight

# minimize total mass
requires mass [g]
required mass ≥ total_mass

}

Figure 17.
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battery
Battery1

capacity mass

1.8. Re-usable design patterns using templates

“Templates” are a way to describe reusable design patterns.
For example, the code in Listing 15 composes a particular battery model, called Battery1, and a particular actuator model, called Actuation1.
However, it is clear that the pattern interconnect battery and actuators is independent of the particular battery and actuator selected.
MCDPL allows describing this situation by using “templates”.
Templates are contained in files with extension .mcdp_template. The syntax is:

template [name1: interface1, name2: interface2]
mcdp {

# usual definition here
}

In the brackets put pairs of names and NDPs that will be used to specify the interface. Interfaces are contained in files with extension
.mcdp_interface. For example, Fig. 18 defines an interface with a functionality and a requirement.
Then we can declare a template as in Listing 16. The template is visualized as a diagram with a hole (Fig. 19).
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Figure 18.
ExampleInterface.mcdp_interface

interface {
provides f [ℕ]
requires r [ℕ]

}

Listing 16

ExampleTemplate.mcdp_template
Figure 19.

template [T: `ExampleInterface]
mcdp {

sub x = instance T
f provided by x ≥ r required by x + 1

}

≤

≥

f + 1 ≤ r

x
T

f r

Example

Here is the application to the previous example of battery and actuation. Suppose that we define their interfaces as in Listing 17
and Listing 18.

Listing 17: BatteryInterface.mcdp_interface
Listing 18: ActuationInterface.mcdp_interface

interface {
provides capacity [J]
requires mass [g]

}

interface {
provides lift [N]
requires power [W]

}

Then we can define a template that uses them. For example the code in Listing 19 specifies that the templates requires two parameters,
called generic_actuation and generic_battery, and they must have the interfaces defined by

|

`ActuationInterface and

|

`BatteryInterface .
Listing 19: CompositionTemplate.mcdp_template Listing 20: TemplateUse.mcdp

template [
a: `ActuationInterface,
b: `BatteryInterface

]
mcdp {

sub actuation = instance a
sub battery = instance b
# battery must provide power for actuation
provides endurance [s]
energy = provided endurance · (power required by actuation)
capacity provided by battery ≥ energy
# only partial code
# ...

}

specialize [
a: `Actuation1,
b: `Battery1

] `CompositionTemplate

Figure 20.
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⚠

The diagram in Fig. 20 has two “holes” in which we can plug any compatible design problem. To fill the holes with the models previously
defined, we can use the keyword “specialize” as in Listing 20.
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Part B.
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2. Introduction

2.1. Introduction

2.1.1. Kinds

MCDPL has 7 kinds of data:
1. Posets;
2. Values that belong to a poset;
3. Intervals of values, also called uncertain values;
4. Primitive DPs: corresponding to the morphisms in the category DP. These are the basic building blocks of the language but they are not

used directly by the user.
5. Named DPs (NDPs): these are DPs with functionality and requirements begin tuples of posets with names associated to them. These

can be:
• atomic, often a simple wrapping of a primitive DP.
• composite, which are defined as the interconnection of other NDPs. These are also calledMonotone Co-Design Problems (MCDPs).

6. Interfaces: these are the types of the ports of an NDP.
7. Templates: These are diagrams with holes that can be specialized to create NDPs.
Table 2.1 shows the various kinds and examples of expressions belonging to them. The extension column shows the file extension used for
files containing expressions of that kind.

Table 2.1.: Kinds in MCDPL
kind mathematical concept extension code snippet example

Posets (sub)posets .mcdp_poset product(mass: g, volume: m³)

Values elements of posets .mcdp_value ⟨10 g, 20 l⟩

Uncertain values intervals of values n/a between 10 g and 12 g

Primitive DPs morphisms of DP .mcdp_primitivedp yaml resource('dpc1.dpc.yaml')

MCDPs diagrams of DP with signal names .mcdp

mcdp {
requires r = 10 g

}

Interfaces hom-sets of DP with signal names .mcdp_interfaces

interface {
requires r [g]
provides f [W]

}

Templates operad of DP with signal names .mcdp_template
template [] mcdp {
}
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3. Posets and values

3.1. poset: Defining finite posets

It is possible to define custom finite posets in files *.mcdp_poset using the keyword poset.
For example, to define the poset 𝐐 = ⟨𝐐,⪯𝐐⟩ with elements

𝐐 = {𝚊, 𝚋, 𝚌, 𝚍, 𝚎, 𝚏, 𝚐} (1)

and the order relations
𝚊 ⪯𝐐 𝚋, 𝚌 ⪯𝐐 𝚍, 𝚎 ⪯𝐐 𝚍 ⪯𝐐 𝚏, 𝚎 ⪯𝐐 𝚋, (2)

we create a file named Q.mcdp_poset with code as in Listing 21.

Listing 21: Q.mcdp_poset
Figure 1.: Hasse diagram of the poset defined in List-

ing 21
poset {

a ≤ b
c ≤ d
e ≤ d ≤ f
e ≤ b
g

}

d

ce

f

a

g

b

After the poset has been defined, it can be used in the definition of an MCDP, by referring to it by name using the backtick notation, as
in “

|

`Q ”.
To refer to its elements, use the notation

|

`Q: element (Listing 22).
Listing 22: onep.mcdp_poset

Figure 2.
mcdp {

provides f [`Q]
provided f ≤ `Q: d

}

f f ≤ d

3.2. Extrema of posets

3.2.1. Top and Bottom

To indicate top and bottom of a poset, use this syntax:|

Top poset

|

⊤ poset|

Bottom poset

|

⊥ poset

For example,

|

Top V indicates the top of the poset

|

V .

3.2.2. Minimals and Maximals

The expressions

|

Minimals poset and

|

Maximals poset denote the set of minimal and maximal elements of a poset.
For example, assume that the poset MyPoset is defined as in Fig. 1. Then the expression

|

Maximals `MyPoset is equivalent to the set with two
elements b and d, and the expression

|

Minimals `MyPoset is equivalent to a set with the elements a, e, c.
These assertions can be checked with the following code:
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assert_equal(Maximals `MyPoset, {`MyPoset: b, `MyPoset: d})

assert_equal(Minimals `MyPoset, {`MyPoset: a, `MyPoset: e, `MyPoset: c})

3.3. Numerical posets

MCDPL works with numerical posets that are models of the completion of ℝ, with −∞ and +∞ as bottom and top.
These subposets are parametrized by:
1. A lower bound;
2. An upper bound;
3. A discretization step (possibly 0, to mean no discretization).
4. A unit.
The keywords

|

Nat ,

|

Int , and

|

dimensionless refer to a model of ℕ, ℤ, and ℝ respectively (unitless).

poset lower bound upper bound discretization|

Nat 0 +∞ 1|

Int −∞ +∞ 1|

dimensionless 0 +∞ 0

The compiler will derive the step and lower and upper bounds of expressions using abstract interpretation of the mathematical operations.
Listing 23 shows an example in which some functionality/resource is defined as a natural number, and other derived quantities are
inferred to be in subposets.

Listing 23: simplenumerics.mcdp
Figure 3.

mcdp {
requires r [Nat]
provides f [Nat]

provides f_2 = required r + 2.5
provides f_3 = min(required r,7)
requires r_2 = provided f * 5
requires r_3 = provided f / 2

}

f: SB(≥0::1)

f₂: SB(≥2.5::1)

f₃: SB([0,7]::1)

r: SB(≥0::1)

r₂: SB(≥0::5)

r₃: SB(≥0::0.5)f / 2 ≤ r

f ≤ min(r,7)

f ≤ r + 2.5

f ⋅ 5 ≤ r

3.3.1. Numerical precision

The details of how these posets are represented internally for computation is considered an implementation detail.
By default, numbers are represented as decimal values with 9 digits of precision.
Note that monotone co-design theory does not require that the operations are exact; in particular, it does not require that the operations
are associative or commutative. Therefore, some of the usual concerns of numerical analysis do not apply.
It is not a problem if 𝑎 + 𝑏 ≠ 𝑏 + 𝑎. What matters is that the operations are correct in the sense that they are conservative. For example, the
operation 𝑎 + 𝑏 operating with finite precision needs to be rounded up if we are computing a feasible upper set, and rounded down if we
are computing a feasible lower set, as those are conservative choices.

3.4. Numbers with units

Numerical values can also have units associated to them. So we can distinguish ℝ≥0[m] from ℝ≥0[s] and even ℝ≥0[m] from ℝ≥0[km].
These posets and their values are indicated using the syntax in Table 3.1.
In general, units behave as one might expect. Units are implemented using the library Pint1; please see its documentation for more
information.
1http://pint.readthedocs.org/
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Table 3.1.: Numbers with units
syntax for posets

|

dimensionless

|

g

|

J

|

m/s
syntax for values

|

23

|

1.2 g

|

20 J

|

23 m/s

The following is the formal definition of the operations involving units.
Units form a group with an equivalence relation.
Call this group of units 𝑈 and its elements 𝑢, 𝑣,⋯ ∈ 𝑈. By 𝔽[𝑢], we mean a field 𝔽 enriched with an annotation of units 𝑢 ∈ 𝑈.
Multiplication is defined for all pairs of units. Let |𝑥| denote the absolute numerical value of 𝑥 (stripping the unit away). Then, if 𝑥 ∈ 𝔽[𝑢]
and 𝑦 ∈ 𝔽[𝑣], their product is 𝑥 ⋅ 𝑦 ∈ 𝔽[𝑢𝑣] and |𝑥 ⋅ 𝑦| = |𝑥| ⋅ |𝑦|.
Addition is defined only for compatible pairs of units (e.g.,

|

m and

|

km ), but it is not possible to sum, say,

|

m and

|

s . If 𝑥 ∈ 𝔽[𝑢] and 𝑦 ∈ 𝔽[𝑣],
then 𝑥 + 𝑦 ∈ 𝔽[𝑢], and 𝑥 + 𝑦 = |𝑥| + 𝛼𝑢𝑣 |𝑦|, where 𝛼𝑢𝑣 is a table of conversion factors, and |𝑥| is the absolute numerical value of 𝑥.
In practice, this means that MCDPL thinks that

|

1 kg + 1 g is equal to

|

1.001 kg . Addition is not strictly commutative, because

|

1 g + 1 kg is
equal to

|

1001 g , which is equivalent, but not equal, to

|

1.001 kg .

3.5. Poset products

MCDPL allows the definition of finite Cartesian products, which can be anonymous or named.

3.5.1. x: Anonymous Poset Products

Use the Unicode symbol “×” or the simple letter “x” to create a poset product, using the syntax:

P1 x P2 x ... x Pn

For example, the expression

|

J × A represents a product of Joules and Amperes.
The elements of a poset product are tuples. To define a tuple, use angular brackets “<” and “>”.
For example, the expression “

|

<2 J, 1 A> ” denotes a tuple with two elements, equal to

|

2 J and

|

2 A . An alternative syntax uses the fancy
Unicode brackets “⟨” and “⟩”, as in “

|

⟨0 J, 1 A⟩”.
Tuples can be nested. For example, you can describe a tuple like

|

⟨⟨0 J, 1 A⟩, ⟨1 m, 1 s, 42⟩⟩ ,

and its poset is denoted as
|

(J × A) × (m × s × ℕ) .

3.5.2. product: Named Poset Products

MCDPL also supports “named products”. These are semantically equivalent to products, however, there is also a name associated to each
entry. This allows to easily refer to the elements. For example, the following declares a product of the two spaces

|

J and

|

A with the two
entries named “energy” and “current”.

product(energy: J, current: A)

The names for the fields must be valid identifiers (starts with a letter, contains letters, underscore, and numbers).
The attribute can be referenced using the following syntax:

(requirement).field

For example:
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mcdp {
provides out [product(energy: J, current: A)]

(provided out).energy ≤ 10 J
(provided out).current ≤ 2 A

}

3.6. Posets of subsets

3.6.1. powerset: Power sets

MCDPL allows to describe the set of subsets of a poset, i.e. its power set.
The syntax is either of these:

powerset(p)

℘(P)

To describe the values in a powerset (subsets), use this set-building notation:

{value, value, ..., value}

For example, the value

|

{1, 2, 3} is an element of the poset

|

powerset(Nat) .

3.6.2. EmptySet: The empty set

To denote the empty set, use the keyword EmptySet or the equivalent unicode:

EmptySet P ∅ P

Note that empty sets are typed. This is different from set theory: here, a set of apples without apples and a set of oranges without oranges
are two different sets, while in traditional set theory they are the same set.|

∅ J is an empty set of energies, and

|

∅ V is an empty set of voltages, and the two are not equivalent.

3.6.3. UpperSets and LowerSets: Upper and lower sets

The poset of upper sets of 𝐏 can be described by the syntax

UpperSets(P)

For example,

|

UpperSets(ℕ) is the poset of upper sets for the natural numbers.
To describe an upper set (i.e. an element of the space of upper sets), use the keyword upperclosure or its abbreviation ↑. The syntax is:

upperclosure set ↑ set

For example:

|

↑{⟨2 g, 1 m⟩} denotes the principal upper set of

|

⟨2 g, 1 m⟩ in the poset

|

g x m .
Similarly you can define the poset of lowersets of 𝐏 as:

LowerSets(P)

and you can obtain elements of this poset using the keyword lowerclosure or its abbreviation ↓.

lowerclosure set ↓ set
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3.7. Defining uncertain constants

MCDPL allows describing interval uncertainty for variables and expressions.
There are three syntaxes accepted:

1. The first is using explicit bounds:

x = between lower bound and upper bound

2. Median plus or minus absolute tolerance:

x = median +- tolerance x = median ± tolerance

3. Median plus or minus percent:

x = median +- percent tolerance % x = median ± percent tolerance %

For example, Table 3.2 shows the different ways in which a constant can be declared to be between

|

9.95 kg and

|

10.05 kg :

Table 3.2.: Equivalent ways to declare an uncertain constant

x = between 9.95 kg and 10.05 kg x = 10 kg ± 50 g
constant c = 10 kg
δ = 50 g
x = between c - δ and c + δ

It is also possible to describe parametric uncertain relations by simply using uncertain constants in place of regular constants:

mcdp {
provides energy [J]
requires mass [kg]

specific_energy = between 100 kWh/kg and 120 kWh/kg
required mass · specific_energy ≥ provided energy

}
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4. Named DPs

4.1. Defining NDPs

An NDP (named design problem) is a design problem that has associated names for its functionality and requirements.
There are several ways of defining an NDP:
1. by constructing one using the catalog syntax;
2. by constructing one using the mcdp syntax;
3. by constructing one using the dp syntax;
4. by specializing a template, using the specialize keyword.
5. by constructing one using operations such as compact, abstract, etc.

4.2. Constructing NDPs as catalogs

An NDP can be created using a “catalog” declaration, which enumerates the possible ways to provide functionalities and requirements
explcitly.
A catalog declaration is comprised of zero or more functionality/requirement declarations and zero or more catalog records:

catalog {
provides f1 [W]
requires r1 [s]

# records go here
}

There are two types of records that can be used (but cannot be mixed):
1. Records that specify the implementation names explicitly;
2. Records that do not specify the implementation names implicitly.

catalog {
provides f1 [W]
requires r1 [s]

10 W ↤ imp1 ↦ 10 s
20 W ↤ imp2 ↦ 20 s

}

catalog {
provides f1 [W]
requires r1 [s]

10 W ⟷ 10 s
20 W ⟷ 20 s

}

For multiple functionalities and resources, partition the elements using commas:

catalog {
provides f1 [W]
provides f2 [m]
requires r1 [s]
requires r2 [s]

5 W, 5 m ↤ imp1 ↦ 10 s, 10 s
}
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Note that in the catalog rows, you must use units, which might be different from the units used in the declaration of the functionalities
and requirements. For example, in the following we use standard units (meters and seconds) for the catalog rows, but we use different
units in the declaration of the functionalities and requirements (miles and hours):

catalog {
provides distance [m]
requires duration [s]
5 miles ⟷ 10 hours

}

In case there are no functionalities, use an empty tuple on the left; and if there are no requirements, use an empty tuple on the right.

catalog {
requires r1 [s]
⟨⟩ ↤ imp1 ↦ 10 s

}

catalog {
provides f1 [s]
5s ↤ imp1 ↦ ⟨⟩

}

4.2.1. True and false

The empty catalog is valid: it is the NDP with no functionality and no requirements and no implementations. That is:

catalog {
}

This is “false”: even though nothing is asked, there is no way to provide it.
Dually, the following catalogs definitions are equivalent to “true”. One has an anonymous implementation, the other has an explicit
implementation.

catalog {
⟨⟩ ↤ imp1 ↦ ⟨⟩

}

catalog {
⟨⟩ ⟷ ⟨⟩

}

Of course, we can create a catalog that is even more true, by adding more implementations:

catalog {
⟨⟩ ↤ even ↦ ⟨⟩
⟨⟩ ↤ more ↦ ⟨⟩
⟨⟩ ↤ ways ↦ ⟨⟩
⟨⟩ ↤ to ↦ ⟨⟩
⟨⟩ ↤ provide ↦ ⟨⟩
⟨⟩ ↤ nothing ↦ ⟨⟩

}

4.3. Constructing NDPs from YAML files

An NDP can be created using a “dp” declaration, which is used to import from external YAML data.
The syntax is as follows:

dp {
# usual provides/requires declaration

# only one line of this form
implemented-by yaml resource("data.yaml")

}
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For example:

dp {
provides task [`task]
requires sensor_requirements [`sensor_reqs]
requires vehicle_properties [`vehicle_properties]
requires computation [ops]
requires discomfort [dimensionless]

implemented-by yaml resource("planner_catalog-Mar-12-2024-08-24.dpc.yaml")
}

An example YAML file is as follows:
F:
- "`task"
R:
- "`sensor_reqs"
- "`vehicle_properties"
- "ops"
- "dimensionless"
implementations:
planning_4125:
f_max:
- "`task: task_urban_car_cr_AA_50_3"
r_min:
- "`sensor_reqs: sensor_reqs_4125"
- "`vehicle_properties: car_van_chrycler_pacifica"
- "6.00 ops"
- "13 dimensionless"

planning_4102:
f_max:
- "`task: task_urban_car_cr_AA_30_3"
r_min:
- "`sensor_reqs: sensor_reqs_4102"
- "`vehicle_properties: car_van_chrycler_pacifica"
- "6.00 ops"
- "11 dimensionless"

The files should contain three fields: F, R, and implementations.
The first two fields are lists of strings. These represent, in MCDPL, the names of the interfaces that the NDP requires and provides.
The the third field is a dictionary, where the keys are the names of the implementations, and the values are dictionaries with two keys:
f_max and r_min. These are lists of strings, representing the requirements and capabilities of the implementation in MCDPL.

4.4. Describing Monotone Co-Design Problems

An NDP can be created using a declaration enclosed in the mcdp construct. The declaration must be comprised of an optional comment
and zero or more statements; a statement can be either a declaration or a constraint, and these can be mixed.

4.4.1. Declaring functionality and requirements explicitly

A functionality declaration is of this form:

provides f [poset]

Symmetrically, a requirement declaration is of this form:

requires r [poset]
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4.4.2. Declaring functionality and requirements implicitly using expressions

There are shortcuts one can use to declare functionalities and requirements given a value:

provides f ≤ expression

This is equivalent to:

provides f [poset]
provided f ≤ expression

Symmetrically, there are the same constructs for defining requirements:

requires r ≥ expression

This is equivalent to:

requires r [poset]
required r ≥ expression

4.4.3. Forwarding functionalities and requirements from other subproblems

The second shortcut is used to declare one or more functionalities and specify which DP is responsible for providing them:

provides f1, f2, ... using dp

This is equivalent to

provides f1 ≤ f1 provided by dp
provides f2 ≤ f2 provided by dp

The symmetric construct is used to declare one or more requirements and specify which DP is responsible for providing them:

requires r1, r2, ... for dp

which is equivalent to:

requires r1 ≥ r1 required by dp
requires r2 ≥ r2 required by dp

Note that the syntax is “requires . . . for . . . ” rather than “provides . . .using . . . ”.

4.4.4. Declaring functionality and requirements using interfaces

Another way to declare functionalities and requirements is to declare that one is implementing a certain interface.
For example, given the following interface defition:

interface {
provides f [W]
requires r [g]

}
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We can use the keyword implements to declare that the current MCDP is implementing the interface:

mcdp {
implements `MyInterface

provided f ≤ 10 W
required r ≥ 1 kg

}

4.4.5. Ignoring or propagating the functionality/requirements of subproblems

In general, the compiler will complain if there are unconnected ports: each functionality or requirement of subproblemsmust be connected
to something: either another subproblem, or to the global functionality or requirement of the parent problem.
Sometimes, it is useful to ignore some of the functionality or requirements of subproblems.

ignore: Ignoring specific functionality/requirements

The ignore keyword can be used to mark some of the functionality or requirements of an NDP as “ignored”. The compiler will then not
complain if they are unconnected.
The syntax is:

ignore f provided by dp

ignore r required by dp

Internally, the compiler will connect the ignored functionality or requirements to a special DP that is always true.

ignore unconnected: Ignoring all unconnected

There is a special declaration ignore unconnected that can be used to ignore all unconnected ports.

ignore unconnected

propagate unconnected: Propagating unconnected ports

Finally, there is a special declaration propagate unconnected that can be used to “propagate” unconnected ports:

propagate unconnected

Consider the following example, in which there is a subproblem called inside that provides and requires some ports, but these ports are
not connected to anything:

mcdp {
provides f ≤ 5 W

sub inside = instance mcdp {
provides f_sub ≤ 10 W
requires r_sub ≥ 20 s

}

# f_sub, r_sub are unconnected
}

f f ≤ 5 W

inside

20 s ≤ r

f ≤ 10 W

⚠ ⚠
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In the web editor, there will be warnings about unconnected ports.
If we add the declaration ignore unconnected, then the unconnected ports will be ignored; they will be connected to a special DP that is
always true.

mcdp {
provides f ≤ 5 W

sub inside = instance mcdp {
provides f_sub ≤ 10 W
requires r_sub ≥ 20 s

}

ignore unconnected
}

≤

≤

f

10 W ≤ r

f ≤ 5 W

f ≤ 20 s

inside

20 s ≤ r

f ≤ 10 W

If we add the declaration propagate unconnected, then the unconnected ports will be propagated to the parent DP.

mcdp {
provides f ≤ 5 W

sub inside = instance mcdp {
provides f_sub ≤ 10 W
requires r_sub ≥ 20 s

}

propagate unconnected
}

f

f_sub r_sub

f ≤ 5 W

inside

20 s ≤ r

f ≤ 10 W

4.4.6. Shortcuts for summing over functionalities and requirements

One common pattern is to sum over many requirements of the same name. For example, a design might consist of several components,
and the budgets must be summed together (Listing 24). In this case, it is possible to use the shortcut sum (or its equivalent symbol

∑
) that

allows to sum over requirements required with the same name (Listing 25) with the syntax

sum budget required by *

An error will be generated if there are no subproblems with a requirement of the given name.
The two MCDP in Listing 24 and Listing 25 are equivalent.

Listing 24: sumc-example.mcdp Listing 25: sumc2.mcdp

mcdp {
requires total_budget [USD]

sub c1 = instance `Component1
sub c2 = instance `Component2
sub c3 = instance `Component3

required total_budget ≥ (
budget required by c1 +
budget required by c2 +
budget required by c3

)
}

mcdp {
requires total_budget [USD]

c1 = instance `Component1
c2 = instance `Component2
c3 = instance `Component3

# this sums over all components
required total_budget >= sum budget required by *

}

The dual syntax for functionality is also available (Listings 26 and 27).
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Listing 26: sumc3.mcdp Listing 27: sumf3.mcdp

mcdp {
provides total_power [W]

sub g1 = instance `Generator1
sub g2 = instance `Generator2
sub g3 = instance `Generator3

provided total_power ≤ (
power provided by g1 +
power provided by g2 +
power provided by g3

)
}

mcdp {
provides total_power [W]

sub g1 = instance `Generator1
sub g2 = instance `Generator2
sub g3 = instance `Generator3

provided total_power ≤ ∑ power provided by *
}

4.5. Mathematical relations between functionalities and requirements

Once functionalities and resources are defined, it is possible to define relations between them by using various mathematical operations.
The available math relations are shown in Table 4.1.

Table 4.1.: Math relations available
algebra addition

multiplication
division (by a constant)
substraction (of a constant)

ceil/floor ceil

ceil0

floor

floor0

exponentiation a^2
sqrt

pow

min/max max

min

approximation approx

One thing to keep in mind is that these are not “functions”; rather, they are relations.

4.5.1. Abstract interpretation of mathematical relations

The following examples (Listings 28 and 29) show how the compiler is able to use abstract interpretation to infer the type of the result of
the operations.
In Listing 28 we start with one requirement defined to be a a natural number, and then we define several functionalities that are the result
of applying different operations to that requirement. The compiler is able to to infer the subposet of numbers that are possible feasible
values for each relation.
For example, for the line

provides f₄ = r + 2.5

the compiler is able to infer that the smallest set that contains the optimal feasible functionalities for the relation is the set of numbers of
the form 𝑟 + 2.5 where 𝑟 is a natural number. This is written compactly in the figure as >=2.5::1.
Likewise, for the line

provides f₈ = min(r, 7)
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the compiler is able to infer that the smallest set that contains the optimal feasible functionalities for the relation is the set of integers from
0 to 7, written compactly in the figure as [0,7]::1.

Listing 28: numerics2.mcdp
Figure 1.

mcdp {
requires r [ℕ]
provides f₁ = required r · 0
provides f₂ = required r + 1
provides f₃ = required r + 2.0
provides f₄ = required r + 2.5
provides f₅ = required r · 5
provides f₆ = required r / 2
provides f₇ = required r - 2
provides f₈ = min(required r, 7)
provides f₉ = max(required r, 7)

}

f₁: SB(≥0)

f₂: SB(≥1::1)

f₃: SB(≥2::1)

f₄: SB(≥2.5::1)

f₅: SB(≥0::5)

f₆: SB(≥0::0.5)

f₇: SB(≥-2::1)

f₈: SB([0,7]::1)

f₉: SB(≥7::1)

r: SB(≥0::1)

f ≤ r / 2

f ≤ max(r, 7)

f ≤ min(r,7)

f ≤ r ⋅ 0

f ≤ r ⋅ 5

f ≤ r + 1

f ≤ r + 2

f ≤ r + 2.5

f ≤ r - 2

The next example is symmetric, with the functionality being a natural number and the requirements being the result of applying different
operations to that functionality.

Listing 29: numerics.mcdp
Figure 2.

mcdp {
provides f [ℕ]
requires r₁ = provided f · 0
requires r₂ = provided f + 1
requires r₃ = provided f + 2.0
requires r₄ = provided f + 2.5
requires r₅ = provided f · 5
requires r₆ = provided f / 2
requires r₇ = provided f - 2
requires r₈ = min(provided f, 7)
requires r₉ = max(provided f, 7)

}

f: SB(≥0::1)

r₁: {0}

r₂: SB(≥1::1)

r₃: SB(≥2::1)

r₄: SB(≥2.5::1)

r₅: SB(≥0::5)

r₆: SB(≥0::0.5)

r₇: SB(≥-2::1)

r₈: SB([0,7]::1)

r₉: SB(≥7::1)

f / 2 ≤ r

f - 2 ≤ r

true

f ⋅ 5 ≤ r

f + 1 ≤ r

f + 2 ≤ r

f + 2.5 ≤ r

max(f, 7) ≤ r

min(f,7) ≤ r
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4.5.2. Min and max

In most cases, we can think of the min and max symbols as the usual mathematical functions. (Corresponding to the “meet” and “join”
operations in lattice theory.)
However, in the context of MCDPs, the semantics is more subtle, and it holds even when the poset in question is not a lattice, so that the
meet and join are not necessarily defined.
The following table shows the semantics of the min and max operations in MCDPs.

MCDPL expression Equivalent semantics
r ≥ min(a, b) (𝑟 ≥ 𝑎) ∨ (𝑟 ≥ 𝑏)

r ≥ max(a, b) (𝑟 ≥ 𝑎) ∧ (𝑟 ≥ 𝑏)

f ≤ min(c, d) (𝑓 ≤ 𝑐) ∧ (𝑓 ≤ 𝑑)

f ≤ max(c, d) (𝑓 ≤ 𝑐) ∨ (𝑓 ≤ 𝑑)

If the poset is a lattice, then the semantics of the min and max operations are the same as the meet and join operations.
Consider the following poset with two elements:

Listing 30: discrete.mcdp_poset

poset {
a b

}

Because it is a discrete poset, the meet and join of the two elements do not exist. So,min(𝑎, 𝑏) andmax(𝑎, 𝑏) are not defined if we consider
them as mathematical functions. However, using the relation semantics we can write the following MCDP. We can see in the figure that
the relation is reduced to the false relation.

Listing 31: exampleminmax1.mcdp
Figure 3.

mcdp {
provides f [`discrete]
requires r [`discrete]
provided f ≤ min(`discrete: a, `discrete: b)
required r ≥ max(`discrete: a, `discrete: b)

}

f: ∅ discrete

r: ∅ discrete

false

false

4.5.3. Floor and ceil relations

The floor and ceil operations are used to round down and up, respectively.
The floor0 and ceil0 are variants, defined as follows:

floor0(𝑥) = {0 for 𝑥 = 0
ceil(𝑥 − 1) for 𝑥 > 0

(1)

ceil0(𝑥) = {0 for 𝑥 = 0
floor(𝑥 + 1) for 𝑥 > 0

(2)

The functions floor and floor0 agree everywhere except at nonzero integers. For example, floor(2) = 2 and floor0(2) = 1. Likewise, ceil
and ceil0 agree everywhere, except at nonzero integers: ceil(2) = 2 and ceil0(2) = 3.
The reason we need these extra operations is that relations need to be upper-semicontinuous if acting on requirements, and lower-
semicontinuous if acting on functionalities.
In fact, we know that floor is upper semi-continuous:

lim
𝑥→3+

floor(𝑥) = 3 (3)
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but that it is not lower semi-continuous:
lim
𝑥→3−

floor(𝑥) = does not exist (4)

The variant floor0 is lower semi-continuous:
lim
𝑥→3−

floor
0
(𝑥) = 3 (5)

but it is not upper semi-continuous:
lim
𝑥→3+

floor
0
(𝑥) = does not exist (6)

The following example shows the use of these operations.

Listing 32: numerics3.mcdp
Figure 4.

mcdp {
requires r₁ [dimensionless]
provides f₁ [dimensionless]
provides f₂ = floor(required r₁)
provides f₃ = ceil0(required r₁)
requires r₂ = floor0(provided f₁)
requires r₃ = ceil(provided f₁)

}

f₁: SB(≥0)

f₂: SB(≥0::1)

f₃: SB(≥0::1)

r₁: SB(≥0)

r₂: SB(≥0::1)

r₃: SB(≥0::1)

floor₀(f) ≤ r

f ≤ ceil₀(r)

f ≤ floor(r)

ceil(f) ≤ r

4.5.4. Built-in approximations

The approx keyword is used to “discretize” a signal to a certain resolution. In practice, this means rounding the quantity to the nearest
multiple of the resolution. The approximations must be conservative, so the functionalities are rounded down, and the requirements are
rounded up. The following examples shows the symmetry between the functionalities and the requirements.

Listing 33: approx1.mcdp
Figure 5.

mcdp {
provides f [dimensionless]

requires r1 = approx(provided f, 0.1)
}

f: SB(≥0) r1: SB(≥0::0.1)round_up(0.1,f) ≤ r

Listing 34: approx2.mcdp
Figure 6.

mcdp {
requires r [dimensionless]

provides f1 = approx(required r, 0.1)
}

f1: SB(≥0::0.1) r: SB(≥0)f ≤ round_down(0.1,r)

4.6. Accessing the components of a product

We have seen in Section 3.5 how to define anononymous and named products.

4.6.1. Accessing the components of an anonymous product

The “take” operation allows us to access the elements of a product. The syntax is:

take(signal, index)

For example, writing
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mcdp {
provides out [J x A]

take(provided out, 0) ≤ 10 J
take(provided out, 1) ≤ 2 A

}

is equivalent to writing

mcdp {
provides out [J x A]
provided out ≤ ⟨10 J, 2 A⟩

}

Accessing elements of a named product by name

If the product is a named product, it is possible to index those entries using one of these two syntaxes:

take(requirement, label) take(functionality, label)

There is also a syntax with the dot, reminiscent of the syntax used in object-oriented languages:

(requirement).label (functionality).label

For example:

mcdp {
provides out [product(energy: J, current: A)]

(provided out).energy ≤ 10 J
(provided out).current ≤ 2 A

}

4.7. Operations on NDPS

The language includes a set of operations to manipulate NDPs. These are rarely used directly, but they are useful to understand the
internal processing of NDPs.

Abstraction

|

abstract NDP
Compactification

|

compact NDP
Flattening

|

flatten NDP
Canonical form

|

canonical NDP

4.7.1. compact: Compactification

The construct compact takes an NDP and produces another in which parallel edges are compacted into one edge. This is one of the steps
required for the solution of the MCDP.
The syntax is:

compact NDP

For every pair of NDPS that have more than one edge between them, those edges are being replaced.
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For example, consider this MCDP:
Listing 35: compact_example_1.mcdp

mcdp {
sub a = instance mcdp {

provides f [ℕ]
requires r1 [ℕ]
requires r2 [ℕ]

provided f ≤ (required r1 + required r2)
}
sub b = instance mcdp {

provides f1 [ℕ]
provides f2 [ℕ]
requires r [ℕ]

required r ≥ (provided f1 + provided f2)
}
r1 required by a ≤ f1 provided by b
r2 required by a ≤ f2 provided by b

}

≤

≤

a

f ≤ r₁ + r₂

b

f₁ + f₂ ≤ r
⚠ ⚠

The compacted version has only one edge between the two NDPs, with the corresponding poset being the product of the two posets:
Listing 36: compact_example_2.mcdp

compact `compact_example_1 ≤f ≤ r₁ + r₂ f₁ + f₂ ≤ r⚠ ⚠

4.7.2. flatten: Flattening

It is easy to create recursive composition in MCDPL, in which we have NDPs that contain other NDPs.
Listing 37: Composition1.mcdp

mcdp {
T = mcdp {

provides f [ℕ]
requires r [ℕ]
provided f + 1 ≤ required r

}
sub a = instance T
sub b = instance mcdp {

provides f [ℕ]
requires r [ℕ]
sub c = instance T
provided f ≤ 2 · f provided by c
required r ≥ r required by c

}
r required by a ≤ f provided by b
requires r for b
provides f using a

}

≤≤f r
a

f + 1 ≤ r

b

f ≤ r ⋅ 2
c

f + 1 ≤ r

The “flattening” operation erases the borders between subproblems.
Listing 38: Composition1_flattened.mcdp

flatten `Composition1 ≤ ≤f rf + 1 ≤ r f ≤ r ⋅ 2 f + 1 ≤ r
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4.7.3. abstract: Abstraction

The command abstract takes an NDP and creates another NDP that forgets the internal structure.
The syntax is:

abstract NDP

The resulting NDP is guaranteed to be equivalent to the initial one, but the internal structure is “forgotten”.
Listing 39: m0.mcdp Listing 40: m0_abstracted.mcdp

mcdp {
provides f [m]
requires r [m]
required r ≥ provided f + 10 m

}

abstract `m0

f rf + 10 ≤ r m0_abstracted
f: SB(≥0) m r: SB(≥10) m

4.7.4. canonical: Canonical form

This puts the MCDP in a canonical form:

canonical NDP

The canonical form is obtained by compacting all the loops into one single loop.

4.8. choose: Union of design problems

The choose construct allows describing the idea of "alternatives".
The syntax is as follows:

Listing 41: Batteries2.mcdp
Figure 7.

choose(
NiH2: `Battery1_LiPo,
LiPo: `Battery1_NiH2

)

capacity

mass

cost

NiH2
Battery1_LiPo

LiPo
Battery1_NiH2

For a full example, see Section 1.6.

43



5. Higher-order modeling

5.1. Interfaces

A template has parameters that are constrained to have a certain interface.
In MCDPL, interfaces are first-class citizens. They reside in .mcdp_interface files, and can be imported and used in other libraries just like
the other top-level entities.
Interfaces are defined using the interface keyword.

5.1.1. interface: Declaring interfaces

The syntax for declaring an interface is a subset of the syntax for declaring a MCDP. Only the definitions of functionality and resources are
allowed.
For example, this interface declares one functionality and one resource:

Listing 42: Int1.mcdp_interface
Figure 1.

interface {
provides f1 [W]
requires r1 [g]

}

Int1
f1: SB(≥0) W r1: SB(≥0) g

5.1.2. extends: Extending interfaces

It is possible to extend an interface by adding more functionality or resources. This is done using the extends keyword.

Listing 43: Int2.mcdp_interface
Figure 2.

interface {
extends `Int1
provides f2 [Hz]
requires r2 [CHF]

}

Int2
f1: SB(≥0) W

f2: SB(≥0) Hz

r1: SB(≥0) g

r2: SB(≥0) CHF

5.1.3. implements: Using interfaces when defining models

When defining a model, you can specify that it implements an interface. This means that the model must provide the functionality and
resources required by the interface.
This is done using the implements keyword:

Listing 44: Impl1.mcdp
Figure 3.

mcdp {
implements `Int1
provided f1 ≤ 10 W
required r1 ≥ 100 kg

}

≤

f1: {10 W} r1: {100000 g}

100 kg ≤ r true

f ≤ 10 W
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5.2. Templates

Templates are contained in files with extension .mcdp_template.

5.2.1. template: Declaring templates

The syntax uses the keyword “template”. It is followed by square brackets, which specify the names of the interfaces for the template
holes.

template [name1: interface1, name2: interface2]
mcdp {

# usual definition here
}

For example, we can define the following simple interface:

Listing 45: Scalar.mcdp_interface
Figure 4.

interface {
provides f [dimensionless]
requires r [dimensionless]

}

Scalar
f: SB(≥0) r: SB(≥0)

And then we can define a template that uses this interface:

Listing 46: Loop1.mcdp_template
Figure 5.

template [T: `Scalar]
mcdp {

sub x = instance T
f provided by x ≥ r required by x + 1

}

≤

≥

f + 1 ≤ r

x
T

f r

5.2.2. specialize: Instantiating templates

To instantiate a template, we need to specify which models to plug in it its holes. We use the keyword “specialize” as follows:

Listing 47: Loop1Instance.mcdp

specialize [
T: mcdp {

implements `Scalar
provided f ≤ 2 · required r

}
] `Loop1

≤

≥

f + 1 ≤ r
x

f ≤ r ⋅ 2
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6. Queries

6.1. Defining queries

Queries are specified in files with extension .mcdp_query. This file contains a YAML-document that specifies:
• the model that the query is about;
• the type of query;
• the parameters of the query;
There are two types of queries: FixFunMinRes and FixResMaxFun.

6.1.1. FixFunMinRes

This query type is used to find the minimum amount of requirements required to achieve a certain functionality.
Consider a model query1_model that has 2 functionalities and 2 requirements:

mcdp {
provides f₁ [m]
provides f₂ [m]

requires r₁ [m]
requires r₂ [m]

provided f₁ ≤ floor(r₁)
r₁ ≥ 1 m
r₂ ≥ f₂ + 1 m

}

A query that uses this model could look like this:

title: Query 1
description: ''
model: "`query1_model"
query:

query_type: FixFunMinRes
min_f:

f_1: '1 m'
f_2: '2 m'

max_r:
r_1: '3 m'
r_2: '4 m'

optimize_for: [r_1]

The fields title and description are just used for metadata.
The model field should be a string that evaluates to a model.
The query field specifies the details of the query:
• The field type should be set to FixFunMinRes.
• The field min_f is a dictionary that specifies the minimum values for the functionalities.
• The field max_r is a dictionary that specifies the upper bound for the requirements.
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• The field optimize_for is a list that specifies the resources to optimize for.
In this case, the query is equivalent to this optimization problem:

min 𝑟1 (1)
such that query1_model(⟨1m, 2m⟩, ⟨𝑟1, 𝑟2⟩) is feasible (2)

𝑟1 ≤ 3m (3)
𝑟2 ≤ 4m (4)

We are minimizing the value of r_1, which is the only element in the optimize_for list. The value of r_2 is not relevant, although it is
still bounded.

6.1.2. FixResMaxFun

This query type is used to find the maximum amount of functionalities that can be achieved with a certain amount of resources.
The syntax is similar to the previous type of query:

title: Query 2
description: ''
model: "`query1_model"
query:

query_type: FixResMaxFun
min_f:

f_1: '1 m'
f_2: '2 m'

max_r:
r_1: '3 m'
r_2: '4 m'

optimize_for: [f_1]

The query is equivalent to this optimization problem:

max 𝑓1 (5)
such that query1_model(⟨𝑓1, 𝑓2⟩, ⟨3m, 4m⟩) is feasible (6)

𝑓1 ≥ 1m (7)
𝑓2 ≥ 2m (8)
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7. Syntax

7.1. MCDPL syntax

7.1.1. Characters

AMCDP file is a sequence of Unicode code-points that belong to one of the classes described in Table 7.1. All files are assumed to be
encoded in UTF-8.

Table 7.1.: Character classes
class characters
Latin letters abcdefghijklmnopqrstuvxwyz

ABCDEFGHIJKLMNOPQRSTUVXWYZ

Underscore _

Greek letters 𝛼𝛽𝛾𝛿𝜖𝜁𝜂𝜃𝜄𝜅𝜆𝜇𝜈𝜉𝜋𝜌𝜎𝜏𝜐𝜙𝜒𝜓𝜔
Γ∆ΘΛΞΠΣΥΦΨΩ

Digits 0123456789

Superscripts 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9
Subscripts 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9
Comment delimiter #

String delimiters '"

Backtick `

Parentheses [](){}

Operators <= => ≤≥, ⪯⪰
Tuple-making < > ⟨⟩
Arrows glyphs <--| <--> |--> ←[ ↔↦
Math = · * - + ^

Other glyphs × ⊤ ⊥ 𝒫 ℕ ℝ ℤ∑ ± ↑ ↓ ∞ ∅ $

7.1.2. Comments

Comments work as in Python. Anything between the symbol # and a newline is ignored. Comments can include any Unicode character.

7.1.3. Reserved keywords

The reserved keywords are shown in Table 7.2.

7.1.4. Syntactic equivalence

MCDPL allows a number of Unicode glyphs as abbreviations of a few operators.
For example, every occurrence of a superscript of the digit 𝑑 is interpreted as a power ^d. It is syntactically equivalent to write x^2 or x2.
Other syntactic equivalences are shown in Table 7.3.

7.1.5. Identifiers

An identifier is a string that is not a reserved keyword and follows these rules:

1. It starts with a Latin or Greek letter (except underscore).
2. It contains Latin letters, Greek letters, underscore, digit,
3. It ends with Latin letters, Greek letters, underscore, digit, or a subscript.
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Table 7.2.: Reserved keywords

abstract

add_bottom

and

approx_lower

approx_upper

approx

approxu

assert_empty

assert_equal

assert_geq

assert_gt

assert_leq

assert_lt

assert_nonempty

between

bottom

by

canonical

catalog

choose

code

compact

constant

coproduct

emptyset

eversion

extends

flatten

for

ignore_resources

ignore

implemented-by

implements

instance

Int

interface

lowerclosure

lowersets

maximals

mcdp

minimals

namedproduct

Nat

poset

powerset

product

provided

provides

required

requires

Reals

solve_f

solve_r

solve

specialize

sum

take

template

top

uncertain

upperclosure

uppersets

using

variable

Table 7.3.: Unicode glyphs and syntactically equivalent ASCII
Unicode ASCII
≤ or ⪯ <=

≥ or ⪰ >=

⋅ *

⟨⟩ < >

⊤ Top

⊥ Bottom

𝒫 powerset

± +-∑
sum

↦ |-->

←[ <--|

↔ <-->

∅ Emptyset

ℕ Nat

ℝ Rcomp

ℤ Int

↑ upperclosure

↓ lowerclosure

× x

A regular expression that captures these rules is:
identifier = [latin|greek][latin|greek|_|digit]*[latin|greek|_|digit|subscript]?

Here are some examples of good identifiers: a, a_4, a4, alpha, 𝛼.

7.1.6. Use of Greek letters as part of identifiers

MCDPL allows to use some Unicode characters, Greek letters and subscripts, also in identifiers and expressions. For example, it is
equivalent to write

|

alpha_1 and

|

α₁ .
For subscripts, every occurrence of a subscript of the digit d is converted to the fragment _d.
Subscripts can only occur at the end of an identifier: a_1 is valid, while a_1b is not a valid identifier.
Every Greek letter is converted to its name. It is syntactically equivalent to write

|

alpha_material or

|

α_material .
Greek letter names are only considered at the beginning of the identifier and only if they are followed by a non-word character. For
example, the identifer

|

alphabet is not converted to 𝛼bet.
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Part C.

Software manual
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8. MCDP Command line interface

mcdp is a command-line interface (CLI) tool available forò Linux, macOS, and¯Windows.
The binaries are available from the page
https://github.com/zupermind/releases/releases/latest

The table below summarizes the platform support.

Table 8.1.: Platform support matrix for MCDP CLI
Operating System Architecture Status
� Ubuntu 22 x86_64, ARM64 Supported
� Ubuntu 24 x86_64, ARM64 Supported
ò Debian x86_64, ARM64 Supported
macOS 15 Intel, Apple Silicon Supported
¯Windows 11 x86_64, ARM64 Experimental

8.1. Installation

8.1.1. Prerequisites

o Docker

A working Docker installation is required
• Install Docker Desktop (¯Windows/macOS)

• Install Docker Engine (ò Linux)

8.1.2. ò Linux (Ubuntu/Debian)

Recent versions of Ubuntu and Debian are supported directly.
The executables are likely to work also on other Linux distributions, but they are not tested.
Installation is straightforward:

1. Download the binary for your architecture
2. Make it executable:

chmod +x mcdp-cli-*

3. (Optional) Move to system path:
sudo mv mcdp-cli-* /usr/local/bin/mcdp

4. Verify installation:
mcdp version

8.1.3.  macOS

The installation process is similar to Linux.
.About security notices: If you download the executables using a browser, the executable will be marked as untrusted and quarantined.
Use the command line to avoid security warnings.
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Recommended Installation (via Terminal)

# For Apple Silicon Macs (M1/M2/M3)
curl -L -o mcdp https://github.com/zupermind/mcdp-binaries/releases/latest/download/mcdp-[VERSION]-macos15-arm64

# For Intel Macs
curl -L -o mcdp https://github.com/zupermind/mcdp-binaries/releases/latest/download/mcdp-[VERSION]-macos15-amd64

# Make it executable
chmod +x mcdp

# Verify installation
./mcdp version

# (Optional) Move to system path
sudo mv mcdp /usr/local/bin/

Replace [VERSION] with the actual version number from the releases page.

8.1.4. ¯ Windows (Experimental)

.Note: Windows support is currently experimental. Please report any issues you encounter.

Option 1: Windows Installer (Recommended)

Download and run the installer for your architecture:
• x64: mcdp-[VERSION]-windows-amd64-installer.exe
• ARM64: mcdp-[VERSION]-windows-arm64-installer.exe
The installer will:
• Install the MCDP CLI to C:\Program Files\MCDP
• Optionally add it to your system PATH (recommended)
• Allow uninstallation through Windows Settings
- Important: After installation, you’ll need to open a new PowerShell or Command Prompt window for the PATH changes to take effect.

Option 2: Manual Installation (PowerShell/Command Prompt)

1. Download the standalone .exe file for your architecture
2. If downloaded via browser: You may see security warnings – click “More info”→ “Run anyway”

Manual Installation via PowerShell

# For x64
curl -L -o mcdp.exe https://github.com/zupermind/mcdp-binaries/releases/latest/download/mcdp-[VERSION]-windows-amd64.exe

# For ARM64
curl -L -o mcdp.exe https://github.com/zupermind/mcdp-binaries/releases/latest/download/mcdp-[VERSION]-windows-arm64.exe

# Verify installation
.\mcdp.exe version

Tip: This is a CLI tool. If you double-click the .exe file, you’ll see nothing; you have to use it from a terminal.

52



8.1.5. Getting Started

Once installed, you can:

# View help and available commands
mcdp help

# Check version
mcdp version

Note: OnWindows, the executable is mcdp.exe, but you can simply type mcdp in your terminal.

8.1.6. Troubleshooting

“Command not found” error

• Ensure the binary is in your system PATH or use the full path to the executable

Permission denied (ò Linux/ macOS)

• Run chmod +x mcdp to make the file executable

Security warnings (¯ Windows/ macOS)

• Use the command-line installation method to avoid browser quarantine
• On Windows, you may need to add an exception in Windows Defender

Docker not found

• Ensure Docker is installed and running
• On Linux, you may need to add your user to the docker group: sudo usermod -aG docker $USER

8.2. Command mcdp update - Self updating support

The MCDP CLI includes a built-in self-update feature:

mcdp update

This command will:
• Check for the latest version
• Download and install it automatically
• Preserve your current settings

¯ Note for Windows users You may need to run PowerShell as Administrator when using the mcdp update command if MCDP was
installed with the installer to C:\textbackslash Program Files\textbackslash MCDP.

8.3. Command mcdp co-design plot

mcdp co-design plot is a command that can be used to draw produce various visualizations of MCDP models and posets. It can be
used to generate the various visualizations used in this book.
The basic calling syntax is:

mcdp co-design plot --plots PLOT_NAMES THING_NAME

where PLOT_NAMES are comma-separated plot names, and THING_NAME is the name of the MCDP problem to plot.
To see the complete set of plot names, look at the output of

53



mcdp co-design plot --help

For example, consider the following model:
Listing 48: ExampleModel.mcdp

mcdp {
provides capacity [J]
requires mass [g]
ρ = 100 kWh / kg # specific_energy
required mass ≥ provided capacity / ρ

}

Here are some examples of plots that can be generated by the command.

mcdp co-design plot --plots ndp_gojs_nowrap_noexpand ExampleModel

≤capacity massf [J*kg/kWh] ≤ r [g]f / 100 ≤ r

mcdp co-design plot --plots ndp_gojs_wrap_noexpand_units ExampleModel

≤capacity: SB(≥0) J mass: SB(≥0) gf [J*kg/kWh] ≤ r [g]f / 100 ≤ r

mcdp co-design plot --plots ndp_gojs_interface ExampleModel

ExampleModel
capacity: SB(≥0) J mass: SB(≥0) g

8.4. Command mcdp co-design solve - Solving MCDP problems (legacy)

The command mcdp co-design solve is used to solve FixFunMinReq queries. It is useful as a quick way to test the models. The command
mcdp co-design solve-query offers more functionality.
The basic calling syntax is:

mcdp co-design solve MODEL PARAMETERS

The parameter MODEL is the name of the model to solve.
The parameter PARAMETERS is the parameters to solve the query.
A typical invocation is:

mcdp co-design solve model_name "600 J"

The full usage is:
Usage: mcdp co-design solve [OPTIONS] MODEL PARAMETERS

Options:
-C <PATH> Run as if the command was started in the given directory
-d <DIRECTORY> Source directory [default: .]
-o <OUTDIR> [default: out-mcdp-solve]
-v, --verbose...
Enable verbose output
--nocache Do not use cache
--imp Compute and show implementations
--show-model Show the resulting NDP
--show-dp Show the resulting DP
--pessimistic <PESSIMISTIC> Resolution for pessimistic solution
--optimistic <OPTIMISTIC> Resolution for optimistic solution
-h, --help Print help
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8.4.1. Resolution options

The options --optimistic and --pessimistic can be used to specify the resolution for the solution.

mcdp co-design solve model_name --optimistic 10 --pessimistic 10 "600 J"

8.4.2. Implementation options

The option --imp can be used to compute the implemnetations.

mcdp co-design solve model_name --imp "600 J"

8.5. Command mcdp co-design solve-query - Solving queries on MCDP problems

The command mcdp co-design solve-query is used to solve queries specified as query files.
The format for query files is documented in Section 6.1.
Usage: mcdp co-design solve-query [OPTIONS] <QUERY>

Arguments:
<QUERY> Query to solve

Options:
-C <PATH> Run as if the command was started in the given directory
-d <DIRECTORY> Source directory [default: .]
-o <OUTDIR> Source directory [default: out-solve-query]
-v, --verbose... Enable verbose output
--nocache Do not use cache
--imp Compute and show implementations
--blueprints Compute and show blueprints
--pessimistic <PESSIMISTIC> Resolution for pessimistic solution
--optimistic <OPTIMISTIC> Resolution for optimistic solution
--imp-recheck Activates paranoid mode, rechecking implementation if --imp was provided
--blueprints-recheck Activates paranoid mode, rechecking blueprints if --blueprints was provided
-h, --help Print help

The basic calling syntax is:

mcdp co-design solve-query QUERY_NAME

8.5.1. Resolution options

The options --optimistic and --pessimistic can be used to specify the resolution for the solution.

mcdp co-design solve-query --optimistic 10 --pessimistic 10 myquery

8.5.2. --imp - Computing implementations

The option --imp can be used to compute the implemnetations.
The option --imp-recheck can be used to recheck that the implementations are correct.

8.5.3. --blueprints - Computing blueprints

The option --blueprints can be used to compute the blueprints.
The option --blueprints-recheck can be used to recheck the blueprints.
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8.6. Command mcdp co-design export - Exporting MCDP problems

The command mcdp co-design export allows exporting compiled MCDP problems to a standard YAML/CBOR format, which is
described in Part F.
The calling syntax is:
Usage: mcdp co-design export [OPTIONS]

Options:
-C <PATH> Run as if the command was started in the given directory
-d <DIRECTORY> Source directory [default: .]
-o <OUTPUT> Destination directory for the exported data
-v, --verbose...
Enable verbose output
-f, --format <FORMAT> Export format [default: yaml] [possible values: yaml, cbor]
-h, --help Print help

For example, suppose that the directory data contains the following libraries:
data/

lib1/
model1.mcdp
poset1.mcdp

Then the command will export the contents of the libraries to the directory out.

mcdp co-design export -d data -o out

The directory out will contain the following files:
out/

lib1/
models/

model1.ndp.mcdp2.yaml
model1.dp.mcdp2.yaml
model1.dpc.mcdp2.yaml

posets/
poset1.poset.mcdp2.yaml

All files end in .mcdp2.yaml to signify that they are in the MCDP format 2 and represented as YAML.
For each model, the command will export 3 files:

• model1.ndp.mcdp2.yaml: This contains the parsed model as a Named DP, a graph. See Section 26.13.
• model1.dp.mcdp2.yaml: This contains the DP of the model. See Section 26.12.
• model1.dpc.mcdp2.yaml: This contains the compiled DP of the model. See Section 26.12.28.
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9. Libraries for parsing the exported data

This chapter describes the libraries that are available for parsing the data exported by the mcdp co-design export command (see
Section 8.6).
The OpenAPI specification for the MCDP format 2 is available at on GitHub.

9.1. Python library mcdp-format2-py

The Python library mcdp-format2-py is a Python library for parsing the exported data.
It is available on PyPI and can be installed with:

pip install mcdp-format2-py

The source code is available on GitHub at§ zupermind/mcdp-format2-py.
Once installed, the library can be used to parse the exported data.
from mcdp_format2_py import load
data = load("model1.ndp.mcdp2.yaml")
print(data)

There is a command line tool mcdp-format2-py-load that can be used to test the library.

mcdp-format2-py-load model1.ndp.mcdp2.yaml

9.2. Rust crate mcdp-format2-rs

The Rust crate mcdp-format2-rs is a Rust crate for parsing the exported data.
It is available on crates.io and can be installed with:

cargo add mcdp-format2-rs

The source code is available on GitHub at§ zupermind/mcdp-format2-rs.
There is a command line tool mcdp-format2-rs-load that can be used to test the crate.

cargo install mcdp-format2-rs
mcdp-format2-rs-load model1.ndp.mcdp2.yaml
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Part D.

Mathematical underpinnings for computational co-design
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10. Order theory

In this chapter we recall some basic notions of order theory and describe our notation.

10.1. Posets

Definition 10.1
A pre-order 𝐏 is a set 𝐏 equipped with a binary relation ⪯𝐏 that is reflexive and transitive. A pre-order is a poset if the relation is also
antisymmetric.

10.2. Special subsets of posets

Definition 10.2
An antichain in a poset 𝐏 is a subset 𝐀 ⊆ 𝐏 such that for all distinct elements 𝑥, 𝑦 ∈ 𝐀, 𝑥 ⪯𝐏 𝑦 does not hold.

𝖠𝗇𝗍𝗂 𝐏 is the set of all antichains in 𝐏.

Definition 10.3
A lower set in a poset 𝐏 is a subset 𝐒 ⊆ 𝐏 such that ∀𝑥 ∈ 𝐒, ∀𝑝 ∈ 𝐏 ∶ 𝑝 ⪯𝐏 𝑥 ⇒ 𝑝 ∈ 𝐒.

Definition 10.4
An upper set in a poset 𝐏 is a subset 𝐒 ⊆ 𝐏 such that ∀𝑥 ∈ 𝐒, ∀𝑝 ∈ 𝐏 ∶ 𝑥 ⪯𝐏 𝑝 ⇒ 𝑝 ∈ 𝐒.

Definition 10.5
Given a poset 𝐏, 𝖯𝗈𝗐𝐏 is the poset of subsets of 𝐏, ordered by inclusion.

Definition 10.6
Given a poset 𝐏,𝐔𝐏 is the poset of upper sets in 𝐏, ordered by inclusion.

Definition 10.7
Given a poset 𝐏, 𝐋𝐏, is the poset of lower sets in 𝐏, ordered by inclusion.

These constructions will also be indicated as P_C_UpperSets(𝐏) and P_C_LowerSets(𝐏).

10.3. Monotone maps

Definition 10.8
Amonotone map 𝑓 ∶ 𝐏→Pos𝐐 is a map 𝑓 ∶ 𝐏 → 𝐐 such that 𝑥 ⪯𝐏 𝑦 ⇒ 𝑓(𝑥) ⪯𝐐 𝑓(𝑦).

10.4. Closure operators

10.4.1. Upper and lower closure of a point

Definition 10.9 (Lower closure ↓ in a poset)
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For a poset 𝐏 we define the lower closure ↓𝐏 as

↓𝐏 ∶ 𝐏 →→→Pos 𝐋𝐏

𝑝 ↦,,,→ {𝑞 ∈ 𝐏 such that 𝑞 ⪯𝐏 𝑝}
(1)

Note that ↓ is monotone: if 𝑝 ⪯𝐏 𝑞 then ↓𝑝 ⊆ ↓ 𝑞.

Definition 10.10 (Upper closure ↑ in a poset)
For a poset 𝐏 we define the upper closure ↑𝐏 as

↑𝐏 ∶ 𝐏
op →→→Pos 𝐔𝐏

𝑝∗ ↦,,,→ {𝑞 ∈ 𝐏 such that𝑝∗ ⪯𝐏 𝑞}
(2)

Note that ↑ is antitone (its domain is 𝐏op): if 𝑝 ⪯𝐏 𝑞 then ↑𝑝 ⊇ ↑ 𝑞.
We also define the strict versions ↑ and ↓:

Definition 10.11 (Strict lower closure ↓ in a poset)
For a poset 𝐏 we define the strict lower closure ↓𝐏 as

↓𝐏 ∶ 𝐏 →→→Pos 𝐋𝐏

𝑝 ↦,,,→ {𝑞 ∈ 𝐏 such that 𝑞 ≺𝐏 𝑝}
(3)

Definition 10.12 (Strict upper closure ↑ in a poset)
For a poset 𝐏 we define the strict upper closure ↑𝐏 as

↑𝐏 ∶ 𝐏
op →→→Pos 𝐔𝐏

𝑝∗ ↦,,,→ {𝑥 ∈ 𝐏 such that𝑝∗ ≺𝐏 𝑥}
(4)

10.4.2. Upper and lower closure of a subset

Similarly, for a subset 𝐒 ⊆ 𝐏 we have that ↑ 𝐒 is the upper closure of 𝐒 and ↓ 𝐒 is the lower closure of 𝐒.

Definition 10.13 (Upper closure ↑ of a subset in a poset)
For a subset 𝐒 ⊆ 𝐏 we have that ↑ 𝐒 is the upper closure of 𝐒:

↑𝐏 ∶ 𝖯𝗈𝗐𝐏 →→→Pos 𝐔𝐏

𝐒 ↦,,,→
⋃

𝑞∈𝐒
↑ 𝑞 (5)

Definition 10.14 (Lower closure ↓ of a subset in a poset)
For a subset 𝐒 ⊆ 𝐏 we have that ↓ 𝐒 is the lower closure of 𝐒:

↓𝐏 ∶ 𝖯𝗈𝗐𝐏 →→→Pos 𝐋𝐏

𝐒 ↦,,,→
⋃

𝑞∈𝐒
↓ 𝑞 (6)

Note that both ↑ and ↓ are monotone because the order is defined by inclusion.

10.4.3. Upper and lower closure of a function

For a function 𝑓 ∶ 𝐏 → 𝐐 we define ↑𝑓 as the upper closure of the result of 𝑓 and ↓𝑓 as the lower closure of the result of 𝑓.

Definition 10.15 (Upper closure of a function)
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Given a monotone map 𝑓 ∶ 𝐏→Pos𝐐, we define the map ↑𝑓 as

↑𝑓∶ 𝐏op →→→Pos 𝐔𝐐

𝑝∗ ↦,,,→ ↑𝑓(𝑝∗)
(7)

Note that ↑𝑓 is antitone. We define the strict version ↑𝑓 analogously.

Definition 10.16 (Lower closure of a function)
Given a monotone map 𝑔 ∶ 𝐐→Pos 𝐏, we define the map ↓ 𝑔 as

↓ 𝑔∶ 𝐐 →→→Pos 𝐋𝐏

𝑞 ↦,,,→ ↓𝑔(𝑞)
(8)

Note that ↓ 𝑔 is monotone. We define the strict version ↓ 𝑔 analogously.

Lemma 10.17 (Composition of closure operators).

↑(𝑓 # 𝑔) = ↑𝑓 # ↑ 𝑔 ↑(𝑓 # 𝑔) = ↑𝑓 # ↑ 𝑔 = ↑𝑓 # ↑ 𝑔 = ↑𝑓 # ↑ 𝑔 (9)
↓(𝑓 # 𝑔) = ↓𝑓 # ↓ 𝑔 ↓(𝑓 # 𝑔) = ↓𝑓 # ↓ 𝑔 = ↓𝑓 # ↓ 𝑔 = ↓𝑓 # ↓ 𝑔 (10)
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11. Design problems (DPs)

11.1. Design problems

Definition 11.1
Given two posets 𝐅 and 𝐑, a design problem (DP)

𝐝∶ 𝐅→DP𝐑 (1)
is a monotone map

𝐝∶ 𝐅op × 𝐑→Pos Bool (2)

Lemma 11.2. DP is a traced monoidal category [1].

Lemma 11.3. DP is a locally posetal category [1].

Lemma 11.4. Fixed two posets 𝐅 and 𝐑, the homset DP(𝐅,𝐑) is a complete lattice.

11.2. PosL and PosU

The two categories PosL and PosU are used to represent the query solutions for a DP.

Definition 11.5 (PosL)
Given two posets 𝗄𝖽𝗈𝗆, 𝗄𝖼𝗈𝖽 a morphism of PosL

𝓁∶ 𝗄𝖽𝗈𝗆 →PosL 𝗄𝖼𝗈𝖽 (3)

is a monotone map
𝓁∶ 𝗄𝖽𝗈𝗆→Pos 𝐋𝗄𝖼𝗈𝖽 (4)

This construction is described by the schema L1Map (Section 26.4).

Definition 11.6 (PosU)
Given two posets 𝗄𝖽𝗈𝗆, 𝗄𝖼𝗈𝖽 a morphism of PosU

𝓊∶ 𝗄𝖽𝗈𝗆 →PosU 𝗄𝖼𝗈𝖽 (5)

is a monotone map
𝓊∶ 𝗄𝖽𝗈𝗆op→Pos𝐔𝗄𝖼𝗈𝖽 (6)

This construction is described by the schema U1Map (Section 26.5).

Note that the domain is 𝗄𝖽𝗈𝗆op: as 𝑓 increases, the solution set decreases 𝓊(𝑓) decreases.

Lemma 11.7. PosU and PosL are traced monoidal categories that are locally posetal [1].

Remark 11.8. The book [1] uses a slightly different definition, by identifying a morphism of PosU as a monotone map

𝗄𝖽𝗈𝗆→Pos𝐔𝗄𝖼𝗈𝖽 (7)

with the domain being 𝗄𝖽𝗈𝗆 instead of 𝗄𝖽𝗈𝗆op. All results are still valid with this other convention.

11.3. Queries for DPs
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Definition 11.9 (DP queries)
Given a DP 𝐝∶ 𝐅→DP𝐑, we can define the following queries:

𝖥𝖱(𝐝) ∶ 𝐅 →PosU 𝐑

𝑓∗ ↦,,,→ {𝑟 such that𝐝(𝑓∗, 𝑟)}
(8)

𝖱𝖥(𝐝) ∶ 𝐑 →PosL 𝐅

𝑟 ↦,,,→ {𝑓 such that𝐝(𝑓∗, 𝑟)}
(9)

Lemma 11.10. 𝖥𝖱 and 𝖱𝖥 can be seen as functors from DP to PosU and PosL, respectively.
• 𝖥𝖱 is a functor DP→ PosU
• 𝖱𝖥 is a contravariant functor DPop → PosL
• 𝖥𝖱 and 𝖱𝖥 preserve the traced monoidal structure.
• 𝖥𝖱 and 𝖱𝖥 are monotone functors (they respect the posetal structure)

See [1] for proofs.
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12. DP computability and well foundedness

This chapter discusses some computability concerns for DPs. In particular, we are interested in understanding when the upper/lower sets
induced by the 𝖥𝖱 and 𝖱𝖥 operations can be described by (finite) antichains.

12.1. Well-foundedness

12.1.1. Well-foundedness of upper and lower sets

Definition 12.1 (Below well founded – BWF)
An upper set 𝐒 ∈ 𝐔𝐏 is below well founded (BWF) if there exists an antichain 𝐀 ∈ 𝖠𝗇𝗍𝗂 𝐏 such that 𝐒 = ↑𝐀.
It is finitely below well founded (fBWF) if the supporting set is finite.

Definition 12.2 (Above well founded – AWF)
A lower set 𝐒 ∈ 𝐋𝐏 is above well founded (AWF) if there exists an antichain 𝐀 ∈ 𝖠𝗇𝗍𝗂 𝐏 such that 𝐒 = ↓𝐀.
We say that it is finitely above well founded (fAWF) if the supporting set is finite.

We call 𝐋𝗐 𝐏 the set of all well-founded lower sets in 𝐏 and 𝐋 𝖿 𝐏 those that are finitely well-founded. Analogously we define𝐔𝗐 𝐏 and
𝐔𝖿 𝐏.
It is useful to interpret these sets as fixpoints of certain operators. For example, an antichain is a subset such that 𝐀 = Min𝐀, or,
equivalently, such that 𝐀 = Max 𝐀. So we can define the set of antichains as a fixpoint of theMin andMax operators:

𝖠𝗇𝗍𝗂 𝐏 = Fix(Min𝐏) (1)
= Fix(Max𝐏) (2)

Likewise, we can define the lower sets as the fixpoint of the ↓ operator, and the upper sets as the fixpoint of the ↑ operator:

𝐋𝐏 = Fix(↓𝐏) (3)
𝐔𝐏 = Fix(↑𝐏) (4)

The well-founded upper and lower sets can be defined as these fixpoints:

𝐔𝗐 𝐏 = Fix(Min # ↑𝐏) (5)
𝐋𝗐 𝐏 = Fix(Max # ↓𝐏) (6)

12.1.2. Well-foundedness of PosU and PosL morphisms

We can then propagate these properties to functions that map into upper and lower sets.

Definition 12.3 (Below well founded – BWF)
We call a morphism 𝓊∶ 𝗄𝖽𝗈𝗆 →PosU 𝗄𝖼𝗈𝖽 below well founded if there exists a function 𝓊 ∶ 𝗄𝖽𝗈𝗆 → 𝖠𝗇𝗍𝗂 𝗄𝖼𝗈𝖽 such that 𝓊 = ↑𝓊.
We say that it is finitely below well founded (fBWF) if the supporting set is finite.

Definition 12.4 (Above well founded – AWF)
We call a morphism 𝓁∶ 𝗄𝖽𝗈𝗆 →PosL 𝗄𝖼𝗈𝖽 above well founded if there exists a function 𝓁 ∶ 𝗄𝖽𝗈𝗆 → 𝖠𝗇𝗍𝗂 𝗄𝖼𝗈𝖽 such that 𝓁 = ↓𝓁. We
say that it is finitely above well founded (fAWF) if the supporting set is finite.

Well-foundedness is a compositional property.

Lemma 12.5 (Composition of well-founded maps in PosU and PosL). Well-foundedness is compositional:
• If 𝓊1 and 𝓊2 are BWF (fBWF) then 𝓊1 #𝓊2 is BWF (fBWF).
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• If 𝓁1 and 𝓁2 are AWF (fAWF) then 𝓁1 # 𝓁2 is AWF (fAWF).

We call PosU𝗐 and PosL𝗐 the subcategories of well-founded morphisms in PosU and PosL . We call PosU𝖿 and PosL 𝖿 the subcategories
of finitely well-founded morphisms in PosU and PosL .

12.1.3. Well-foundedness of DPs

We extend the notion of well-foundedness to DPs.

Definition 12.6 (Well-founded DP)
For a DP 𝐝∶ 𝐅→DP𝐑, we say that it is:
• It is forward (finitely) well-founded if 𝖥𝖱𝐝 is (finitely) well-founded.
• It is backward (finitely) well-founded if 𝖱𝖥𝐝 is (finitely) well-founded.
• It is bidirectionally (finitely) well-founded if both 𝖥𝖱𝐝 and 𝖱𝖥𝐝 are (finitely) well-founded.

Also these properties are compositional.

Lemma 12.7. If 𝐝1 and 𝐝2 are (forward/backward/bidirectionally) (finitely) well-founded then 𝐝1 # 𝐝2 is as well.

We call DP𝗐 (DP𝖿 ) the subcategories of bidirectionally (finitely) well-founded morphisms in DP.

12.2. Lifting maps to DPs

A simple way to create a DP is to start with a monotone map 𝑔 ∶ 𝐏→Pos𝐐.
There are two ways to do this, which we call the upper and lower lift DP_LiftL and DP_LiftU. In [1] these constructions are called
companion and conjoint, respectively.

Definition 12.8 (Upper lift DP_LiftU)
Given a monotone map 𝑔 ∶ 𝐏→Pos𝐐 we define the upper lift DP_LiftU 𝑔 as:

DP_LiftU 𝑔 ∶ 𝐏 →DP 𝐐

⟨𝑝∗, 𝑞⟩ ↦,,→ 𝑔(𝑝∗) ⪯𝐐 𝑞
(7)

Definition 12.9 (Lower lift DP_LiftL)
Given a monotone map 𝑔 ∶ 𝐏→Pos𝐐 we define the lower lift DP_LiftL 𝑔 as:

DP_LiftL 𝑔 ∶ 𝐐 →DP 𝐏

⟨𝑞∗, 𝑝⟩ ↦,,→ 𝑞∗ ⪯𝐐 𝑔(𝑝)
(8)

Lemma 12.10. For the lifted DP DP_LiftL 𝑔 we have that

𝖥𝖱(DP_LiftL 𝑔) ∶ 𝐐 →PosU 𝐏

𝑞∗ ↦,,,→ {𝑝 ∈ 𝐏 such that 𝑞∗ ⪯𝐐 𝑔(𝑝)}
(9)

and
𝖱𝖥(DP_LiftL 𝑔) ∶ 𝐏 →PosL 𝐐

𝑝 ↦,,,→ ↓𝑔(𝑝)
(10)

Note how 𝖱𝖥(DP_LiftL 𝑔) is easy to express because we can just apply 𝑔 and take the lower closure. However the expression for
𝖥𝖱(DP_LiftL 𝑔) is more complicated and it has the flavor of an “inverse” operation on 𝑔.
When we look at the lifted DP DP_LiftU 𝑔 we have the opposite situation.

Lemma 12.11. For the lifted DP DP_LiftU 𝑔 ∶ 𝐐→DPI 𝐏 we have that

𝖥𝖱(DP_LiftU 𝑔) ∶ 𝐐 →PosU 𝐏

𝑞∗ ↦,,,→ ↑𝑔(𝑞∗)
(11)
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𝖱𝖥(DP_LiftU 𝑔) ∶ 𝐏 →PosL 𝐐

𝑝 ↦,,,→ {𝑞 ∈ 𝐐 such that 𝑔(𝑞) ⪯𝐏 𝑝}
(12)

In this case we have that 𝖥𝖱(DP_LiftU 𝑔) is easy to express because we can just apply 𝑔 and take the upper closure. However the expression
for 𝖱𝖥(DP_LiftU 𝑔) is more complicated and it has the flavor of another “inverse” operation on 𝑔.
One of the computability questions we need to answer is under which condition on the map 𝑔 we can represent the solutions of the 𝖥𝖱
and 𝖱𝖥 operators to produce upper/lower sets that can be represented by antichains.
We call these notions above/below well founded.

12.3. Upper and lower preimage of a monotone map

We can give a name to the inverse-like operations that appear in (9) and (12).
We call these operations the upper and lower pre-image of a monotone map.

Definition 12.12 (Upper pre-image)
Given a monotone map 𝑔∶ 𝐐→Pos 𝐏 define the upper pre-image of 𝑔 as:

𝐔𝐢 𝑔 ∶ 𝐏 →PosU 𝐐

𝑝∗ ↦,,,→ {𝑞 ∈ 𝐐 such that𝑝∗ ⪯𝐏 𝑔(𝑞)}
(13)

Definition 12.13 (Lower pre-image)
Given a monotone map 𝑓∶ 𝐏→Pos𝐐 define the lower pre-image of 𝑓 as:

𝐋𝐢 𝑓 ∶ 𝐐 →PosL 𝐏

𝑞 ↦,,,→ {𝑝 ∈ 𝐏 such that𝑓(𝑝) ⪯𝐐 𝑞}
(14)

Example 12.14 (Example with floor and ceil). We can compute the following:

𝐔𝐢 ceil∶ 𝑞 ↦ {𝑝 ∣ 𝑝 > floor(𝑞)} = ↑floor(𝑞) (15)
𝐋𝐢 ceil∶ 𝑞 ↦ {𝑝 ∣ 𝑝 ≤ floor(𝑞)} = ↓floor(𝑞) (16)

𝐔𝐢floor∶ 𝑞 ↦ {𝑝 ∣ 𝑝 ≥ ceil(𝑞)} = ↑ ceil(𝑞) (17)
𝐋𝐢floor∶ 𝑞 ↦ {𝑝 ∣ 𝑝 < ceil(𝑞)} = ↓ ceil(𝑞) (18)

Note that (17) and (16) given upper/lower sets that can be written as the upper/lower closure of a function, but (15) and (18) do not have
this property.

Lemma 12.15 (Contravariant functoriality).

𝐋𝐢(𝑓 # 𝑔) = 𝐋𝐢 𝑔 # 𝐋𝐢 𝑓 (19)
𝐔𝐢(𝑓 # 𝑔) = 𝐔𝐢 𝑔 #𝐔𝐢𝑓 (20)

Proof. We prove the first equation. Let 𝑓 ∶ 𝐏 → 𝐐 and 𝑔 ∶ 𝐐 → 𝐑. For any 𝑟 ∈ 𝐑:

[𝐋𝐢(𝑓 # 𝑔)](𝑟) ≐ {𝑝 ∈ 𝐏 such that 𝑔(𝑓(𝑝)) ⪯𝐑 𝑟} (21)
= {𝑝 ∈ 𝐏 such that𝑓(𝑝) ∈ [𝐋𝐢 𝑔](𝑟)} (22)
= ⋃

𝑞∈[𝐋𝐢 𝑔](𝑟) {𝑝 ∈ 𝐏 such that𝑓(𝑝) ⪯𝐐 𝑞} (23)

= ⋃
𝑞∈[𝐋𝐢 𝑔](𝑟)[𝐋𝐢 𝑓](𝑞) ≐ [𝐋𝐢 𝑔 # 𝐋𝐢 𝑓](𝑟) (24)

The second equation follows similarly for the upper pre-image.
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12.4. Well-foundedness and Galois connections

If the map is invertible, then the upper and lower preimage are computed as the closure of the inverse of the function.

Lemma 12.16. If 𝑓 ∶ 𝐏→Pos𝐐 is invertible, then

𝐋𝐢 𝑓 = ↓𝑓−1 (25)

𝐔𝐢𝑓 = ↑𝑓−1 (26)

Proof. For the lower pre-image:

[𝐋𝐢 𝑓](𝑞) ≐ {𝑝 ∈ 𝐏 such that𝑓(𝑝) ⪯𝐐 𝑞} (27)

= {𝑝 ∈ 𝐏 such that𝑝 ⪯𝐏 𝑓
−1(𝑞)} (applying 𝑓−1 to both sides) (28)

≐ ↓𝑓−1(𝑞) (29)

For the upper pre-image:

[𝐔𝐢 𝑓](𝑞) ≐ {𝑝 ∈ 𝐐 such that 𝑞 ⪯𝐐 𝑓(𝑝)} (30)

= {𝑝 ∈ 𝐐 such that𝑓−1(𝑞) ⪯𝐐 𝑝} (applying 𝑓−1 to both sides) (31)

≐ ↑𝑓−1(𝑞) (32)

Therefore, if the map is invertible, the upper and lower preimage are fBWF and fAWF.
We can relax the condition of invertibility and consider adjoint maps in the sense of Galois connections.

Definition 12.17 (Galois connection)
A pair of maps 𝑓 ∶ 𝐏→Pos𝐐 , 𝑔 ∶ 𝐐→Pos 𝐏 is a Galois connection if ∀𝑝 ∈ 𝐏, ∀𝑞 ∈ 𝐐,

𝑓(𝑝) ⪯𝐐 𝑞
.

𝑝 ⪯𝐏 𝑔(𝑞) (33)

The map 𝑓 is called “the lowera adjoint of 𝑔” and 𝑔 is called “the upper adjoint of 𝑓”.
a𝑓 is the “lower” because it appears in the left hand side of the condition (33).

Example 12.18. If 𝑓 is invertible, the pair (𝑓, 𝑓−1) is a Galois connection.

Lemma 12.19. If 𝑔 ∶ 𝐐→Pos 𝐏 has a lower adjoint 𝑓, then𝐔𝐢 𝑔 = ↑𝑓.

Proof. We compute𝐔𝐢 𝑔 as:
𝐔𝐢 𝑔∶ 𝑝 ↦ {𝑞 ∈ 𝐐 such that𝑝 ⪯𝐏 𝑔(𝑞)} (34)

And using the property (33) we obtain

{𝑞 ∈ 𝐐 such that𝑝 ⪯𝐏 𝑔(𝑞)} = {𝑞 ∈ 𝐐 such that𝑓(𝑝) ⪯𝐐 𝑞} = ↑𝑓(𝑝) (35)

Lemma 12.20. If 𝑓 ∶ 𝐏→Pos𝐐 has an upper adjoint 𝑔, then 𝐋𝐢 𝑓 = ↓ 𝑔.

Proof. This is the dual of Lemma 12.19.

Having an adjoint is a sufficient condition for the upper and lower preimage to be AWF and BWF, but it is not necessary. We give the
following example.

Lemma 12.21. There are functions 𝑓 such that 𝐋𝐢 𝑓 is AWF, but 𝑓 does not have an upper adjoint.

Proof. Consider the addition function on the natural numbers add ∶ ℕ × ℕ → ℕ. We have

𝐋𝐢 add∶ 𝑛 ↦ {(𝑎, 𝑏) such that 𝑎 + 𝑏 ≤ 𝑛} (36)
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For example:

𝐋𝐢 add(0) = {⟨0, 0⟩} (37)
𝐋𝐢 add(1) = {⟨0, 0⟩, ⟨0, 1⟩, ⟨1, 0⟩} = ↓ {⟨0, 1⟩, ⟨1, 0⟩} (38)
𝐋𝐢 add(2) = ↓ {⟨0, 2⟩, ⟨1, 1⟩, ⟨2, 0⟩} (39)

Therefore, 𝐋𝐢 add is AWF. However, there exists no upper adjoint of add. A upper adjoint of add would be a function 𝛽 ∶ ℕ → ℕ × ℕ
such that

∀⟨𝑎, 𝑏⟩∀𝑐 add(⟨𝑎, 𝑏⟩) ≤ 𝑐 ⇔ ⟨𝑎, 𝑏⟩ ≤ 𝛽(𝑐) (40)
This cannot work because the lowersets generated by 𝐋𝐢 add are not principal. More formally, take 𝑐 = 1. We have that

∀⟨𝑎, 𝑏⟩ add(⟨𝑎, 𝑏⟩) ≤ 1 ⇔ ⟨𝑎, 𝑏⟩ ≤ 𝛽(1) (41)

The tuples that make the left hand side true are
{⟨0, 0⟩, ⟨0, 1⟩, ⟨1, 0⟩} (42)

but these cannot be written as ↓ 𝛽(1) for any value that 𝛽 can take.

Lemma 12.22. There are functions 𝑔 such that𝐔𝐢 𝑔 is BWF, but 𝑔 does not have a lower adjoint.

Proof. The function add from the previous lemma works as an example.

12.5. Well-foundedness and Scott-continuity

In the case that domain and codomain are dcpos, we can give a necessary and sufficient condition for the lower pre-image to be AWF:
Scott continuity. In the other direction, the upper-pre-image is BWF if and only if the function is Scott-co-continuous.

12.5.1. Scott-continuity

Definition 12.23 (Directed set)
A subset 𝐃 ⊆ 𝐀 is directed if it is non-empty and every pair 𝑎, 𝑏 ∈ 𝐃 has an upper bound 𝑐 ∈ 𝐃 (𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑐).

Definition 12.24 (dcpo)
A directed complete partial order (dcpo) is a partial order in which every directed subset has a least upper bound.

We use the notation
⋁↑𝐃 to denote the supremum of a directed set 𝐃 in a dcpo.

Definition 12.25 (Scott-continuity)
A monotone map 𝑓 ∶ 𝐏→Pos𝐐 between two dcpos is Scott-continuous if for every directed 𝐃 ⊆ 𝐏 the following equality holds:

𝑓(
⋁↑

𝐃) =
⋁↑

𝑓[𝐃].

(Note that because 𝑓 is monotone, 𝑓[𝐃] is directed and because 𝐐 is a dcpo, the supremum on the right always exists.)

It is useful to have a slightly broader version of Scott-continuity that is applicable to maps between arbitrary posets which might not be
dcpos;

Definition 12.26 (Pre-Scott-continuity)
A monotone map 𝑓 ∶ 𝐏→Pos𝐐 between two posets is pre-Scott-continuous if for every directed 𝐃 ⊆ 𝐏, whenever⋁↑𝐃 exists, then⋁↑ 𝑓[𝐃] exists and

𝑓(
⋁↑

𝐃) =
⋁↑

𝑓[𝐃].

12.5.2. Co-Scott-continuity

We can define the dual notion of Scott-continuity that uses infima instead of suprema.
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Definition 12.27 (Filtered set)
A subset 𝐅 ⊆ 𝐐 is filtered if it is non-empty and every pair 𝑎, 𝑏 ∈ 𝐅 has a lower bound 𝑐 ∈ 𝐅 (𝑐 ≤ 𝑎 and 𝑐 ≤ 𝑏).

Definition 12.28 (fcpo)
A filtered complete partial order (fcpo) is a partial order in which every filtered subset has a greatest lower bound.

We use the notation
⋀↓ 𝐅 to denote the infimum of a filtered set 𝐅 in a fcpo.

Definition 12.29 (Scott-co-continuity)
A monotone map 𝑔 ∶ 𝐐 → 𝐏 is Scott-co-continuous if for every filtered 𝐅 ⊆ 𝐐 the following equality holds:

𝑔(
⋀↓

𝐅) =
⋀↓

𝑔[𝐅].

Because 𝐏 is a fcpo, the infimum on the right always exists.

12.5.3. Scott-continuity and well-foundedness

Theorem 12.30. If a monotone map 𝑓 ∶ 𝐏 → 𝐐 between two dcpos is Scott-continuous, then 𝐋𝐢 𝑓 ∶ 𝐐 → 𝐋𝐏 is AWF. (Assumes the
axiom of choice.)

Proof. Fixed a 𝑞, we already know that 𝐋𝐢 𝑓(𝑞) is a lower set.
We can show that 𝐋𝐢 𝑓(𝑞) is closed under directed suprema. Let 𝐃 ⊆ 𝐋𝐢 𝑓(𝑞) be directed. Because 𝐏 is a dcpo, 𝑠 = sup𝐃 exists. Scott
continuity gives 𝑓(𝑠) = sup𝑓(𝐃) ≤ 𝑞, so 𝑠 ∈ 𝐋𝐢 𝑓(𝑞).
So, every chain in 𝐋𝐢 𝑓(𝑞) is directed and has an upper bound in 𝐋𝐢 𝑓(𝑞).
By Zorn’s lemma (Lemma 12.32), 𝐋𝐢 𝑓(𝑞) possesses maximal elements; letMax(𝐋𝐢 𝑓(𝑞)) denote their set, obviously an antichain.
Because 𝐋𝐢 𝑓(𝑞) is a lower set, every 𝑝 ∈ 𝐋𝐢 𝑓(𝑞) lies below some maximal element inMax(𝐋𝐢 𝑓(𝑞)), by applying Zorn’s lemma again
to 𝐿≥𝑝 ≐ {𝑥 ∈ 𝐋𝐢 𝑓(𝑞) ∣ 𝑝 ≤ 𝑥}. Hence

𝐋𝐢 𝑓(𝑞) = ↓Max(𝐋𝐢 𝑓(𝑞)), (43)
which witnesses the AWF property.

Theorem 12.31. For a monotone map 𝑓 ∶ 𝐏 → 𝐐 between two dcpos, if 𝐋𝐢 𝑓 ∶ 𝐐 → 𝐋𝐏 is finitely above well founded (fAWF) then 𝑓 is
Scott-continuous. (Assumes the axiom of choice.)

Proof. Choose any directed 𝐃 ⊆ 𝐏 and call
𝑑 ≐

⋁↑
𝐃 (44)

its supremum, which exists because𝐃 is directed and 𝐏 is a dcpo. Consider 𝑓[𝐃], the image of𝐃 under 𝑓. Because 𝑓 is monotone, 𝑓[𝐃]
is directed. Because 𝐐 is a dcpo, the supremum of 𝑓[𝐃] exists. Call it

𝑞 ≐
⋁↑

𝑓[𝐃]. (45)

To prove that 𝑓 is Scott-continuous, we need to show that 𝑓(𝑑) = 𝑞.
Because of monotonicity we have that

𝑓(𝑑) ≥𝐐 𝑞. (46)

So our goal is to prove 𝑓(𝑑) ≤𝐐 𝑞; equality will follow from (46).
Proof by contradiction: assume that

𝑓(𝑑) ≰𝐐 𝑞 (by contradiction) (47)

Define
𝐋 ∶= (𝐋𝐢 𝑓)(𝑞) (48)

to be the lower pre-image of 𝑞. Because of (47) we have that

𝑑 ∉ 𝐋. (49)
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At the same time, we have 𝐃 ⊆ 𝐋, because for any 𝑥 ∈ 𝐃:

𝑓(𝑥) ≤𝐐
⋁↑

𝑓[𝐃] = 𝑞. (50)

Because 𝐋𝐢 𝑓 is fAWF there exists a finite antichain 𝐒 such that 𝐋 = ↓𝐒.
To summarize so far, the assumption (47) allowed us to have that

𝐃 ⊆ 𝐋 = ↓𝐒 (51)

yet, because of (49) we have that
𝑑 ∉ ↓ 𝐒. (52)

Because 𝐒 is finite, 𝐃 is directed, and 𝐃 ⊆ ↓𝐒, by Lemma 12.33 we have that 𝐃 has an upper bound in 𝑠𝐷 ∈ 𝐒. Because 𝑑 is the least
upper bound of 𝐃 we have that necessarily 𝑑 ≤𝐴 𝑠𝐷 . Then we have that

𝑑 ∈ ↓ 𝐒, (53)

which contradicts (52). Therefore, our assumption (47) is impossible, and we conclude that 𝑓(𝑑) ≤𝐐 𝑞. Together with (46) we have
that 𝑓(𝑑) = 𝑞.
Because the set 𝐃 was arbitrary, we have shown that for any directed 𝐃 ⊆ 𝐀 we have that

𝑓 (
⋁↑

𝐃) =
⋁↑

𝑓[𝐃]. (54)

Therefore, 𝑓 is Scott-continuous.

Lemma 12.32 (Zorn’s lemma). Every non-empty poset in which every chain has an upper bound has a maximal element.
This is equivalent to the axiom of choice.

Lemma 12.33 (Single-pigeon-dropping principle for antichains). Let 𝐒 be a finite antichain in a poset 𝐏. If a (finite or infinite) directed
set 𝐃 is such that 𝐃 ⊆ ↓𝐒, then 𝐃 has an upper bound in 𝐒. (The proof uses the axiom of choice.)

Proof. By contradiction. Assume that 𝐃 has no upper bound in 𝐒. Then for each 𝑠 ∈ 𝐒 we can choose (using the axiom of choice) an
element 𝑐𝑠 ∈ 𝐃 such that

𝑐𝑠 ≰ 𝑠. (55)
Call 𝐂 = {𝑐𝑠 ∣ 𝑠 ∈ 𝐒} the set of all these counter-examples. Since 𝐒 is finite, 𝐂 is also finite. Because 𝐃 is directed, 𝐂 ⊆ 𝐃, and 𝐂 is finite,
𝐂 has an upper bound 𝑐 ∈ 𝐃, which can be constructed by finitely iterating the directedness property. (This part would not work if
𝐂 was infinite.) Because 𝐃 ⊆ ↓𝐒, we have that 𝑐 ∈ ↓ 𝐒, which means that there exists 𝑠𝐶 ∈ 𝐒 such that 𝑐 ≤ 𝑠𝐶 . Therefore, for all 𝑠,
𝑐𝑠 ≤ 𝑐 ≤ 𝑠𝐶 . In particular for 𝑠 = 𝑠𝐶 , we have that 𝑐𝑠𝐶 ≤ 𝑠𝐶 . But this contradicts (55).

Finally, we state the dual of the previous results.

Theorem 12.34. If a monotone map 𝑓∶ 𝐐 → 𝐏 between two fcpos is Scott co-continuous, then𝐔𝐢𝑓 is BWF.

Theorem 12.35. If𝐔𝐢 𝑔 ∶ is fBWF, then 𝑔 is Scott co-continuous.

12.6. Lifting as functors

We can see that DP_LiftL and DP_LiftU are monotone functors.

Lemma 12.36 (Monotonicity of lifting). The contravariant functor DP_LiftL∶ Posop → DP is monotone.
The covariant functor DP_LiftU∶ Pos→ DP is antitone.

Proof. Proof of antitonicity of DP_LiftU: let 𝑓, 𝑔∶ 𝐏 →Pos 𝐐 and 𝑓 ⪯Pos 𝑔. We check when they are feasible:

DP_LiftU(𝑓)(𝑝, 𝑞) = 𝑓(𝑝) ⪯𝐐 𝑞 (56)
DP_LiftU(𝑔)(𝑝, 𝑞) = 𝑔(𝑝) ⪯𝐐 𝑞 (57)

Because 𝑓(𝑝) ⪯𝐐 𝑔(𝑝), we have that DP_LiftU(𝑔)(𝑝, 𝑞) ⇒ DP_LiftU(𝑓)(𝑝, 𝑞), which means that DP_LiftU(𝑓) is more feasible than
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DP_LiftU(𝑔). Thus we have that DP_LiftU is antitone:

𝑓 ⪯Pos 𝑔

DP_LiftU(𝑔) ⪯DP DP_LiftU(𝑓) . (58)

The proof of monotonicity of DP_LiftL is similar.

12.6.1. Restriction to Scott-(co)continuous maps

We can now look at the restriction of DP_LiftL and DP_LiftU to Scott-(co)continuous maps.

Definition 12.37 (DCPO)
DCPO is the subcategory of Pos that has dcpos as objects and Scott-continuous maps as morphisms.

Definition 12.38 (FCPO)
FCPO is the subcategory of Pos that has fcpos as objects and Scott-co-continuous maps as morphisms.

Lemma 12.39. The restrictions of DP_LiftU and DP_LiftL to (co)Scott-continuous maps are functors into the subcategory of well-founded
DPs:

DP_LiftU∶ DCPO→ DP𝗐 (59)
and a functor

DP_LiftL∶ FCPOop → DP𝗐 (60)

71



13. Scalable computation for DPs

13.1. Scalable maps

We define two categories SPosL and SPosU that are generalizations of the categories PosL and PosU.
Each morphism in SPosL has associated a pair of “resolution” posets, and two maps into PosL, which are meant to be the “optimistic”
and “pessimistic” version of the map, thus representing an interval in PosL .

Definition 13.1
Given three posets 𝗄𝖽𝗈𝗆, 𝗄𝖼𝗈𝖽, and a pair of posets 𝖲 = ⟨𝖲⌣, 𝖲⌢⟩, referred to as the “optimistic” and “pessimistic” “resolution” posets,
a morphism in SPosL

𝗌𝗅∶ {𝖲} 𝗄𝖽𝗈𝗆 →SPosL 𝗄𝖼𝗈𝖽 (1)
is defined by giving two maps

𝗌𝗅⌣ ∶ 𝖲⌣ op→Pos(𝗄𝖽𝗈𝗆 →PosL 𝗄𝖼𝗈𝖽) (2)

𝗌𝗅⌢ ∶ 𝖲⌢ →Pos(𝗄𝖽𝗈𝗆 →PosL 𝗄𝖼𝗈𝖽) (3)

that satisfy the following condition:
∀𝑜 ∈ 𝖲⌣ ∶ ∀𝑝 ∈ 𝖲⌢ ∶ 𝗌𝗅⌢(𝑝) ⪯PosL 𝗌𝗅⌣(𝑜) (4)

Definition 13.2
Given three posets 𝗄𝖽𝗈𝗆, 𝗄𝖼𝗈𝖽, and a pair of posets 𝖲 = ⟨𝖲⌣, 𝖲⌢⟩, referred to as the “optimistic” and “pessimistic” “resolution” posets,
a morphism in SPosU

𝗌𝗎∶ {𝖲} 𝗄𝖽𝗈𝗆 →SPosU 𝗄𝖼𝗈𝖽 (5)
is defined by giving two maps

𝗌𝗎⌣ ∶ 𝖲⌣ op→Pos(𝗄𝖽𝗈𝗆 →PosU 𝗄𝖼𝗈𝖽) (6)

𝗌𝗎⌢ ∶ 𝖲⌢ →Pos(𝗄𝖽𝗈𝗆 →PosU 𝗄𝖼𝗈𝖽) (7)

that satisfy the following condition:
∀𝑜 ∈ 𝖲⌣ ∶ ∀𝑝 ∈ 𝖲⌢ ∶ 𝗌𝗎⌢(𝑝) ⪯PosU 𝗌𝗎⌣(𝑜) (8)

Lemma 13.3. SPosU and SPosL are traced monoidal categories.

The identities and series compositions for these categories are reported in Chapter 22.

Remark 13.4. If 𝖲⌣ and 𝖲⌢ were the same poset 𝖲, then a morphism of SPosU would be equivalent to a monotone function from 𝑅 to the
poset of intervals

𝗌𝗎∶ 𝖲→Pos P_C_Twisted(𝗄𝖽𝗈𝗆 →PosU 𝗄𝖼𝗈𝖽). (9)
We choose to consider explicitly the case where 𝖲⌣ and 𝖲⌢ are different posets, as it is useful in certain cases, such as when we have a
different number of optimistic and pessimistic approximations.

13.2. Approximation of DP queries

Definition 13.5 (Approximation of DP forward queries)
Given a DP 𝐝∶ 𝐅→DP𝐑, we define the following admissible sets of query solutions:
• 𝖥𝖱✓

𝖿 𝐝 is the subset of SPosU𝖿 (𝐅,𝐑) containing all morphisms 𝗌𝗎 such that

∀𝑝 ∈ 𝖲⌢ ∶ ∀𝑜 ∈ 𝖲⌣ ∶ 𝗌𝗎⌢(𝑝) ⪯ (𝖥𝖱𝐝) ⪯ 𝗌𝗎⌣(𝑜) (10)

These are the scalable computable solutions that are consistent with the actual solution. These are not guaranteed to get close to
the actual solution.
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• 𝖥𝖱⌢

𝖿 𝐝 is the subset of SPosU𝖿 (𝐅,𝐑) containing all morphisms 𝗌𝗎 such that

inf
𝑜∈𝖲⌣

𝗌𝗎⌣(𝑜) ⪯ (𝖥𝖱 𝐝) (11)

These are the scalable computable solutions that tend to a pessimistic solution.
• 𝖥𝖱⌣

𝖿 𝐝 is the subset of SPosU𝖿 (𝐅,𝐑) containing all morphisms 𝗌𝗎 such that

(𝖥𝖱 𝐝) ⪯ sup
𝑝∈𝖲⌢

𝗌𝗎⌢(𝑝) (12)

These are the scalable computable solutions that tend to an optimistic solution.
• 𝖥𝖱⋆

𝖿 𝐝 is the subset of SPosU𝖿 (𝐅,𝐑) containing all morphisms 𝗌𝗎 such that

sup
𝑝∈𝖲⌢

𝗌𝗎⌢(𝑝) ≃ (𝖥𝖱𝐝) ≃ inf
𝑜∈𝖲⌣

𝗌𝗎⌣(𝑜) (13)

These are the scalable computable solutions that tend to actual solution. It is the intersection of the two previous sets:

𝖥𝖱⋆

𝖿 𝐝 = (𝖥𝖱⌢

𝖿 𝐝) ∩ (𝖥𝖱
⌣

𝖿 𝐝) (14)

Note that the infimum/supremum are not necessarily attained as part of the set.

Lemma 13.6 (Compositionality of forward queries approximations). The following holds:

𝗌𝗎1 ∈ (𝖥𝖱✓

𝖿 𝐝1) 𝗌𝗎2 ∈ (𝖥𝖱✓

𝖿 𝐝2)

𝗌𝗎1 # 𝗌𝗎2 ∈ 𝖥𝖱✓

𝖿 (𝐝1 # 𝐝2)

𝗌𝗎1 ∈ (𝖥𝖱⋆

𝖿 𝐝1) 𝗌𝗎2 ∈ (𝖥𝖱⋆

𝖿 𝐝2)

𝗌𝗎1 # 𝗌𝗎2 ∈ 𝖥𝖱⋆

𝖿 (𝐝1 # 𝐝2)

𝗌𝗎1 ∈ (𝖥𝖱⌢

𝖿 𝐝1) 𝗌𝗎2 ∈ (𝖥𝖱⌢

𝖿 𝐝2)

𝗌𝗎1 # 𝗌𝗎2 ∈ 𝖥𝖱⌢

𝖿 (𝐝1 # 𝐝2)

𝗌𝗎1 ∈ (𝖥𝖱⌣

𝖿 𝐝1) 𝗌𝗎2 ∈ (𝖥𝖱⌣

𝖿 𝐝2)

𝗌𝗎1 # 𝗌𝗎2 ∈ 𝖥𝖱⌣

𝖿 (𝐝1 # 𝐝2)

(15)

Another way to write the previous lemma is:
(𝖥𝖱✓

𝖿 𝐝1) # (𝖥𝖱✓

𝖿 𝐝2) ⊆ 𝖥𝖱✓

𝖿 (𝐝1 # 𝐝2) (16)

(𝖥𝖱⋆

𝖿 𝐝1) # (𝖥𝖱⋆

𝖿 𝐝2) ⊆ 𝖥𝖱⋆

𝖿 (𝐝1 # 𝐝2) (17)

(𝖥𝖱⌢

𝖿 𝐝1) # (𝖥𝖱⌢

𝖿 𝐝2) ⊆ 𝖥𝖱⌢

𝖿 (𝐝1 # 𝐝2) (18)

(𝖥𝖱⌣

𝖿 𝐝1) # (𝖥𝖱⌣

𝖿 𝐝2) ⊆ 𝖥𝖱⌣

𝖿 (𝐝1 # 𝐝2) (19)

We repeat the construction for backward queries.

Definition 13.7 (Approximation of DP backward queries)
Given a DP 𝐝∶ 𝐅→DP𝐑, we define the following admissible sets of query solutions:
• 𝖱𝖥✓

𝖿 𝐝 is the subset of SPosL 𝖿 (𝐑, 𝐅) containing all morphisms 𝗌𝗅 such that

∀𝑝 ∈ 𝖲⌢ ∶ ∀𝑜 ∈ 𝖲⌣ ∶ 𝗌𝗅⌢(𝑝) ⪯ (𝖱𝖥 𝐝) ⪯ 𝗌𝗅⌣(𝑜) (20)

• 𝖱𝖥⌢

𝖿 𝐝 is the subset of SPosL 𝖿 (𝐑, 𝐅) containing all morphisms 𝗌𝗅 such that

inf
𝑜∈𝖲⌣

𝗌𝗅⌣(𝑜) ⪯ (𝖱𝖥 𝐝) (21)

• 𝖱𝖥⌣

𝖿 𝐝 is the subset of SPosL 𝖿 (𝐑, 𝐅) containing all morphisms 𝗌𝗅 such that

(𝖱𝖥 𝐝) ⪯ sup
𝑝∈𝖲⌢

𝗌𝗅⌢(𝑝) (22)

• 𝖱𝖥⋆

𝖿 𝐝 is the subset of SPosL 𝖿 (𝐑, 𝐅) containing all morphisms 𝗌𝗅 such that

sup
𝑝∈𝖲⌢

𝗌𝗅⌢(𝑝) ≃ (𝖱𝖥 𝐝) ≃ inf
𝑜∈𝖲⌣

𝗌𝗅⌣(𝑜) (23)
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These are the scalable computable solutions that tend to actual solution. It is the intersection of the two previous sets:

𝖱𝖥⋆

𝖿 𝐝 = (𝖱𝖥⌢

𝖿 𝐝) ∩ (𝖱𝖥
⌣

𝖿 𝐝) (24)

Note that the infimum/supremum are not necessarily attained as part of the set.

Lemma 13.8 (Compositionality of backward queries approximations). The following holds:

𝗌𝗅1 ∈ (𝖱𝖥✓

𝖿 𝐝1) 𝗌𝗅2 ∈ (𝖱𝖥✓

𝖿 𝐝2)

𝗌𝗅2 # 𝗌𝗅1 ∈ 𝖱𝖥✓

𝖿 (𝐝1 # 𝐝2)

𝗌𝗅1 ∈ (𝖱𝖥⋆

𝖿 𝐝1) 𝗌𝗅2 ∈ (𝖱𝖥⋆

𝖿 𝐝2)

𝗌𝗅2 # 𝗌𝗅1 ∈ 𝖱𝖥⋆

𝖿 (𝐝1 # 𝐝2)

𝗌𝗅1 ∈ (𝖱𝖥⌢

𝖿 𝐝1) 𝗌𝗅2 ∈ (𝖱𝖥⌢

𝖿 𝐝2)

𝗌𝗅2 # 𝗌𝗅1 ∈ 𝖱𝖥⌢

𝖿 (𝐝1 # 𝐝2)

𝗌𝗅1 ∈ (𝖱𝖥⌣

𝖿 𝐝1) 𝗌𝗅2 ∈ (𝖱𝖥⌣

𝖿 𝐝2)

𝗌𝗅2 # 𝗌𝗅1 ∈ 𝖱𝖥⌣

𝖿 (𝐝1 # 𝐝2)

(25)

Note that because of contravariance, the order of the morphisms is reversed for the backward queries (𝗌𝗅2 # 𝗌𝗅1 instead of 𝗌𝗎1 # 𝗌𝗎2).

Similar results hold for the other types of morphisms composition in DP: monoidal product, trace, union, and intersection.

74



14. Design problems with implementations (DPIs)

14.1. DPIs

Definition 14.1
A design problem with implementation and blueprints (“DPIB” or simply “DPI”)

𝐝∶ 𝐅→DPI𝐑{ℬ} (1)

is defined by the following data:
• A poset 𝐅 of “functionalities”
• A poset 𝐑of “requirements”
• A poset 𝐈 of “implementations”
• A poset ℬ of “blueprints”
• A monotone map 𝗉𝗋𝗈𝗏∶ 𝐈→Pos 𝐅
• A monotone map 𝗋𝖾𝗊∶ 𝐈→Pos𝐑op

• A monotone map avail∶ 𝐈op→Pos Bool
• A monotone map feas∶ 𝐈→Pos Bool
• A monotone map IB∶ 𝐈∕(avail ∧ feas) ∶ →Posℬ
where 𝐈∕(avail ∧ feas) is the subset of 𝐈 such that avail and feas are true.

This construction is described by the schema DP (Section 26.12).

Interpretation of the implementation space The implementation space 𝐈 are the decision variables. An implementation 𝑖 defines
univocally the functionality and requirements by the map 𝗉𝗋𝗈𝗏 and 𝗋𝖾𝗊.
The two maps avail and feas together denote the feasible subset of implementations. Because avail’s domain is 𝐈op, it represents a lower
set; because feas’s domain is 𝐈, it represents an upper set. This ensures that, by construction, all DPIs have feasible implementations in the
intersection of an upper and a lower set. Moreover, because we construct these two functions explicitly for all constructions, we can say
that the problem of deciding whether an implementation is feasible is a decidable problem.
The order on 𝐈 represents a preference structure on the implementations in addition to their external properties of functionality/requirements
given by 𝗉𝗋𝗈𝗏 and 𝗋𝖾𝗊. We adopt the convention that “smaller is better”. So avail tells us that higher implementations might not be available,
while feas tells us that lower implementations might not be feasible. We will see that feas constraints derive from the composition of DPIs.

Interpretation of the blueprint space The poset ℬ represents the “actionable information” from the implementation. For example, in
the design of a robot, the blueprint space could be the bill of materials, while the implementation space contains more details including
the values of voltage and current on each wire. A blueprint is entirely determined by the implementation by the map IB.
We also think of the blueprint space as the “public result” from the design problem, while the implementation space is the “private data”.
We will consider a notion of congruence between DPIs if they give the same blueprint results, even if the internal implementation details
are different. This simple concept will allow us to reason about DPI “simplifications” and “optimizations”; the compiler tries to find the
DPI whose queries are simplest to compute among all the possible implementations.
For this reason, when we write the type of a DPI as

𝐝𝐩∶ 𝐅→DPI𝐑{ℬ} , (2)
we specify the blueprint space ℬ, which, along with the functionality space 𝐅 and the requirement space 𝐑, is the “public interface” of the
DPI, but we do not specify the implementation space 𝐈.

Remark 14.2. The DPI construction here is a generalization of the definition of DPI [1] in which:
• The implementation space 𝐈 here is a poset, not a set.
• We added the blueprint space ℬ.
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• We made the availability and feasibility functions explicit.
These are the benefits:
• By construction the subset of valid implementations (those who are “available” and “feasible”) is decidable, as we construct the indicator
functions directly.

• By allowing a distinction between the implementation and blueprint spaces, we can distinguish about the “external interfaces”, which
contains only ℬ and the “internal” implementation. In such a way we can study equivalence between DPIs and approaches for
“simplification” that change the internal implementation without affecting the external interface.

14.2. Optimization queries associated to a DPI

A DPI represent amodel of a design problem. The “queries” are the “questions” that the user can ask about the design problem.
As for a DP, we are primarely interested in two quantitative questions for a DPI:
1. Given a minimum functionality, what are the minimal resources required?
2. Given a maximum budget, what is the best functionality that can be achieved?
These questions are duals to each other.
Because DPIs have additional structure in implementations and blueprints, we have for each query three variants:
1. Only ask about functionality/requirements.
2. Also derive the implementations
3. Also derive the blueprints
The following are the definitions of the forward and backward queries when we are interested in recovering the implementations.

Definition 14.3 (FixFunMinReqI)
Given a DPI 𝐝𝐩 and a functionality 𝑓∗0 , we call FixFunMinReqI

𝐝𝐩(𝑓∗0) the optimization problem

using 𝑖 ∈ 𝐈, (3)
𝑟 ∈ 𝐑, (4)

Min𝐑 𝑟, then lexicographically Min𝐈 𝑖, (5)
such that avail(𝑖) = ⊤, (6)

feas(𝑖) = ⊤, (7)
𝑓∗0 ⪯𝐅 𝗉𝗋𝗈𝗏(𝑖), (8)
𝗋𝖾𝗊(𝑖) ⪯𝐑 𝑟. (9)

Note that the objective function is multidimensional: because𝐑 is a poset, the objective function usesMin rather thanmin: there could be
a pareto frontier of solutions. The objective is also lexicographically ordered: first we want to minimize the requirements, then we want to
choose the “simplest” implementations.
The following is the dual problem, where we fix the requirements and we want to maximize the functionality.

Definition 14.4 (FixReqMaxFunI)
Given a DPI 𝐝𝐩 and a requirement value 𝑟0, we call FixReqMaxFunI

𝐝𝐩(𝑟0) the optimization problem

using 𝑖 ∈ 𝐈, (10)
𝑓 ∈ 𝐅, (11)

Max𝐅 𝑓, then lexicographically Min𝐈 𝑖, (12)
such that avail(𝑖) = ⊤, (13)

feas(𝑖) = ⊤, (14)
𝑓 ⪯𝐅 𝗉𝗋𝗈𝗏(𝑖), (15)
𝗋𝖾𝗊(𝑖) ⪯𝐑 𝑟0. (16)

The following are the variations of the queries when we are interested in recovering the blueprints.
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Definition 14.5 (FixFunMinReqB)
Given a DPI 𝐝𝐩 and a functionality 𝑓∗0 , we call FixFunMinReqB

𝐝𝐩(𝑓∗0) the optimization problem

using 𝑖 ∈ 𝐈, (17)
𝑟 ∈ 𝐑, (18)
𝑏 ∈ ℬ, (19)

Min𝐑 𝑟, then lexicographically Minℬ 𝑏, (20)
such that avail(𝑖) = ⊤, (21)

feas(𝑖) = ⊤, (22)
𝑓∗0 ⪯𝐅 𝗉𝗋𝗈𝗏(𝑖), (23)
𝗋𝖾𝗊(𝑖) ⪯𝐑 𝑟, (24)
IB(𝑖) ⪯ℬ 𝑏. (25)

Definition 14.6 (FixReqMaxFunB)
Given a DPI 𝐝𝐩 and a requirement value 𝑟0, we call FixReqMaxFunB

𝐝𝐩(𝑟0) the optimization problem

using 𝑖 ∈ 𝐈, (26)
𝑓 ∈ 𝐅, (27)
𝑏 ∈ ℬ, (28)

Max𝐅 𝑓, then lexicographically Minℬ 𝑏, (29)
such that avail(𝑖) = ⊤, (30)

feas(𝑖) = ⊤, (31)
𝑓 ⪯𝐅 𝗉𝗋𝗈𝗏(𝑖), (32)
𝗋𝖾𝗊(𝑖) ⪯𝐑 𝑟0 (33)
IB(𝑖) ⪯ℬ 𝑏. (34)

As in the case of DP, these problems are not necessarily well-posed: there could feasible solutions but the feasible set could be not
well-founded.

14.3. Categories PosUI and PosLI

Wenowdefine two categories,PosLI andPosUI, which are generalizations ofPosL andPosUwhosemorphisms carry the implementation
information.

Definition 14.7 (Morphisms of PosUI)
Given three posets 𝗄𝖽𝗈𝗆, 𝗄𝖼𝗈𝖽, and 𝗄𝗂𝗆𝗉 a morphism

𝓊∶ 𝗄𝖽𝗈𝗆 →PosUI 𝗄𝖼𝗈𝖽 {𝗄𝗂𝗆𝗉} (35)

is a monotone map
𝓊∶ 𝗄𝖽𝗈𝗆op→Pos P_C_UpperSets(P_C_Lexicographic(J𝗄𝖼𝗈𝖽, 𝗄𝗂𝗆𝗉K)) (36)

This construction is described by the schema UMap (Section 26.7).

Note the 𝗄𝖽𝗈𝗆op in the domain: as the required functionality increases, the feasible requirements decrease.

Definition 14.8 (Morphisms of PosLI)
Given three posets 𝗄𝖽𝗈𝗆, 𝗄𝖼𝗈𝖽, and 𝗄𝗂𝗆𝗉 a morphism

𝓁∶ 𝗄𝖽𝗈𝗆 →PosLI 𝗄𝖼𝗈𝖽 {𝗄𝗂𝗆𝗉} (37)

is a monotone map
𝓁∶ 𝗄𝖽𝗈𝗆→Pos P_C_LowerSets(P_C_Lexicographic(J𝗄𝖼𝗈𝖽, 𝗄𝗂𝗆𝗉opK)) (38)

This construction is described by the schema LMap (Section 26.6).
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Note that there is a 𝗄𝗂𝗆𝗉op in the codomain: we want to maximize functionality in 𝗄𝖼𝗈𝖽 but still minimize the implementation in 𝗄𝗂𝗆𝗉.
The identity and series constructions are reported in Chapter 21.

14.3.1. Relating PosUI and PosLI to PosU and PosL

Definition 14.9 (Projection)
Given a morphism 𝓊∶ 𝗄𝖽𝗈𝗆 →PosUI 𝗄𝖼𝗈𝖽 {𝗄𝗂𝗆𝗉} , we define the projection

𝗉𝗋𝗈𝗃(𝓊) ∶ 𝗄𝖽𝗈𝗆 →PosU 𝗄𝖼𝗈𝖽

𝑓∗ ↦,,,→ {𝑟 for ⟨𝑟, 𝑖⟩ ∈ 𝓊(𝑓∗)}
(39)

Definition 14.10 (Projection)
Given a morphism 𝓁∶ 𝗄𝖽𝗈𝗆 →PosLI 𝗄𝖼𝗈𝖽 {𝗄𝗂𝗆𝗉} , we define the projection

𝗉𝗋𝗈𝗃(𝓁) ∶ 𝗄𝖽𝗈𝗆 →PosL 𝗄𝖼𝗈𝖽

𝑟 ↦,,,→ {𝑓 for ⟨𝑓, 𝑖⟩ ∈ 𝓁(𝑟)}
(40)

Lemma 14.11.

𝗉𝗋𝗈𝗃(𝓊1 #𝓊2) = 𝗉𝗋𝗈𝗃(𝓊1) # 𝗉𝗋𝗈𝗃(𝓊2) (41)
𝗉𝗋𝗈𝗃(𝓁1 # 𝓁2) = 𝗉𝗋𝗈𝗃(𝓁1) # 𝗉𝗋𝗈𝗃(𝓁2) (42)

Definition 14.12 (Embedding)
Given a morphism 𝓊∶ 𝗄𝖽𝗈𝗆 →PosU 𝗄𝖼𝗈𝖽, we define the embedding

𝖾𝗆𝖻𝖾𝖽(𝓊) ∶ 𝗄𝖽𝗈𝗆 →PosUI 𝗄𝖼𝗈𝖽 {𝟏}

𝑓∗ ↦,,,,→ {⟨𝑟, ∗⟩ for 𝑟 ∈ 𝓊(𝑓∗)}
(43)

Definition 14.13 (Embedding)
Given a morphism 𝓁∶ 𝗄𝖽𝗈𝗆 →PosL 𝗄𝖼𝗈𝖽, we define the embedding

𝖾𝗆𝖻𝖾𝖽(𝓁) ∶ 𝗄𝖽𝗈𝗆 →PosLI 𝗄𝖼𝗈𝖽 {𝟏}

𝑟 ↦,,,,→ {⟨𝑓, ∗⟩ for𝑓 ∈ 𝓁(𝑟)}
(44)

Lemma 14.14.

𝖾𝗆𝖻𝖾𝖽(𝓊1 #𝓊2) = 𝖾𝗆𝖻𝖾𝖽(𝓊1) # 𝖾𝗆𝖻𝖾𝖽(𝓊2) (45)
𝖾𝗆𝖻𝖾𝖽(𝓁1 # 𝓁2) = 𝖾𝗆𝖻𝖾𝖽(𝓁1) # 𝖾𝗆𝖻𝖾𝖽(𝓁2) (46)

Lemma 14.15.

𝗉𝗋𝗈𝗃(𝖾𝗆𝖻𝖾𝖽𝓊) = 𝓊 (47)
𝗉𝗋𝗈𝗃(𝖾𝗆𝖻𝖾𝖽 𝓁) = 𝓁 (48)

14.3.2. Pre-order on PosLI and PosUI

Definition 14.16 (Pre-order on PosLI and PosUI)
Fixed two posets 𝗄𝖽𝗈𝗆 and 𝗄𝖼𝗈𝖽 and consider the hom-set PosLI(𝗄𝖽𝗈𝗆, 𝗄𝖼𝗈𝖽). Two generic morphisms in the homset have the form

𝓁1 ∶ 𝗄𝖽𝗈𝗆 →PosLI 𝗄𝖼𝗈𝖽 {𝐈1} (49)
𝓁2 ∶ 𝗄𝖽𝗈𝗆 →PosLI 𝗄𝖼𝗈𝖽 {𝐈2} (50)

and have in general different implementation posets 𝐈1 and 𝐈2. We define an ordering by the projections of the morphisms:

𝓁1 ⪯PosLI 𝓁2 ⟺ 𝗉𝗋𝗈𝗃(𝓁1) ⪯PosL 𝗉𝗋𝗈𝗃(𝓁2), (51)
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thus ignoring the implementation poset 𝐈. Similarly, we can define an ordering on the hom-set PosUI(𝗄𝖽𝗈𝗆, 𝗄𝖼𝗈𝖽), by setting

𝓊1 ⪯PosUI 𝓊2 ⟺ 𝗉𝗋𝗈𝗃(𝓊1) ⪯PosU 𝗉𝗋𝗈𝗃(𝓊2). (52)

This relation is reflexive and transitive, but it is not antisymmetric, because there are different morphisms that have the same
projection. Thus, the hom-sets PosLI(𝐅,𝐑) and PosUI(𝐅,𝐑) are pre-orders.

14.4. DPI queries as PosUI/PosLI morphisms

Having defined the categories PosLI and PosUI, we can now define the queries as PosLI and PosUImorphisms.

Definition 14.17 (DPI queries)
Given a DPI 𝐝∶ 𝐅→DPI𝐑, we can define the following queries:

𝖥𝖱 𝐝∶ 𝐅→PosL 𝐑 (53)
𝖱𝖥 𝐝∶ 𝐑→PosU 𝐅 (54)
𝖥𝖱𝖨 𝐝∶ 𝐅→PosUI 𝐑{𝐈} (55)
𝖱𝖥𝖨 𝐝∶ 𝐑→PosLI 𝐅 {𝐈} (56)
𝖥𝖱𝖡 𝐝∶ 𝐅→PosUI 𝐑{ℬ} (57)
𝖱𝖥𝖡 𝐝∶ 𝐑→PosLI 𝐅 {ℬ} (58)

First, we define 𝖥𝖱𝖨 and 𝖱𝖥𝖨 as follows:

𝖥𝖱𝖨 𝐝 ∶ 𝐅 →PosUI 𝐑{𝐈}

𝑓∗ ↦,,,,→ {⟨𝑟, 𝑖⟩ such that (𝑓∗ ⪯𝐅 𝗉𝗋𝗈𝗏(𝑖)) ∧ (𝗋𝖾𝗊(𝑖) ⪯𝐑 𝑟) ∧ avail(𝑖) ∧ feas(𝑖)}
(59)

𝖱𝖥𝖨 𝐝 ∶ 𝐑 →PosLI 𝐅 {𝐈}

𝑟 ↦,,,,→ {⟨𝑓, 𝑖⟩ such that (𝑓∗ ⪯𝐅 𝗉𝗋𝗈𝗏(𝑖)) ∧ (𝗋𝖾𝗊(𝑖) ⪯𝐑 𝑟) ∧ avail(𝑖) ∧ feas(𝑖)}
(60)

From those, we define the others as projections:

𝖥𝖱 𝐝 ∶ 𝐅 →PosU 𝐑

𝑓∗ ↦,,,→ {𝑟 for ⟨𝑟, 𝑖⟩ ∈ [𝖥𝖱𝖨 𝐝](𝑓∗)}
(61)

𝖱𝖥 𝐝 ∶ 𝐑 →PosL 𝐅

𝑟 ↦,,,→ {𝑓 for ⟨𝑓, 𝑖⟩ ∈ [𝖱𝖥𝖨 𝐝](𝑟)}
(62)

𝖥𝖱𝖡𝐝 ∶ 𝐅 →PosUI 𝐑{ℬ}

𝑓∗ ↦,,,,→ ↑ {⟨𝑟, IB(𝑖)⟩ for ⟨𝑟, 𝑖⟩ ∈ [𝖥𝖱𝖨 𝐝](𝑓∗)}
(63)

𝖱𝖥𝖡𝐝 ∶ 𝐑 →PosLI 𝐅 {ℬ}

𝑟 ↦,,,,→ ↓ {⟨𝑟, IB(𝑖)⟩ for ⟨𝑟, 𝑖⟩ ∈ [𝖱𝖥𝖨 𝐝](𝑟)}
(64)

Lemma 14.18. By construction, 𝖥𝖱 and 𝖱𝖥 can be recovered as projections of the other queries:

𝗉𝗋𝗈𝗃(𝖥𝖱𝖨 𝐝) = 𝖥𝖱𝐝 (65)
𝗉𝗋𝗈𝗃(𝖱𝖥𝖨 𝐝) = 𝖱𝖥𝐝 (66)
𝗉𝗋𝗈𝗃(𝖥𝖱𝖡 𝐝) = 𝖥𝖱𝐝 (67)
𝗉𝗋𝗈𝗃(𝖱𝖥𝖡 𝐝) = 𝖱𝖥𝐝 (68)

Definition 14.19 (FR-congruence of DPIs)
Given two DPIs 𝐝1, 𝐝2 ∶ 𝐅→DPI𝐑{⋆} we say that they are FR-congruent, written 𝐝1 ≅FR 𝐝2, if

𝖥𝖱𝐝1 = 𝖥𝖱𝐝2 and 𝖱𝖥𝐝1 = 𝖱𝖥𝐝2 (69)
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Lemma 14.20. FR-congruence is compositional. For all compatible 𝐝1, 𝐝2, 𝐝3, 𝐝4, we have:

𝐝1 ≅FR 𝐝2
𝐝3 # 𝐝1 ≅FR 𝐝3 # 𝐝2

𝐝1 ≅FR 𝐝2
𝐝1 # 𝐝4 ≅FR 𝐝3 # 𝐝4 (70)

Definition 14.21 (B-congruence of DPIs)
Given two DPIs 𝐝1, 𝐝2 ∶ 𝐅→DPI𝐑{ℬ} , we say that they are B-congruent, written 𝐝1 ≅B 𝐝2, if

𝖥𝖱𝖡𝐝1 = 𝖥𝖱𝖡𝐝2 and 𝖱𝖥𝖡𝐝1 = 𝖱𝖥𝖡𝐝2 (71)

Lemma 14.22. B-congruence is compositional. For all compatible 𝐝1, 𝐝2, 𝐝3, 𝐝4, we have:

𝐝1 ≅B 𝐝2
𝐝3 # 𝐝1 ≅B 𝐝3 # 𝐝2

𝐝1 ≅B 𝐝2
𝐝1 # 𝐝4 ≅B 𝐝3 # 𝐝4 (72)

Lemma 14.23. B-congruence implies FR-congruence:
𝐝1 ≅B 𝐝2
𝐝1 ≅FR 𝐝2 (73)

14.5. Free-forgetful adjunction between DP and DPI

Definition 14.24 (Projection of a DPI to a DP)
Given a DPI 𝐝∶ 𝐅→DPI𝐑, we define the projected DP

𝗉𝗋𝗈𝗃 𝐝 ∶ 𝐅 →DP 𝐑

⟨𝑓∗, 𝑟⟩ ↦,,→ ∃𝑖 ∈ 𝐈∶ (𝑓∗ ⪯ 𝗉𝗋𝗈𝗏(𝑖)) ∧ (𝗋𝖾𝗊(𝑖) ⪯ 𝑟) ∧ (avail(𝑖)) ∧ (feas(𝑖))
(74)

Definition 14.25 (Embedding of a DP to a DPI)
Given a DP 𝐝∶ 𝐅→DP𝐑, we define the embedded DPI

𝖾𝗆𝖻𝖾𝖽 𝐝∶ 𝐅→DPI𝐑{𝟏} (75)

by the data

𝐈 = P_C_ProductSmash(J𝐅, 𝐑opK) (76)
𝗉𝗋𝗈𝗏∶ [𝑓 ∣ 𝑟∗] ↦ 𝑓 (77)
𝗋𝖾𝗊∶ [𝑓 ∣ 𝑟∗] ↦ 𝑟∗ (78)

avail∶ [𝑓∗ ∣ 𝑟] ↦ 𝐝(𝑓∗, 𝑟) (79)
feas∶ [𝑓 ∣ 𝑟∗] ↦ ⊤ (80)
IB∶ [𝑓 ∣ 𝑟∗] ↦ ∗ (81)

Lemma 14.26.
𝗉𝗋𝗈𝗃(𝖾𝗆𝖻𝖾𝖽 𝐝) = 𝐝 (82)

Lemma 14.27.
𝖾𝗆𝖻𝖾𝖽(𝐝1 # 𝐝2) ≅B 𝖾𝗆𝖻𝖾𝖽(𝐝1) # 𝖾𝗆𝖻𝖾𝖽(𝐝2) (83)

Lemma 14.28.
𝗉𝗋𝗈𝗃(𝐝𝐩1 # 𝐝𝐩2) = 𝗉𝗋𝗈𝗃(𝐝𝐩1) # 𝗉𝗋𝗈𝗃(𝐝𝐩2) (84)
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15. Scalable computation for DPI

15.1. SPosUI and SPosLI

Just like we generalized PosU and PosL to SPosU and SPosL, we can generalize PosUI and PosLI to SPosUI and SPosLI.

Definition 15.1
Given three posets 𝗄𝖽𝗈𝗆, 𝗄𝖼𝗈𝖽, and 𝗄𝗂𝗆𝗉, and a pair of posets 𝖲 = ⟨𝖲⌣, 𝖲⌢⟩, referred to as the “optimistic” and “pessimistic” “resolution”
posets, a morphism in SPosUI

𝗌𝗎∶ {𝖲} 𝗄𝖽𝗈𝗆 →SPosUI 𝗄𝖼𝗈𝖽 {𝗄𝗂𝗆𝗉} (1)
is defined by giving two maps

𝗌𝗎⌣ ∶ 𝖲⌣ op→Pos(𝗄𝖽𝗈𝗆 →PosUI 𝗄𝖼𝗈𝖽 {𝗄𝗂𝗆𝗉} ) (2)

𝗌𝗎⌢ ∶ 𝖲⌢ →Pos(𝗄𝖽𝗈𝗆 →PosUI 𝗄𝖼𝗈𝖽 {𝗄𝗂𝗆𝗉} ) (3)

that satisfy the following condition:
∀𝑜 ∈ 𝖲⌣ ∶ ∀𝑝 ∈ 𝖲⌢ ∶ 𝗌𝗎⌢(𝑝) ⪯ 𝗌𝗎⌣(𝑜) (4)

Definition 15.2
Given three posets 𝗄𝖽𝗈𝗆, 𝗄𝖼𝗈𝖽, and 𝗄𝗂𝗆𝗉, and a pair of posets 𝖲 = ⟨𝖲⌣, 𝖲⌢⟩, referred to as the “optimistic” and “pessimistic” “resolution”
posets, a morphism in SPosLI

𝗌𝗅∶ {𝖲} 𝗄𝖽𝗈𝗆 →SPosLI 𝗄𝖼𝗈𝖽 {𝗄𝗂𝗆𝗉} (5)
is defined by giving two maps

𝗌𝗅⌣ ∶ 𝖲⌣ op→Pos(𝗄𝖽𝗈𝗆 →PosLI 𝗄𝖼𝗈𝖽 {𝗄𝗂𝗆𝗉} ) (6)

𝗌𝗅⌢ ∶ 𝖲⌢ →Pos(𝗄𝖽𝗈𝗆 →PosLI 𝗄𝖼𝗈𝖽 {𝗄𝗂𝗆𝗉} ) (7)

that satisfy the following condition:
∀𝑜 ∈ 𝖲⌣ ∶ ∀𝑝 ∈ 𝖲⌢ ∶ 𝗌𝗅⌢(𝑝) ⪯ 𝗌𝗅⌣(𝑜) (8)

15.2. Approximation of DPI queries

Definition 15.3 (Approximation classes for DPI queries)
Given a DPI 𝐝∶ 𝐅→DPI𝐑, in analogy with Def. 13.5 and Def. 13.7, we can define the following sets:
• (𝖥𝖱✓

𝖿 𝐝), (𝖥𝖱
⋆

𝖿 𝐝), (𝖥𝖱
⌢

𝖿 𝐝), (𝖥𝖱
⌣

𝖿 𝐝) as the approximation classes of 𝖥𝖱𝐝,

• (𝖱𝖥✓

𝖿 𝐝), (𝖱𝖥
⋆

𝖿 𝐝), (𝖱𝖥
⌢

𝖿 𝐝), (𝖱𝖥
⌣

𝖿 𝐝) as the approximation classes of 𝖱𝖥𝐝,

• (𝖥𝖱𝖨✓𝖿 𝐝), (𝖥𝖱𝖨
⋆

𝖿 𝐝), (𝖥𝖱𝖨
⌢

𝖿 𝐝), (𝖥𝖱𝖨
⌣

𝖿 𝐝) as the approximation classes of 𝖥𝖱𝖨 𝐝,

• (𝖱𝖥𝖨✓𝖿 𝐝), (𝖱𝖥𝖨
⋆

𝖿 𝐝), (𝖱𝖥𝖨
⌢

𝖿 𝐝), (𝖱𝖥𝖨
⌣

𝖿 𝐝) as the approximation classes of 𝖱𝖥𝖨 𝐝,

• (𝖥𝖱𝖡✓

𝖿 𝐝), (𝖥𝖱𝖡
⋆

𝖿 𝐝), (𝖥𝖱𝖡
⌢

𝖿 𝐝), (𝖥𝖱𝖡
⌣

𝖿 𝐝) as the approximation classes of 𝖥𝖱𝖡𝐝,

• (𝖱𝖥𝖡✓

𝖿 𝐝), (𝖱𝖥𝖡
⋆

𝖿 𝐝), (𝖱𝖥𝖡
⌢

𝖿 𝐝), (𝖱𝖥𝖡
⌣

𝖿 𝐝) as the approximation classes of 𝖱𝖥𝖡𝐝,
where
• “✓” indicates the consistent approximations;
• “⌣” indicates the optimistic approximations;
• “⌢” indicates the pessimistic approximations;
• “⋆” indicates the exact approximations;
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Lemma 15.4 (Compositionality of queries approximations). For ? ∈ {✓, ⌣, ⌢, ⋆}, the following holds:

𝗌𝗎1 ∈ (𝖥𝖱?𝖿 𝐝1) 𝗌𝗎2 ∈ (𝖥𝖱?𝖿 𝐝2)

𝗌𝗎1 # 𝗌𝗎2 ∈ 𝖥𝖱?𝖿 (𝐝1 # 𝐝2)

𝗌𝗅1 ∈ (𝖱𝖥?𝖿 𝐝1) 𝗌𝗅2 ∈ (𝖱𝖥?𝖿 𝐝2)

𝗌𝗅2 # 𝗌𝗅1 ∈ 𝖱𝖥?𝖿 (𝐝1 # 𝐝2)

𝗌𝗎1 ∈ (𝖥𝖱𝖨?𝖿 𝐝1) 𝗌𝗎2 ∈ (𝖥𝖱𝖨?𝖿 𝐝2)

𝗌𝗎1 # 𝗌𝗎2 ∈ 𝖥𝖱𝖨?𝖿 (𝐝1 # 𝐝2)

𝗌𝗅1 ∈ (𝖱𝖥𝖨?𝖿 𝐝1) 𝗌𝗅2 ∈ (𝖱𝖥𝖨?𝖿 𝐝2)

𝗌𝗅2 # 𝗌𝗅1 ∈ 𝖱𝖥𝖨?𝖿 (𝐝1 # 𝐝2)

𝗌𝗎1 ∈ (𝖥𝖱𝖡?𝖿 𝐝1) 𝗌𝗎2 ∈ (𝖥𝖱𝖡?𝖿 𝐝2)

𝗌𝗎1 # 𝗌𝗎2 ∈ 𝖥𝖱𝖡?𝖿 (𝐝1 # 𝐝2)

𝗌𝗅1 ∈ (𝖱𝖥𝖡?𝖿 𝐝1) 𝗌𝗅2 ∈ (𝖱𝖥𝖡?𝖿 𝐝2)

𝗌𝗅2 # 𝗌𝗅1 ∈ 𝖱𝖥𝖡?𝖿 (𝐝1 # 𝐝2)

(9)

Note that the order of the morphisms is reversed for the backward queries (𝗌𝗅2 # 𝗌𝗅1 instead of 𝗌𝗎1 # 𝗌𝗎2).
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16. Numerical approximation

In this chapter we will discuss how to do “consistent” numerical computations that approximates computation on real numbers.

16.1. Approximation of DPs

Suppose have an ambient poset 𝐀 and a subset𝐌 ⊂ 𝐀 that is used to “represent” the values of 𝐀.
We have then an 𝑛-ary operation defined on 𝐀, say⊙𝐀 ∶ 𝐀

𝑛 →Pos 𝐀, and we need to approximate the results with computations only
available on𝐌.

Example 16.1. The ambient poset 𝐀 could be the set of real numbers ℝ and the subset𝐌 could be the set of IEEE 754 floating point
numbers (excluding NaN). The generic operation⊙𝐀 could be the addition or multiplication of two real numbers.

There is no way to decide what is a “good” approximation of an operation without some context. In this case, the context is given by the
way the operation is used to create a DP.
Consider the case when we use⊙𝐀 to create a DP by lifting:

DP_LiftU⊙𝐀 ∶ 𝐀
𝑛 →DP 𝐀

⟨⟨𝑓1, …, 𝑓𝑛⟩, 𝑟⟩ ↦,,→ ⊙𝐀(⟨𝑓1, …, 𝑓𝑛⟩) ⪯𝐀 𝑟
(1)

(Or the symmetric case DP_LiftL⊙𝐀).
The question we pose is: is there a way to approximate the operation⊙𝐏 on 𝐀 with another operation on𝐌

⊙̃𝐌 ∶ 𝐌
𝑛 →Pos 𝐌 (2)

such that the approximated DP DP_LiftU ⊙̃𝐌 approximates the original DP DP_LiftU⊙𝐀?

16.2. Approximation of operations in complete lattices

We show an answer to the question in the case when𝐌 is a complete lattice.

16.2.1. Upper and lower approximations of the original operation

For a complete lattice𝐌, we can define two maps that map elements of 𝐀 to the “next up” and “previous down” elements of𝐌:

𝗇𝖾𝗑𝗍𝐀𝐌 ∶ 𝐀 →→→Pos 𝐌

𝑎 ↦,,,→
⋀

{𝑚 ∈ 𝐌 such that𝑚 ⪯𝐌 𝑎}
(3)

and
𝗉𝗋𝖾𝗏𝐀𝐌 ∶ 𝐀 →→→Pos 𝐌

𝑎 ↦,,,→
⋁

{𝑚 ∈ 𝐌 such that𝑎 ⪯𝐌 𝑚}
(4)

Note that the meet and join exist because𝐌 is a complete lattice.
Using these one can define an upper and lower approximation of⊙𝐀 as

⊙̃𝑈
𝐌 = ⊙𝐀 # 𝗇𝖾𝗑𝗍𝐀𝐌 (5)

⊙̃𝐿
𝐌 = ⊙𝐀 # 𝗉𝗋𝖾𝗏𝐀𝐌 (6)

By construction, we have that, for all 𝑦 ∈ 𝐌𝑛,

⊙̃𝐿
𝐌(𝑦) ⪯𝐀 ⊙𝐀(𝑦) ⪯𝐀 ⊙̃𝑈

𝐌(𝑦) (7)
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Example 16.2 (Rounding modes of floating point numbers). When 𝐀 = ℝ and𝐌 is the finite set of IEEE754 floating-point numbers
(excluding NaN), themaps 𝗇𝖾𝗑𝗍𝐀𝐌 and 𝗉𝗋𝖾𝗏𝐀𝐌 coincidewith directed rounding to the nearest representable value below and above, respectively.
These are not available as explicit operations usable by a programmer; rather, a programmer can specify the rounding mode of the operation.
The following table shows the different rounding modes:

roundTiesToEven round-to-nearest, ties-to-even (default)
roundTiesToAway round-to-nearest, ties-to-away
roundTowardPositive round-toward +∞ (upward)
roundTowardNegative round-toward −∞ (downward)
roundTowardZero round-toward 0 (truncate)

The default rounding mode is “round-to-nearest, ties-to-even” (roundTiesToEven). If a number is not representable, the hardware rounds
to the nearest representable value.
The rounding modes that are useful for us in this context are roundTowardPositive and roundTowardNegative. Using these, we obtain
directly the upper and lower approximations of the original operation:

+roundTowardPositive
float

= +ℝ # 𝗇𝖾𝗑𝗍ℝfloat (8)

+roundTowardNegative
float

= +ℝ # 𝗉𝗋𝖾𝗏ℝ
float

(9)

16.2.2. Comparing the DPs

We now want to compare the generated DPs with the original DP, restricted to the subset𝐌.

Definition 16.3
For a 𝐝∶ 𝐅→DP𝐑and subposets 𝐏 ⊆ 𝐅 and 𝐐 ⊆ 𝐑, we define the restricted 𝐝 as:

𝗋𝖾𝗌𝗍𝗋𝗂𝖼𝗍(𝐏, 𝐝, 𝐐) ∶ 𝐏 →DP 𝐐

⟨𝑓∗, 𝑟⟩ ↦,,→ 𝐝(𝑓∗, 𝑟)
(10)

Lemma 16.4. In the case of DP_LiftU(⊙), substituting ⊙̃𝑈
𝐌 we obtain a pessimistic approximation, in the sense that

DP_LiftU ⊙̃𝑈
𝐌 ⪯ 𝗋𝖾𝗌𝗍𝗋𝗂𝖼𝗍(𝐌𝑛,DP_LiftU⊙,𝐌) (11)

Proof. Let’s test the feasibility of the DPs at the test point 𝑓∗, 𝑟. First, we note that the restriction is just a formal operation and does not
change the feasibility of the DP:

[𝗋𝖾𝗌𝗍𝗋𝗂𝖼𝗍(𝐌𝑛,DP_LiftU⊙,𝐌)](𝑓∗, 𝑟) = [DP_LiftU⊙](𝑓∗, 𝑟) = ⊙𝐀(𝑓∗) ⪯𝐀 𝑟 (12)

For the other we see that

[DP_LiftU ⊙̃𝑈
𝐌](𝑓∗, 𝑟) = ⊙̃𝑈

𝐌(𝑓∗) ⪯𝐀 𝑟 (13)

Because of⊙𝐀(𝑓∗) ⪯ ⊙̃𝑈
𝐌(𝑓∗) we have that

⊙̃𝑈
𝐌(𝑓∗) ⪯𝐀 𝑟 ⇒ ⊙𝐀(𝑓∗) ⪯𝐀 𝑟 (14)

Therefore, we have that
DP_LiftU ⊙̃𝑈

𝐌 ⪯DP DP_LiftU⊙𝐀 (15)

Therefore, we have that a solution of DP_LiftU ⊙̃𝑈
𝐌 is a pessimistic solution of the original DP:

𝖥𝖱(DP_LiftU ⊙̃𝑈
𝐌) ⪯PosU 𝖥𝖱(𝗋𝖾𝗌𝗍𝗋𝗂𝖼𝗍(𝐌𝑛,DP_LiftU⊙,𝐌)) (16)

𝖱𝖥(DP_LiftU ⊙̃𝑈
𝐌) ⪯PosL 𝖱𝖥(𝗋𝖾𝗌𝗍𝗋𝗂𝖼𝗍(𝐌𝑛,DP_LiftU⊙,𝐌)) (17)

This is the symmetric result.

Lemma 16.5. In the case of DP_LiftL(⊙), substituting ⊙̃𝐿
𝐌 we obtain a pessimistic approximation:

DP_LiftL ⊙̃𝐿
𝐌 ⪯ 𝗋𝖾𝗌𝗍𝗋𝗂𝖼𝗍(𝐌,DP_LiftL⊙,𝐌𝑛) (18)

Using the pessimistic approximation, we can make sure that any result we compute on the approximated poset is feasible in the original
poset.
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17. Sets and posets catalog

17.1. Sets constructions

Definition 17.1 (Power set)
Given a poset 𝐀, the power set is the poset S_C_Power(𝐀) whose elements are subsets of 𝐀.

17.1.1. Cartesian products

Definition 17.2 (Cartesian product)
Given a list of 𝑛 sets J𝐀𝑘K, the Cartesian product is the set S_C_Product(J𝐀𝑘K) with elements being tuples of elements of the sets.

Definition 17.3 (Smash product)
Given a list of 𝑛 sets J𝐀𝑘K, the smash product is the set S_C_ProductSmash(J𝐀𝑘K) where the elements are heterogeneous lists of
elements from the sets.

The need for this construction arises from the fact that theCartesian product of posets is not associative on the nose: 𝐏×(𝐐×𝐑) ≠ (𝐏×𝐐)×𝐑,
but only up to isomorphism. In some cases, we want to have to have a product that is strictly associative.
We then work in a category where the objects are posets whose carrier sets are heterogenous tuples.

17.1.2. Sum

Definition 17.4 (Sum)
Given a list of 𝑛 sets J𝐀𝑘K, the sum is the set S_C_Sum(J𝐀𝑘K) whose elements are pairs of an index 𝑘 and an element 𝑥 ∈ 𝐀𝑘 .

17.2. Constructions for single posets

17.2.1. Opposite of a poset

Definition 17.5
The opposite of a poset 𝐏 is the poset P_C_Opposite(𝐏) with the same elements and the opposite order.

This construction is described by the schema P_C_Opposite (Section 26.2.11).

17.2.2. Arrow constructions

Definition 17.6 (Twisted arrow construction)
Given a poset 𝐏, the twisted arrow construction is the poset P_C_Twisted(𝐏) with elements in S_C_Product(J𝐏, 𝐏K) representing
intervals ordered by inclusion:

⟨𝑥1, 𝑥2⟩ ⪯𝐓𝐰 𝐏 ⟨𝑦1, 𝑦2⟩ ⟺ 𝑥1 ⪯𝐏 𝑦1 and 𝑦2 ⪯𝐏 𝑥2.

This construction is described by the schema P_C_Twisted (Section 26.2.13).

Definition 17.7 (Arrow construction)
Given a poset 𝐏, the arrow construction of 𝐏 is the poset P_C_Arrow(𝐏)with elements in S_C_Product(J𝐏, 𝐏K) and the order given by

⟨𝑥1, 𝑥2⟩ ⪯ ⟨𝑦1, 𝑦2⟩ ⟺ 𝑥1 ⪯𝐏 𝑦1 and 𝑥2 ⪯𝐏 𝑦2.

This construction is described by the schema P_C_Arrow (Section 26.2.8).
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17.2.3. Discretized version of a poset

Definition 17.8 (Discretized version of a poset)
Given a poset 𝐏, the discretized version of 𝐏 is the poset P_C_Discretized(𝐏) with elements in 𝐏 and the order given by equality.

This construction is described by the schema P_C_Discretized (Section 26.2.9).

17.2.4. Posets of subsets

Definition 17.9
Given a poset 𝐏, we define the poset P_C_Power(𝐏) whose carrier is S_C_Power(𝐏) and order is given by set inclusion.

This construction is described by the schema P_C_Power (Section 26.2.12).

Definition 17.10
Given a poset 𝐏, we define the poset P_C_LowerSets(𝐏), also indicated as 𝐋𝐏, whose carrier is the subset of S_C_Power(𝐏) of lower
sets, and order is given by set inclusion.

This construction is described by the schema P_C_LowerSets (Section 26.2.10).

Definition 17.11
Given a poset 𝐏, we define the poset P_C_UpperSets(𝐏), also indicated as𝐔𝐏, whose carrier is the subset of S_C_Power(𝐏) of upper
sets, and order is given by set inclusion.

This construction is described by the schema P_C_UpperSets (Section 26.2.15).

17.3. Constructions with multiple posets

17.3.1. Cartesian product of posets

Definition 17.12
Given a list of 𝑛 posets J𝐏𝑘K, the Cartesian product is the poset P_C_Product(J𝐏𝑘K) with elements in S_C_Product (J𝐏𝑘K) and the
order given by

⟨𝑝1, …, 𝑝𝑛⟩ ⪯
⟨
𝑝′1, …, 𝑝′𝑛

⟩
⟺ 𝑝𝑘 ⪯𝐏𝑘 𝑝

′
𝑘 for all 𝑖 ∈ {1, …, 𝑛}.

This construction is described by the schema P_C_Product (Section 26.2.17).

Lemma 17.13. If the posets J𝐏𝑘K are dcpo (fcpo), then P_C_Product(J𝐏𝑘K) is dcpo (fcpo).

Smash product of posets The smash product P_C_ProductSmash(J𝐏𝑘K) of a list of posets is a poset isomorphic to the Cartesian product
of the posets, but where elements are represented as “exploded” tuples, using the S_C_ProductSmash constructor.

This construction is described by the schema P_C_ProductSmash (Section 26.2.18).

17.3.2. Direct sum of posets

Definition 17.14
Given a list of 𝑛 posets J𝐏𝑘K, the direct sum is the poset P_C_Sum(J𝐏𝑘K) with elements in S_C_Sum (J𝐏𝑘K) and the order given by

⟨𝑘𝑥⟩ ⪯ ⟨𝑗, 𝑦⟩ ⟺ 𝑘 = 𝑗 and 𝑥 ⪯𝐏𝑘 𝑦.

This construction is described by the schema P_C_Sum (Section 26.2.19).

Lemma 17.15. If the posets J𝐏𝑘K are dcpo (fcpo), then P_C_Sum(J𝐏𝑘K) is dcpo (fcpo).
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Direct (smash) sum of posets The smash sum of a list of posets P_C_SumSmash(J𝐏𝑘K) is a poset isomorphic to the direct sum of the
posets. It is mathematically equivalent to the direct sum, but the carrier set is a heterogenous tuple.

This construction is described by the schema P_C_SumSmash (Section 26.2.20).

17.3.3. Lexicographic product of posets

Definition 17.16
Given a list of 𝑛 posets J𝐏𝑘K, the lexicographic product is the poset P_C_Lexicographic(J𝐏𝑘K) with elements in S_C_Product (J𝐏𝑘K)
and the order given by

⟨𝑝1, …, 𝑝𝑛⟩ ⪯
⟨
𝑝′1, …, 𝑝′𝑛

⟩
⟺ ∃𝑘 ∈ {1, …, 𝑛} ∶ 𝑝𝑖 = 𝑝′𝑖 for all 𝑖 < 𝑘 and 𝑝𝑘 ⪯𝐏𝑘 𝑝

′
𝑘 .

This construction is described by the schema P_C_Lexicographic (Section 26.2.16).

17.4. Poset Filters

These constructions are “filters”: they describe a subposet of a poset.

17.4.1. Finite subposet of an ambient poset

This is the most basic filter. Given a finite subset 𝐀 ⊆ 𝐏 of a poset 𝐏, we call P_F_Subposet(𝐏,𝐀) the subposet generated by that subset.

This construction is described by the schema P_F_Subposet (Section 26.2.26).

17.4.2. Interval in a poset

Definition 17.17
Given a poset 𝐏 and elements 𝑥, 𝑦 ∈ 𝐏, the interval between 𝑥 and 𝑦 is the subposet P_F_Interval(𝐏, 𝑥, 𝑦) of 𝐏 which contains the
elements 𝑝 ∈ 𝐏 such that 𝑥 ⪯𝐏 𝑝 ⪯𝐏 𝑦.

This construction is described by the schema P_F_Interval (Section 26.2.24).

17.4.3. Lower and upper closure in a poset

Definition 17.18
Given a poset 𝐏 and a subset 𝐀 ⊆ 𝐏, the upper closure of 𝐀 in 𝐏 is the subposet P_F_UpperClosure(𝐏,𝐀) whose elements are in ↑𝐀 .

This construction is described by the schema P_F_UpperClosure (Section 26.2.27).

Definition 17.19
Given a poset 𝐏 and a subset 𝐀 ⊆ 𝐏, the lower closure of 𝐀 in 𝐏 is the subposet P_F_LowerClosure(𝐏,𝐀) whose elements are in ↓𝐀 .

This construction is described by the schema P_F_LowerClosure (Section 26.2.25).

As a rule, the set 𝐀 is taken to be an antichain (𝐀 = Min𝐀).
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17.4.4. Union and Intersection of sub posets

Consider an ambient poset 𝐏 and a list of subposets J𝐐𝑘K such that each is a subposet of 𝐏: 𝐐𝑘 ⊆ 𝐏.
Because they are all subposets of 𝐏, they have the same type of elements, and they have the same order; they just differ in the carrier set.
We can then consider the union P_F_Union(J𝐐𝑘K) and intersection P_F_Intersection(J𝐐𝑘K) of these carrier sets.

This construction is described by the schema P_F_C_Intersection (Section 26.2.22).

This construction is described by the schema P_F_C_Union (Section 26.2.23).

17.4.5. Sampling a poset

If the poset 𝐏 is numeric, contains a copy of the integers, and has defined the operations of sum +𝐏 and multiplication ⋅𝐏, we can identify
a subposet by “sampling” the poset.
Given an "offset" O and a "step" S we can define the subset

𝐀 = {O +𝐏 𝑖 ⋅𝐏 S for 𝑖 ∈ ℤ} (1)

For example, given the poset 𝐏 = ℝ, we can define the poset of odd integers by setting O = 1 and S = 2.
More in general, it is useful to generalize the construction and require 5 values that satisfy:

B ⪯𝐏 L ⪯𝐏 O ⪯𝐏 H ⪯𝐏 T (2)

and the subposet is defined by
𝐀 = {B, T} ∪ ([L,H] ∩ {O + 𝑖 ⋅ S for 𝑖 ∈ ℤ}) (3)

We call this construction P_F_Bounded(𝐏, B, L, O,H, T).
Having this way of parametrizing a subposet is useful because it allows to do abstract interpretation of numerical operations.
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18. Monotone maps catalog

In the previous chapter we have explained why it is important to characterize whether a map 𝑓 is Scott co-continuous or Scott continuous
and the role that the upper preimage𝐔𝐢𝑓 and the lower preimage 𝐋𝐢 𝑓 play in computing the solution of DPs.
In this chapter we present a catalog of monotone maps that can be used as building blocks for constructing DPs.

18.1. Identity map

We collect here some properties of common functions that are useful to know.

Definition 18.1 (Identity map)
Given a poset 𝐏, the identity map is the map

M_Id(𝐏)∶ 𝐏 →→→Pos 𝐏

𝑥 ↦,,,→ 𝑥
(1)

This construction is described by the schema M_Id (Section 26.3.4).

Lemma 18.2 (Identity). If 𝐏 is a dcpo (resp. fcpo), the identity map id𝐏 ∶ 𝐏 → 𝐏 is Scott continuous (resp. Scott co-continuous).

Proof. Both properties are immediate: the identity preserves all (co)limits.

18.2. Constant maps

Definition 18.3 (Constant map)
Given two posets 𝐏 and 𝐐 and an element 𝑐 ∈ 𝐐, the constant map is the map

M_Constant(𝐏, 𝑐)∶ 𝐏 →→→Pos 𝐐

𝑥 ↦,,,→ 𝑐
(2)

This construction is described by the schema M_Constant (Section 26.3.1).

Lemma 18.4 (Constant maps). Let 𝐏 be a dcpo and 𝐐 any poset. Every constant map from 𝐏 to 𝐐 is Scott continuous. Dually, if 𝐏 is an
fcpo, every constant map from 𝐏 to 𝐐 is Scott co-continuous.

18.3. Ceiling and floor

Lemma 18.5. The function ceil is Scott continuous and we have that

𝐔𝐢 ceil = ↑floor (3)
𝐋𝐢 ceil = ↓floor (4)

Lemma 18.6. The function floor is Scott co-continuous and we have that

𝐔𝐢floor = ↑ ceil (5)
𝐋𝐢floor = ↓ ceil (6)

18.3.1. Generalized rounding

Based on ceil we define a family of maps parameterized by a step 𝑆 and an offset 𝑂.
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Definition 18.7
Given a step 𝑆 > 0 and an offset 𝑂, we define the map

M_RoundUp(𝑆, 𝑂)∶ 𝑥 ↦ ceil((𝑥 − 𝑂)∕𝑆) ⋅ 𝑆 + 𝑂 (7)

This construction is described by the schema M_RoundUp (Section 26.3.47).

Definition 18.8
Given a step 𝑆 > 0 and an offset 𝑂, we define the map

M_RoundDown(𝑆, 𝑂)∶ 𝑥 ↦ floor((𝑥 − 𝑂)∕𝑆) ⋅ 𝑆 + 𝑂 (8)

This construction is described by the schema M_RoundDown (Section 26.3.46).

We recover the ceiling and floor functions as special cases:

M_RoundUp(1, 0) = ceil (9)
M_RoundDown(1, 0) = floor (10)

Lemma 18.9.
𝐔𝐢(M_RoundUp(𝑆, 𝑂)) = ↑M_RoundDown(𝑆, 𝑂) (11)
𝐋𝐢(M_RoundUp(𝑆, 𝑂)) = ↓M_RoundDown(𝑆, 𝑂) (12)

𝐔𝐢(M_RoundDown(𝑆, 𝑂)) = ↑M_RoundUp(𝑆, 𝑂) (13)
𝐋𝐢(M_RoundDown(𝑆, 𝑂)) = ↓M_RoundUp(𝑆, 𝑂) (14)

Proof.

Let mul𝑆 be the map mul𝑆 ∶ 𝑥 ↦ 𝑥 ⋅ 𝑆. Then (mul𝑆)−1 = mul1∕𝑆 ,𝐔𝐢(mul𝑆) = ↑mul1∕𝑆 and 𝐋𝐢(mul𝑆) = ↓mul1∕𝑆 .
Let add𝑂 be the map add𝑂 ∶ 𝑥 ↦ 𝑥 + 𝑂. Then (add𝑂)−1 = add−𝑂,𝐔𝐢(add𝑂) = ↑ add−𝑂 and 𝐋𝐢(add𝑂) = ↓ add−𝑂.
Now write M_RoundUp(𝑆, 𝑂) as a composition of mul𝑆 and add𝑂 as follows:

M_RoundUp(𝑆, 𝑂) = add−𝑂 #mul1∕𝑆 # ceil #mul𝑆 # add𝑂 (15)

And likewise for M_RoundDown(𝑆, 𝑂) we have that

M_RoundDown(𝑆, 𝑂) = add−𝑂 #mul1∕𝑆 # floor #mul𝑆 # add𝑂 (16)

And now just compute the upper and lower inverses for M_RoundUp(𝑆, 𝑂):

𝐔𝐢(M_RoundUp(𝑆, 𝑂)) = 𝐔𝐢(add−𝑂 #mul1∕𝑆 # ceil #mul𝑆 # add𝑂) (17)
= 𝐔𝐢(add𝑂) #𝐔𝐢(mul𝑆) #𝐔𝐢(ceil) #𝐔𝐢(mul1∕𝑆) #𝐔𝐢(add−𝑂) (18)
= ↑ add−𝑂 # ↑mul1∕𝑆 # ↑floor # ↑mul𝑆 # ↑ add𝑂 (19)
= ↑(add−𝑂 #mul1∕𝑆 # floor #mul𝑆 # add𝑂) (20)
= ↑M_RoundDown(𝑆, 𝑂) (21)

𝐋𝐢(M_RoundUp(𝑆, 𝑂)) = 𝐋𝐢(add−𝑂 #mul1∕𝑆 # ceil #mul𝑆 # add𝑂) (22)
= 𝐋𝐢(add𝑂) # 𝐋𝐢(mul𝑆) # 𝐋𝐢(ceil) # 𝐋𝐢(mul1∕𝑆) # 𝐋𝐢(add−𝑂) (23)
= ↓ add−𝑂 # ↓mul1∕𝑆 # ↓floor # ↓mul𝑆 # ↓ add𝑂 (24)
= ↓(add−𝑂 #mul1∕𝑆 # floor #mul𝑆 # add𝑂) (25)
= ↓M_RoundDown(𝑆, 𝑂) (26)

Similarly for M_RoundDown(𝑆, 𝑂):

𝐔𝐢(M_RoundDown(𝑆, 𝑂)) = 𝐔𝐢(add−𝑂 #mul1∕𝑆 # floor #mul𝑆 # add𝑂) (27)
= 𝐔𝐢(add𝑂) #𝐔𝐢(mul𝑆) #𝐔𝐢(floor) #𝐔𝐢(mul1∕𝑆) #𝐔𝐢(add−𝑂) (28)
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= ↑ add−𝑂 # ↑mul1∕𝑆 # ↑ ceil # ↑mul𝑆 # ↑ add𝑂 (29)
= ↑(add−𝑂 #mul1∕𝑆 # ceil #mul𝑆 # add𝑂) (30)
= ↑M_RoundUp(𝑆, 𝑂) (31)

𝐋𝐢(M_RoundDown(𝑆, 𝑂)) = 𝐋𝐢(add−𝑂 #mul1∕𝑆 # floor #mul𝑆 # add𝑂) (32)
= 𝐋𝐢(add𝑂) # 𝐋𝐢(mul𝑆) # 𝐋𝐢(floor) # 𝐋𝐢(mul1∕𝑆) # 𝐋𝐢(add−𝑂) (33)
= ↓ add−𝑂 # ↓mul1∕𝑆 # ↓ ceil # ↓mul𝑆 # ↓ add𝑂 (34)
= ↓(add−𝑂 #mul1∕𝑆 # ceil #mul𝑆 # add𝑂) (35)
= ↓M_RoundUp(𝑆, 𝑂) (36)

18.4. Sum, multiplication, and division

In this section we consider the sum (add), multiplication (mul), and division (div) of real numbers, and we study their extensions to the
poset completions (e.g. adding a +∞ and a −∞ element to ℝ). We find that for each of those there are two distinct extensions: one that is
Scott continuous and one that is Scott co-continuous, and the two agree everywhere except at singularity.
For example, for addition, add(+∞, −∞) is undefined, but add↑(+∞, −∞) = −∞ and add↓(+∞, −∞) = +∞.
For division we find that while div(0, 0) is undefined on the reals, we have that div↑(0, 0) = div↑(+∞, +∞) = 0 and div↓(0, 0) =
div↓(+∞, +∞) = +∞.

18.4.1. Sum

We consider addition on real numbers
add∶ ℝ × ℝ→Posℝ (37)

and we ask about its Scott-continuity properties.

First of all, we need to make ℝ a dcpo and fcpo by adding the elements +∞ and −∞. We call this completion ℝ.

Definition 18.10 (Completion of real numbers)
The completion of real numbers ℝ is the set ℝ = ℝ ∪ {+∞, −∞} with the order ≤ extended in the obvious way.

We now need to extend the addition operation to ℝ × ℝ.
Some choices are obvious. For a finite real number 𝑥, we define add(𝑥, +∞) = +∞ and add(𝑥, −∞) = −∞. And we set add(+∞, +∞) = +∞
and add(−∞, −∞) = −∞.
What about the case add(−∞, +∞)? Should it be +∞ or −∞?
It turns out that depending on the choice of add(−∞, +∞) we obtain a Scott-continuous or a co-Scott-continuous function.

Lemma 18.11. The Scott continuous extension add↑ ∶ ℝ × ℝ→Posℝ to the addition operation is given by the following rules (where
𝑥, 𝑦 ∈ ℝ):

add↑(𝑥, 𝑦) = add(𝑥, 𝑦) (38)
add↑(−∞, 𝑦) = −∞ (39)
add↑(+∞, 𝑦) = +∞ (40)

add↑(−∞, +∞) = −∞ (41)

Proof. If we want that add↑ is Scott continuous, we need to have that for every directed 𝐃 ⊆ ℝ × ℝ we have that

add↑ (
⋁↑

𝐃) =
⋁↑

{add↑(⟨𝑥, 𝑦⟩) ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐃} (42)

We now carefully choose a directed set 𝐃 to obtain the value of add↑ (⟨−∞, +∞⟩). Take

𝐃 = {⟨−∞, 𝑖⟩ ∣ 𝑖 ∈ ℕ} (43)
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This set is directed and
⋁↑𝐃 = ⟨−∞, +∞⟩. Then (42) becomes

add↑(−∞, +∞) =
⋁↑

{add↑(−∞, 𝑖) ∣ 𝑖 ∈ ℕ} =
⋁↑

{−∞} = −∞ (44)

Lemma 18.12 (Lower pre-image of add↑). For 𝑞 ∈ ℝ we have

𝐋𝐢 add↑∶ 𝑞 ↦
⎧

⎨
⎩

↓{⟨−∞, +∞⟩, ⟨+∞, −∞⟩}, if 𝑞 = −∞,
↓{⟨−∞, +∞⟩, ⟨+∞, −∞⟩} ∪ ↓ {⟨𝑥, 𝑦⟩ ∈ ℝ2 ∶ 𝑥 + 𝑦 = 𝑞}, if 𝑞 ∈ ℝ,
↓⟨+∞, +∞⟩, if 𝑞 = +∞.

Lemma 18.13 (Upper pre-image of add↑). For 𝑝 ∈ ℝ:

𝐔𝐢 add↑∶ 𝑝 ↦
⎧

⎨
⎩

↑⟨−∞, −∞⟩, if 𝑝 = −∞,
({+∞} × (↑ −∞)) ∪ ((↑ −∞) × {+∞}) ∪ ↑ {⟨𝑥, 𝑦⟩ ∈ ℝ2 ∶ 𝑥 + 𝑦 = 𝑝}, if 𝑝 ∈ ℝ,
({+∞} × (↑ −∞)) ∪ ((↑ −∞) × {+∞}), if 𝑝 = +∞.

Note that in the cases 𝑝 = +∞ and 𝑝 ∈ ℝ the upset cannot be written as the up closure of an antichain. We expect this because add↑ is not
Scott co-continuous.

Lemma 18.14. The Scott co-continuous extension add↓ ∶ ℝ × ℝ→Posℝ to the addition operation is given by the following rules (where
𝑥, 𝑦 ∈ ℝ):

add↓(𝑥, 𝑦) = add(𝑥, 𝑦) (45)
add↓(−∞, 𝑦) = −∞ (46)
add↓(+∞, 𝑦) = +∞ (47)

add↓(−∞, +∞) = +∞ (48)

Proof. For the Scott co-continuous extension add↓, we choose the set

𝐅 = {⟨−𝑖, +∞⟩ ∣ 𝑖 ∈ ℕ} (49)

This set is filtered and
⋀↓ 𝐅 = ⟨−∞, +∞⟩. Then (42) becomes

add↓(−∞, +∞) =
⋀↓

{add↓(−𝑖, +∞) ∣ 𝑖 ∈ ℕ} =
⋀↓

{+∞} = +∞ (50)

Lemma 18.15 (Upper pre-image of add↓). For 𝑝 ∈ ℝ:

𝐔𝐢 add↓∶ 𝑝 ↦
⎧

⎨
⎩

↑⟨−∞, −∞⟩, if 𝑝 = −∞,
↑{⟨−∞, +∞⟩, ⟨+∞, −∞⟩} ∪ ↑ {⟨𝑥, 𝑦⟩ ∈ ℝ2 ∶ 𝑥 + 𝑦 = 𝑝}, if 𝑝 ∈ ℝ,
↑{⟨−∞, +∞⟩, ⟨+∞, −∞⟩}, if 𝑝 = +∞.

Lemma 18.16 (Lower pre-image of add↓). For 𝑞 ∈ ℝ:

𝐋𝐢 add↓∶ 𝑞 ↦
⎧

⎨
⎩

({−∞} × (↓ +∞)) ∪ ((↓ +∞) × {−∞}), if 𝑞 = −∞,
({−∞} × (↓ +∞)) ∪ ((↓ +∞) × {−∞}) ∪ ↓ {⟨𝑥, 𝑦⟩ ∈ ℝ2 ∶ 𝑥 + 𝑦 = 𝑞}, if 𝑞 ∈ ℝ,
↓⟨+∞, +∞⟩, if 𝑞 = +∞.

Note that in the cases 𝑞 = −∞ and 𝑞 ∈ ℝ the downset cannot be written as the down closure of an antichain. We expect this because add↓
is not Scott co-continuous.

18.4.2. Multiplication

We consider multiplication on the non–negative real numbers

mul∶ ℝ≥0 × ℝ≥0→Posℝ≥0 (51)

and we ask about its Scott–(co)continuity properties.

First of all, we need to make ℝ≥0 a dcpo and an fcpo by adding the element +∞. We call this completion ℝ≥0.
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Definition 18.17 (Completion of non–negative real numbers)
The completion of the non–negative real numbers ℝ≥0 is the set

ℝ≥0 = ℝ≥0 ∪ {+∞},

ordered in the obvious way, with +∞ the top element.

We now need to extend the multiplication operation to ℝ≥0 × ℝ≥0.
Some choices are obvious. For a finite real number 𝑥 ≥ 0, we define mul(𝑥, +∞) = +∞ when 𝑥 > 0, and mul(0, 𝑦) = 0 for 𝑦 ∈ ℝ≥0. We
also set mul(+∞, +∞) = +∞.
What about the case mul(0, +∞), and symmetrically mul(+∞, 0)? Should it be +∞ or 0?
It turns out that depending on the choice of mul(0, +∞) we obtain a Scott continuous or a Scott continuous function.

Lemma 18.18. The Scott continuous extension mul↑ ∶ ℝ≥0 × ℝ≥0→Posℝ≥0 to the multiplication operation is given by the following
rules (where 𝑥, 𝑦 ∈ ℝ≥0):

mul↑(𝑥, 𝑦) = mul(𝑥, 𝑦) (52)
mul↑(0, 𝑦) = 0, (53)

mul↑(+∞, 𝑦) = +∞, (54)
mul↑(0, +∞) = 0 . (55)

This construction is described by the schema M_MultiplyU (Section 26.3.42).

Proof. The proof parallels the one for addition. For the Scott continuous extension, take the directed set

𝐃 = {⟨0, 𝑛⟩ ∣ 𝑛 ∈ ℕ},

whose supremum is ⟨0, +∞⟩. The Scott–continuity requirement (analogous to (42)) gives

mul↑(0, +∞) =
⋁↑

𝑛∈ℕ
mul↑(0, 𝑛) =

⋁↑
{0} = 0.

Lemma 18.19 (Upper pre-image of mul↑). For 𝑟 ∈ ℝ≥0:

𝐔𝐢mul↑∶ 𝑟 ↦
⎧

⎨
⎩

↑⟨0, 0⟩, if 𝑟 = 0,
({+∞} × (↑ 0)) ∪ ((↑ 0) × {+∞}) ∪ ↑ {⟨𝑥, 𝑦⟩ ∈ ℝ2

≥0 ∶ mul(𝑥, 𝑦) = 𝑟}, if 0 < 𝑟 < +∞,
({+∞} × (↑ 0)) ∪ ((↑ 0) × {+∞}), if 𝑟 = +∞.

Note that in the case 𝑟 = +∞ the upset cannot be written as the up closure of an antichain. We expect this because mul↑ is not Scott
co-continuous.

Lemma 18.20 (Lower pre-image of mul↑). For 𝑠 ∈ ℝ≥0:

𝐋𝐢mul↑∶ 𝑠 ↦
⎧

⎨
⎩

↓ {⟨0, +∞⟩, ⟨+∞, 0⟩}, if 𝑠 = 0,
↓ {⟨0, +∞⟩, ⟨+∞, 0⟩} ∪ ↓ {⟨𝑥, 𝑦⟩ ∈ ℝ2

≥0 such thatmul(𝑥, 𝑦) = 𝑠}, if 0 < 𝑠 < +∞,
↓⟨+∞, +∞⟩, if 𝑠 = +∞.

Lemma 18.21. The Scott co-continuous extension mul↓ ∶ ℝ≥0 × ℝ≥0→Posℝ≥0 to the multiplication operation is given by the following
rules (where 𝑥, 𝑦 ∈ ℝ≥0):

mul↓(𝑥, 𝑦) = mul(𝑥, 𝑦) (56)
mul↓(0, 𝑦) = 0, (57)

mul↓(+∞, 𝑦) = +∞, (58)
mul↓(0, +∞) = +∞. (59)

94



Proof. For the Scott co-continuous extension consider the filtered set

𝐅 = {
⟨ 1
𝑛+1

, +∞
⟩

for𝑛 ∈ ℕ},

whose infimum is again ⟨0, +∞⟩. Enforcing Scott–co–continuity yields

mul↓(0, +∞) =
⋀↓

𝑛∈ℕ
mul↓

( 1
𝑛+1

, +∞
)
=
⋀↓

{+∞} = +∞.

Because multiplication is commutative the same value is assigned to the symmetric case (+∞, 0).

Lemma 18.22 (Upper pre-image of mul↓). For 𝑟 ∈ ℝ≥0:

𝐔𝐢mul↓∶ 𝑟 ↦
⎧

⎨
⎩

↑⟨0, 0⟩, if 𝑟 = 0,
↑ {⟨+∞, 0⟩, ⟨0, +∞⟩} ∪ ↑ {⟨𝑥, 𝑦⟩ ∈ ℝ2

≥0 ∶ mul(𝑥, 𝑦) = 𝑟}, if 0 < 𝑟 < +∞,
↑ {⟨+∞, 0⟩, ⟨0, +∞⟩}, if 𝑟 = +∞.

Lemma 18.23 (Lower pre-image of mul↓). For 𝑠 ∈ ℝ≥0:

𝐋𝐢mul↓∶ 𝑠 ↦
⎧

⎨
⎩

({0} × (↓ +∞)) ∪ ((↓ +∞) × {0}), if 𝑠 = 0,
({0} × (↓ +∞)) ∪ ((↓ +∞) × {0}) ∪ ↓ {⟨𝑥, 𝑦⟩ ∈ ℝ2

≥0 ∶ mul(𝑥, 𝑦) = 𝑠}, if 0 < 𝑠 < +∞,
↓⟨+∞, +∞⟩, if 𝑠 = +∞.

Note that in the case 𝑠 = 0 the downset cannot be written as the down closure of an antichain. We expect this because mul↓ is not Scott
continuous.

18.4.3. Division

We consider division on the non–negative real numbers

div∶ ℝ≥0 × ℝ
op
>0→Posℝ≥0 (60)

As for addition andmultiplication, wewish to extend div to amapℝ≥0×ℝ
op
≥0→Posℝ≥0 that is either Scott continuous or Scott co-continuous.

Lemma 18.24 (Scott continuous extension of division). There exists a Scott continuous map

div↑ ∶ ℝ≥0 × ℝ
op

≥0→Posℝ≥0

extending ordinary division on ℝ≥0 × ℝ
op
>0. It is uniquely determined by continuity and given case–wise by

div↑(𝑥, 𝑦) = div(𝑥, 𝑦) (𝑥 ∈ ℝ≥0, 𝑦 > 0), (61)
div↑(0, 0) = 0 , (62)
div↑(𝑥, 0) = +∞ (𝑥 > 0), (63)

div↑(+∞, 𝑦) = +∞ (𝑦 > 0), (64)
div↑(𝑥, +∞) = 0 (𝑥 < +∞), (65)

div↑(+∞, +∞) = 0 . (66)

This construction is described by the schema M_DivideUConstant (Section 26.3.38).

Proof. First, we establish the values at the boundary points by continuity arguments:

Case 1: div↑(0, 0). Consider the directed set 𝐷 = {(0, 𝑦) ∶ 𝑦 > 0}. In the product order ℝ≥0 × ℝ
op

≥0, this set has supremum (0, 0) (since
in the opposite order on the second coordinate, smaller 𝑦 values are larger). For all (0, 𝑦) ∈ 𝐷, we have div↑(0, 𝑦) = 0∕𝑦 = 0. By
Scott-continuity,

div↑(0, 0) = sup
(0,𝑦)∈𝐷

div↑(0, 𝑦) = sup
𝑦>0

0 = 0.

Case 2: div↑(𝑥, 0) for 𝑥 > 0. Consider the directed set 𝐷 = {(𝑥, 𝑦) ∶ 0 < 𝑦 < 1}. In ℝ≥0 × ℝ
op

≥0, this set has supremum (𝑥, 0) (since
in the opposite order, 0 is the largest element). For any (𝑥, 𝑦) ∈ 𝐷, we have div↑(𝑥, 𝑦) = 𝑥∕𝑦. As 𝑦 → 0+, we have 𝑥∕𝑦 → +∞. By
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Scott-continuity in the second coordinate,

div↑(𝑥, 0) = sup
0<𝑦<1

div↑(𝑥, 𝑦) = sup
0<𝑦<1

𝑥
𝑦 = +∞.

Case 3: div↑(+∞, 𝑦) for 𝑦 > 0. Consider the directed set 𝐷 = {(𝑥, 𝑦) ∶ 𝑥 > 0} with supremum (+∞, 𝑦). For any (𝑥, 𝑦) ∈ 𝐷, we have
div↑(𝑥, 𝑦) = 𝑥∕𝑦. By Scott-continuity in the first coordinate,

div↑(+∞, 𝑦) = sup
𝑥>0

div↑(𝑥, 𝑦) = sup
𝑥>0

𝑥
𝑦 = +∞.

Case 4: div↑(𝑥, +∞) for 𝑥 < +∞. We need to find a directed set whose supremum is (𝑥, +∞). Since we’re working with ℝ≥0 × ℝ
op

≥0,
recall that in the opposite order, +∞ is the bottom element. Consider the increasing sequence 𝑦𝑛 →∞ in the usual order. Then (𝑥, 𝑦𝑛)
forms a directed set in the product topology, with supremum (𝑥, +∞).
For each element, we have div↑(𝑥, 𝑦𝑛) = 𝑥∕𝑦𝑛. Taking the supremum as 𝑛 → ∞:

div↑(𝑥, +∞) = sup
𝑛
div↑(𝑥, 𝑦𝑛) = sup

𝑛

𝑥
𝑦𝑛

= 0.

Case 5: div↑(+∞, +∞). Take the directed chain 𝐷 = {(𝑥, +∞) ∶ 0 < 𝑥 < +∞}, ordered by the first coordinate (the second is fixed to
the bottom element +∞). It is directed and sup𝐷 = (+∞, +∞). For every (𝑥, +∞) ∈ 𝐷 we have div↑(𝑥, +∞) = 0 from Case 4, hence by
Scott-continuity

div↑(+∞, +∞) = sup
(𝑥,+∞)∈𝐷

div↑(𝑥, +∞) = 0.

Lemma 18.25 (Scott co-continuous extension of division). There exists a Scott co-continuous map

div↓ ∶ ℝ≥0 × ℝ
op

≥0→Posℝ≥0

extending ordinary division on ℝ≥0 × ℝ
op
>0. It is uniquely determined by continuity and given case–wise by

div↓(𝑥, 𝑦) = div(𝑥, 𝑦) (𝑥 ∈ ℝ≥0, 𝑦 > 0), (67)
div↓(0, 0) = +∞, (68)
div↓(𝑥, 0) = +∞ (𝑥 > 0), (69)

div↓(+∞, 𝑦) = +∞ (𝑦 > 0), (70)
div↓(𝑥, +∞) = 0 (𝑥 < +∞), (71)

div↓(+∞, +∞) = +∞. (72)

This construction is described by the schema M_DivideLConstant (Section 26.3.37).

Proof. We need to verify that the given extension div↓ is Scott co-continuous. Since we are working with the opposite order on the
second coordinate (as indicated by ℝ≥0 × ℝ

op

≥0), we need to check that div↓ preserves infima of filtered sets.
First, we establish the values at the boundary points by co-continuity arguments:

Case 1: div↓(0, 0). Consider any filtered set 𝐹 with inf 𝐹 = (0, 0) in ℝ≥0 × ℝ
op

≥0. For the infimum of the first coordinates to be 0, we
need elements (𝑥𝑖 , 𝑦𝑖) ∈ 𝐹 with 𝑥𝑖 → 0. For the second coordinate in the opposite order, inf op {𝑦𝑖} = 0means sup{𝑦𝑖} = 0 in the usual
order. Since 𝑦𝑖 ≥ 0, having sup{𝑦𝑖} = 0 implies 𝑦𝑖 = 0 for all 𝑖. Thus, any such filtered set consists of elements of the form (𝑥, 0) where
𝑥 > 0 and 𝑥 → 0. For all such elements, div↓(𝑥, 0) = +∞. By Scott-co-continuity,

div↓(0, 0) = inf {div↓(𝑥, 0) ∶ (𝑥, 0) ∈ 𝐹} = inf {+∞} = +∞.

Case 2: div↓(𝑥, 0) for 𝑥 > 0. This is already defined as +∞ by the natural extension, since division by zero yields infinity.
Case 3: div↓(+∞, 𝑦) for 𝑦 > 0. This follows directly from the fact that dividing infinity by any positive number yields infinity.

Case 4: div↓(𝑥, +∞) for 𝑥 < +∞. Consider a filtered set 𝐹 with inf 𝐹 = (𝑥, +∞) in ℝ≥0 × ℝ
op

≥0. In the opposite order on the second
coordinate, +∞ is the bottom element. For any filtered set converging to (𝑥, +∞), we can consider 𝐹 = {(𝑥, 𝑦) ∶ 𝑦 > 𝑀} for large𝑀. For

96



(𝑥, 𝑦) ∈ 𝐹, we have div↓(𝑥, 𝑦) = 𝑥∕𝑦 → 0 as 𝑦 → ∞. By Scott-co-continuity,

div↓(𝑥, +∞) = inf
𝑦>𝑀

div↓(𝑥, 𝑦) = inf
𝑦>𝑀

𝑥
𝑦 = 0.

Case 5: div↓(+∞, +∞). Consider any filtered set 𝐹 with inf 𝐹 = (+∞, +∞) in ℝ≥0 × ℝ
op

≥0. For the infimum of the first coordinates to be
+∞, all elements must have first coordinate equal to +∞. Thus 𝐹 consists of elements of the form (+∞, 𝑦) where 𝑦 > 0. For all such
elements, div↓(+∞, 𝑦) = +∞ from Case 3. By Scott-co-continuity,

div↓(+∞, +∞) = inf {div↓(+∞, 𝑦) ∶ (+∞, 𝑦) ∈ 𝐹} = inf {+∞} = +∞.

The verification that div↓ preserves infima of all filtered sets follows from these boundary cases and the continuity of ordinary division
on the interior of the domain.

18.5. Unary join and meet operations

In this section we look at the unary meet and join, compute their Scott-continuity properties and their upper and lower inverses.

Definition 18.26 (Unary meet)
Given a poset 𝐏, the unary meet ∧𝑐, is defined whenever 𝑐 is such that 𝑥 ∧ 𝑐 exists for all 𝑥 ∈ 𝐏.

M_MeetConstant(𝐏, 𝑐)∶ 𝐏 →→→Pos 𝐏

𝑥 ↦,,,→ 𝑥 ∧ 𝑐
(73)

This construction is described by the schema M_MeetConstant (Section 26.3.13).

Definition 18.27 (Unary join)
The unary join ∨𝑐 is defined whenever 𝑐 is such that 𝑥 ∨ 𝑐 exists for all 𝑥 ∈ 𝐏.

M_JoinConstant(𝐏, 𝑐)∶ 𝐏 →→→Pos 𝐏

𝑥 ↦,,,→ 𝑥 ∨ 𝑐
(74)

This construction is described by the schema M_JoinConstant (Section 26.3.11).

We can prove that the unary join is Scott continuous in a dcpo directly.

Lemma 18.28 (Join with a constant in dcpo). If 𝐏 is a dcpo, 𝑐 ∈ 𝐏 is such that 𝑥 ∨ 𝑐 exists for all 𝑥 ∈ 𝐏, the map

∨𝑐 ∶ 𝐏 →→→Pos 𝐏

𝑥 ↦,,,→ 𝑥 ∨ 𝑐

is Scott continuous.

Proof. Let 𝐃 ⊆ 𝐏 be directed. Then we have that

∨𝑐(
⋁↑

𝐃) ≐ (
⋁↑

𝐃) ∨ 𝑐 (𝑎)=
⋁↑

𝑑∈𝐃
(𝑑 ∨ 𝑐) =

⋁↑
∨𝑐 [𝐃] .

where (a) follows from Lemma 18.29 and Lemma 18.31.

Lemma 18.29. Let 𝐏 = ⟨𝐏, ≤⟩ be a poset. Fix 𝑎 ∈ 𝐏 and 𝐁 ⊆ 𝐏. If these joins exist:
⋁

𝑏∈𝐁
𝑏, (75)

(𝑎 ∨ 𝑏) ∀𝑏 ∈ 𝐁 (76)
⋁

𝑏∈𝐁
(𝑎 ∨ 𝑏) (77)
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𝑎 ∨
⋁

𝑏∈𝐁
𝑏, (78)

then the following equality holds:
𝑎 ∨

⋁

𝑏∈𝐁
𝑏 =

⋁

𝑏∈𝐁
(𝑎 ∨ 𝑏) (79)

Proof. Call
𝑡 ≐

⋁

𝑏∈𝐁
𝑏 𝑠 ≐ 𝑎 ∨

⋁

𝑏∈𝐁
𝑏 = 𝑎 ∨ 𝑡 𝑢 ≐

⋁

𝑏∈𝐁
(𝑎 ∨ 𝑏).

We need to prove that 𝑠 = 𝑢. From 𝑏 ≤ 𝑡, we get 𝑎 ∨ 𝑏 ≤ 𝑎 ∨ 𝑡, and so 𝑢 ≤ 𝑠.
First note two elementary inequalities that follow from the definition of 𝑢:

𝑎 ≤ 𝑢 (since 𝑎 ≤ 𝑎 ∨ 𝑏 ≤ 𝑢 for every 𝑏 ∈ 𝐁),

𝑡 =
⋁

𝑏∈𝐁
𝑏 ≤

⋁

𝑏∈𝐁
(𝑎 ∨ 𝑏) = 𝑢 (because 𝑏 ≤ 𝑎 ∨ 𝑏 ≤ 𝑢 for each 𝑏 ∈ 𝐁).

Hence both 𝑎 and 𝑡 are below 𝑢, making 𝑢 an upper bound of the pair {𝑎, 𝑡}. But 𝑠 = 𝑎 ∨ 𝑡 is, by definition, the least such upper bound,
so necessarily 𝑠 ≤ 𝑢.

Lemma 18.30. If all meets exist, then the following equality holds:

𝑎 ∧
⋀

𝑏∈𝐁
𝑏 =

⋀

𝑏∈𝐁
(𝑎 ∧ 𝑏) (80)

Proof. Dual of Lemma 18.29.

Lemma 18.31. Assume 𝑓 ∶ 𝐏 → 𝐐 is monotone. If 𝐃 ⊆ 𝐏 is directed, 𝑓[𝐃] is directed. If 𝐅 ⊆ 𝐏 is filtered, 𝑓[𝐅] is filtered.

Lemma 18.32.
𝐋𝐢∨𝑐 ∶ 𝐏 →PosL 𝐏

𝑟 ↦,,,→ {↓ 𝑟 if 𝑐 ⪯𝐏 𝑦
∅ otherwise

(81)

Proof. We compute

𝐋𝐢∨𝑐(𝑦) = {𝑥 ∈ 𝐏∶ 𝑥 ∨ 𝑐 ≤ 𝑦} (82)

In the case 𝑐 ≤ 𝑦, we have that 𝑥∨𝑐 ≤ 𝑦 iff 𝑥 ≤ 𝑦. If 𝑐 ≰ 𝑦, there is no 𝑥 such that 𝑥∨𝑐 ≤ 𝑦, because otherwise 𝑐 ≤ 𝑥 ∨𝑐 ≤ 𝑦. Therefore,
𝐋𝐢∨𝑐(𝑦) = ↓ 𝑦 if 𝑐 ≤ 𝑦 and ∅ otherwise.

Once we have the lower inverse, we can also recover the Scott-continuity property from Theorem 12.30.

Corollary 18.33. ∨𝑐 is Scott continuous.

Proof. From Theorem 12.31 and Lemma 18.32. Note that ∅ = ↓ ∅.

Lemma 18.34.
𝐔𝐢∨𝑐 ∶ 𝐏 →PosU 𝐏

𝑓∗ ↦,,,→ {𝐏 if 𝑓 ⪯𝐏 𝑐
↑ 𝑓∗ otherwise

(83)

Proof. We compute

𝐔𝐢∨𝑐(𝑓) = {𝑥 ∈ 𝐏∶ 𝑥 ∨ 𝑐 ≥ 𝑓} (84)

(a) In the case 𝑓 ≤ 𝑐, we have that 𝑥 ∨ 𝑐 ≥ 𝑓 is always true.
(b) In the case 𝑓 ≰ 𝑐, we note that because 𝑓 ≤ 𝑥 ∨ 𝑐, 𝑓 must be below either 𝑐 or 𝑥. But it is not below 𝑐, so it must be below 𝑥. So we
have 𝑥 ≥ 𝑓. Conversely, if 𝑥 ≥ 𝑓, then 𝑥 ∨ 𝑐 ≥ 𝑓.

Corollary 18.35. If 𝐏 is fBWF then ∨𝑐 is Scott co-continuous.
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Proof. From Theorem 12.35 and Lemma 18.34.

Lemma 18.36 (Meet with a constant in fcpo). If 𝐏 is a fcpo and 𝑐 ∈ 𝐏 is such that 𝑥 ∧ 𝑐 exists for all 𝑥 ∈ 𝐏, the map

∧𝑐 ∶ 𝐏 →→→Pos 𝐏

𝑥 ↦,,,→ 𝑥 ∧ 𝑐

is Scott co-continuous.

Proof. Dual of Lemma 18.28.

Lemma 18.37.
𝐔𝐢∧𝑐 ∶ 𝐏 →PosU 𝐏

𝑓∗ ↦,,,→ {
↑𝑓∗ if 𝑓∗ ⪯𝐏 𝑐
∅ otherwise

(85)

Proof. Dual of Lemma 18.32.

Corollary 18.38. ∧𝑐 is Scott co-continuous.

Proof. From Theorem 12.35 and Lemma 18.37.

Lemma 18.39.
𝐋𝐢∧𝑐 ∶ 𝐏 →PosL 𝐏

𝑟 ↦,,,→ {𝐏 if 𝑐 ⪯𝐏 𝑟
↓ 𝑟 otherwise

(86)

Proof. Dual of Lemma 18.34.

Corollary 18.40. If 𝐏 is fAWF then ∧𝑐 is Scott continuous.

Proof. From Theorem 12.31 and Lemma 18.39.

18.6. 𝑛-ary joins and meets

In this section we look at the 𝑛-ary joins and meets.

18.6.1. 𝑛-ary Join

Definition 18.41
Given 𝑛 posets J𝐏𝑘K all subposets of a join semilattice 𝐏, we define the map

M_Join(𝐏, J𝐏𝑘K)∶ P_C_Product (J𝐏𝑘K) →→→Pos 𝐏

⟨𝑥1, …, 𝑥𝑛⟩ ↦,,,→ 𝑥1 ∨ 𝑥2⋯∨ 𝑥𝑛
(87)

This construction is described by the schema M_Join (Section 26.3.10).

We now analyze the case of binary joins, with 𝑛-ary joins an immediate generalization.

Lemma 18.42 (Lower pre-image of binary join). The lower pre-image of the binary join operation ∨∶ 𝐏 × 𝐏→Pos 𝐏 is given by

𝐋𝐢∨ ∶ 𝐏 →PosL 𝐏 × 𝐏

𝑞 ↦,,,→ ↓⟨𝑞, 𝑞⟩
(88)

Therefore, 𝐋𝐢∨ is fAWF with (𝐋𝐢 ∨)(𝑞) = ↓(𝑞, 𝑞).
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Proof. We have (𝐋𝐢 ∨)(𝑞) = {⟨𝑥, 𝑦⟩ ∈ 𝐏 × 𝐏 ∣ 𝑥 ∨ 𝑦 ≤ 𝑞}. If 𝑥 ∨ 𝑦 ≤ 𝑞, then since 𝑥 ≤ 𝑥 ∨ 𝑦 and 𝑦 ≤ 𝑥 ∨ 𝑦, we have 𝑥 ≤ 𝑞 and 𝑦 ≤ 𝑞.
Conversely, if 𝑥 ≤ 𝑞 and 𝑦 ≤ 𝑞, then 𝑞 is an upper bound of {𝑥, 𝑦}, so 𝑥 ∨ 𝑦 ≤ 𝑞.

Lemma 18.43 (Upper pre-image of binary join). The upper pre-image of the binary join operation ∨∶ 𝐏 × 𝐏→Pos 𝐏 is given by

𝐔𝐢∨ ∶ 𝐏 →PosU 𝐏 × 𝐏

𝑝 ↦,,,→ (↑𝑝 × 𝐏) ∪ (𝐏 × ↑𝑝)
(89)

Proof. We have (𝐔𝐢 ∨)(𝑝) = {⟨𝑥, 𝑦⟩ ∈ 𝐏 × 𝐏 ∣ 𝑝 ≤ 𝑥 ∨ 𝑦}. If 𝑝 ≤ 𝑥 ∨ 𝑦, then we must have either 𝑝 ≤ 𝑥 or 𝑝 ≤ 𝑦 (or both). If 𝑝 ≤ 𝑥,
then 𝑝 ≤ 𝑥 ≤ 𝑥 ∨ 𝑦. If 𝑝 ≤ 𝑦, then 𝑝 ≤ 𝑦 ≤ 𝑥 ∨ 𝑦. Conversely, if 𝑝 ≰ 𝑥 and 𝑝 ≰ 𝑦, then 𝑝 cannot be below their join.

18.6.2. 𝑛-ary Meet

Definition 18.44
Given 𝑛 posets J𝐏𝑘K all subposets of a meet semilattice 𝐏, we define the map

M_Meet(𝐏, J𝐏𝑘K)∶ P_C_Product (J𝐏𝑘K) →→→Pos 𝐏

⟨𝑥1, …, 𝑥𝑛⟩ ↦,,,→ 𝑥1 ∧ 𝑥2 ∧⋯ ∧ 𝑥𝑛
(90)

This construction is described by the schema M_Meet (Section 26.3.12).

Lemma 18.45 (Upper pre-image of binary meet). The upper pre-image of the binary meet operation ∧∶ 𝐏 × 𝐏→Pos 𝐏 is given by

𝐔𝐢∧ ∶ 𝑝⟼ ↑⟨𝑝, 𝑝⟩ (91)

Therefore,𝐔𝐢∧ is fBWF.

Proof. We compute (𝐔𝐢 ∧)(𝑝) = {⟨𝑥, 𝑦⟩ ∈ 𝐏 × 𝐏 ∣ 𝑝 ≤ 𝑥 ∧ 𝑦}. If 𝑝 ≤ 𝑥 ∧ 𝑦, then since 𝑥 ∧ 𝑦 ≤ 𝑥 and 𝑥 ∧ 𝑦 ≤ 𝑦, we have 𝑝 ≤ 𝑥 and
𝑝 ≤ 𝑦. Conversely, if 𝑝 ≤ 𝑥 and 𝑝 ≤ 𝑦, then 𝑝 is a lower bound of {𝑥, 𝑦}, so 𝑝 ≤ 𝑥 ∧ 𝑦.

Lemma 18.46 (Lower pre-image of binary meet). The lower pre-image of the binary meet operation ∧∶ 𝐏 × 𝐏→Pos 𝐏 is given by

𝐋𝐢∧ ∶ 𝑞 ⟼ (↓𝑞 × 𝐏) ∪ (𝐏 × ↓ 𝑞) (92)

Proof. We compute (𝐋𝐢 ∧)(𝑞) = {⟨𝑥, 𝑦⟩ ∈ 𝐏 × 𝐏 ∣ 𝑥 ∧ 𝑦 ≤ 𝑞}. If 𝑥 ∧ 𝑦 ≤ 𝑞, then we must have either 𝑥 ≤ 𝑞 or 𝑦 ≤ 𝑞 (or both). If 𝑥 ≤ 𝑞,
then 𝑥 ∧ 𝑦 ≤ 𝑥 ≤ 𝑞. If 𝑦 ≤ 𝑞, then 𝑥 ∧ 𝑦 ≤ 𝑦 ≤ 𝑞. The converse clearly holds.

18.7. Lifts to subsets

Definition 18.47
Given a map 𝑓∶ 𝐏 →Pos 𝐐, we define

M_C_LiftToSubsets(𝑓)∶ P_C_Power (𝐏) →→→Pos P_C_Power (𝐐)

𝐀 ↦,,,→
⋃

𝑥∈𝐀
𝑓(𝑥) (93)

This construction is described by the schema M_C_LiftToSubsets (Section 26.3.52).

Definition 18.48
Given a map 𝑓∶ 𝐏 →Pos 𝐐, we define

M_LiftToLowerSets(𝑓)∶ P_C_LowerSets (𝐏) →→→Pos P_C_LowerSets (𝐐)

𝐀 ↦,,,→
⋃

𝑥∈𝐀
𝑓(𝑥) (94)
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This construction is described by the schema M_LiftToLowerSets (Section 26.3.53).

Definition 18.49
Given a map 𝑓∶ 𝐏 →Pos 𝐐, we define

M_LiftToUpperSets(𝑓)∶ P_C_UpperSets (𝐏) →→→Pos P_C_UpperSets (𝐐)

𝐀 ↦,,,→
⋃

𝑥∈𝐀
𝑓(𝑥) (95)

This construction is described by the schema M_LiftToUpperSets (Section 26.3.54).

18.8. Plumbing

Definition 18.50
Given a poset 𝐏 we define

M_Lift∶ 𝐏 →→→Pos P_C_ProductSmash (J𝐏K)

𝑝 ↦,,,→ [𝑝]
(96)

This construction is described by the schema M_Lift (Section 26.3.60).

Definition 18.51
Given a poset 𝐏 we define

M_Unlift∶ P_C_ProductSmash (J𝐏K) →→→Pos 𝐏

[𝑝] ↦,,,→ 𝑝
(97)

This construction is described by the schema M_Unlift (Section 26.3.63).

18.8.1. Slicing

Definition 18.52
Given a list of 𝑛 posets J𝐏𝑘K and an index 𝑗 ∈ J1, …, 𝑛K, we define

M_TakeIndex(J𝐏𝑘K, 𝑗)∶ P_C_Product (J𝐏𝑘K) →→→Pos 𝐏𝑗

⟨𝑥1, …, 𝑥𝑛⟩ ↦,,,→ 𝑥𝑗
(98)

This construction is described by the schema M_TakeIndex (Section 26.3.61).

Analogously, M_TakeRange is a slicing operation from a smash product.

This construction is described by the schema M_TakeRange (Section 26.3.62).

18.8.2. Injections

Definition 18.53
Given a list of 𝑛 posets J𝐏𝑘K and an index 𝑗 ∈ J1, …, 𝑛K, we define

M_Injection(J𝐏𝑘K, 𝑗)∶ 𝐏𝑗 →→→Pos P_C_Sum (J𝐏𝑘K)

𝑥 ↦,,,→ ⟨𝑗, 𝑥⟩
(99)

101



This construction is described by the schema M_Injection (Section 26.3.9).

Analogously, M_SmashInjection is the injection into P_C_Sum (J𝐏𝑘K).

This construction is described by the schema M_SmashInjection (Section 26.3.16).

18.9. Catalog

Definition 18.54
Given two posets 𝐏 and 𝐐 and a set of input-output pairs J⟨𝑝𝑘 , 𝑞𝑘⟩K, we define

M_Explicit(𝐏,𝐐, J⟨𝑝𝑘 , 𝑞𝑘⟩K)∶ ∪ {𝑝𝑘} →→→Pos 𝐐

𝑝𝑘 ↦,,,→ 𝑞𝑘
(100)

This construction is described by the schema M_Explicit (Section 26.3.3).

18.10. Threshold maps

Definition 18.55
Given two posets 𝐏 and 𝐐 with top and bottom, we define

M_BottomIfNotTop(𝐏,𝐐)∶ 𝐏 →→→Pos 𝐐

𝑥 ↦,,,→ {⊤𝐐 if ⊤𝐏 ⪯ 𝑥
⊥𝐐 if otherwise

(101)

This construction is described by the schema M_BottomIfNotTop (Section 26.3.55).

Definition 18.56
Given two posets 𝐏 and 𝐐 with top and bottom, we define

M_TopIfNotBottom(𝐏,𝐐)∶ 𝐏 →→→Pos 𝐐

𝑥 ↦,,,→ {⊥𝐐 if 𝑥 ⪯ ⊥𝐏

⊤𝐐 otherwise
(102)

This construction is described by the schema M_TopIfNotBottom (Section 26.3.59).

Definition 18.57
Given a poset 𝐏 and two values 𝑇 ⪯𝐏 𝑉, we define

M_IdentityBelowThreshold(𝐏, 𝑇, 𝑉)∶ 𝐏 →→→Pos 𝐐

𝑥 ↦,,,→ {𝑉 if 𝑇 ⪯ 𝑥
𝑥 otherwise

(103)

This construction is described by the schema M_IdentityBelowThreshold (Section 26.3.56).

Definition 18.58
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Given a poset 𝐏 and a value 𝑉, we define

M_Threshold1(𝐏, 𝑉)∶ 𝐏 →→→Pos 𝐏

𝑥 ↦,,,→ {𝑥 if 𝑥 ⪯ 𝑉
𝑣 otherwise

(104)

This construction is described by the schema M_Threshold1 (Section 26.3.57).

Note that if 𝐏 was a complete total order, this would be simplified to 𝑥 ↦ min(𝑥, 𝑉). This map appears as the solution of the 𝖱𝖥 query for
DP_FuncNotMoreThan.

Definition 18.59
Given a poset 𝐏 and a value 𝑉, we define

M_Threshold2(𝐏, 𝑉)∶ 𝐏 →→→Pos 𝐏

𝑥 ↦,,,→ {𝑥 if 𝑉 ⪯ 𝑥
𝑉 otherwise

(105)

This construction is described by the schema M_Threshold2 (Section 26.3.58).

Note that if 𝐏 was a complete total order, this would be simplified to 𝑥 ↦ min(𝑥, 𝑉). This map appears as the solution of the 𝖥𝖱 query for
DP_ResNotLessThan.

18.11. Tests

18.11.1. constant ⪯ 𝑥

Definition 18.60
Given a poset 𝐏 and a constant 𝑐∗ ∈ 𝐏op, we define

M_C_Leq_X(𝐏, 𝑐∗)∶ 𝐏 →→→Pos Bool

𝑝 ↦,,,→ 𝑐∗ ⪯𝐏 𝑝
(106)

This construction is described by the schema M_C_Leq_X (Section 26.3.64).

Lemma 18.61. M_C_Leq_X (𝐏, 𝑐∗) is Scott co-continuous.
It is not Scott continuous in general.

Proof. The𝐔𝐢 of this map is fBWF.

We now give the upper and lower images of M_C_Leq_X.
First note that for all maps 𝑔 ∶ 𝐐 →Pos Bool, we have [𝐔𝐢 𝑔](⊥) = [𝐋𝐢 𝑔](⊤) = 𝐐. Moreover, we have [𝐔𝐢 𝑔](⊤) = 𝐐 ⧵ [𝐋𝐢 𝑔](⊥). With
this observation, we only need to compute [𝐔𝐢 𝑔](⊤) or, equivalently, [𝐋𝐢 𝑔](⊥), and the rest follows.

Lemma 18.62 (Upper / lower image of M_C_Leq_X).

𝐔𝐢M_C_Leq_X (𝐏, 𝑐∗) ∶ Bool →PosU 𝐏

⊥ ↦,,,→ 𝐏

⊤ ↦,,,→ ↑𝐏 𝑐∗
(107)

𝐋𝐢M_C_Leq_X (𝐏, 𝑐∗) ∶ Bool →PosL 𝐏

⊥ ↦,,,→ 𝐏 ⧵ (↑𝐏 𝑐∗)

⊤ ↦,,,→ 𝐏

(108)
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Proof. Let 𝑓(𝑝) ≐ (𝑐∗ ⪯𝐏 𝑝). By definition,
[𝐔𝐢 𝑓](⊤) = {𝑝 ∈ 𝐏 ∣ 𝑐∗ ⪯𝐏 𝑝} = ↑𝐏 𝑐∗ (109)

18.11.2. constant ≺ 𝑥

Definition 18.63
Given a poset 𝐏 and a constant 𝑐∗ ∈ 𝐏op, we define

M_C_Lt_X(𝐏, 𝑐∗)∶ 𝐏 →→→Pos Bool

𝑝 ↦,,,→ 𝑐∗ ≺𝐏 𝑝
(110)

This construction is described by the schema M_C_Lt_X (Section 26.3.65).

Lemma 18.64. M_C_Lt_X (𝐏, 𝑐∗) is not Scott continuous or Scott co-continuous in general.
It is Scott continuous if 𝐏 is a dcpo and a total order.

Lemma 18.65 (Upper / lower image of M_C_Lt_X).
𝐔𝐢M_C_Lt_X (𝐏, 𝑐∗) ∶ Bool →PosU 𝐏

⊥ ↦,,,→ 𝐏

⊤ ↦,,,→ ↑𝐏 𝑐∗
(111)

𝐋𝐢M_C_Lt_X (𝐏, 𝑐∗) ∶ Bool →PosL 𝐏

⊥ ↦,,,→ 𝐏 ⧵ ↑𝐏 𝑐∗

⊤ ↦,,,→ 𝐏

(112)

Proof. Let 𝑓(𝑝) ≐ (𝑐∗ ≺ 𝑝). By definition,
[𝐔𝐢 𝑓](⊤) = {𝑝 ∈ 𝐏 ∣ 𝑐∗ ≺𝐏 𝑝} = ↑𝐏 𝑐∗ (113)

18.11.3. 𝑥 ⪯ constant

Definition 18.66
Given a poset 𝐏 and a constant 𝑐 ∈ 𝐏, we define

M_X_Leq_C(𝐏, 𝑐)∶ 𝐏op →→→Pos Bool

𝑝∗ ↦,,,→ 𝑝∗ ⪯𝐏 𝑐
(114)

This construction is described by the schema M_X_Leq_C (Section 26.3.66).

Lemma 18.67. M_X_Leq_C (𝐏, 𝑐) is Scott co-continuous.
It is not Scott continuous in general.

Lemma 18.68 (Upper / lower image of M_X_Leq_C).
𝐔𝐢M_X_Leq_C (𝐏, 𝑐) ∶ Bool →PosU 𝐏op

⊥ ↦,,,→ 𝐏

⊤ ↦,,,→ ↑𝐏op 𝑐

(115)

𝐋𝐢M_X_Leq_C (𝐏, 𝑐) ∶ Bool →PosL 𝐏op

⊥ ↦,,,→ 𝐏 ⧵ (↑𝐏op 𝑐)

⊤ ↦,,,→ 𝐏

(116)

104



Proof. Let 𝑓(𝑝) ≐ (𝑝 ⪯𝐏 𝑐). We compute

[𝐔𝐢 𝑓](⊤) = {𝑝 ∈ 𝐏 ∣ 𝑝 ⪯𝐏 𝑐} = ↓𝐏 𝑐 = ↑𝐏op 𝑐 (117)

18.11.4. 𝑥 ≺ constant

Definition 18.69
Given a poset 𝐏 and a constant 𝑐 ∈ 𝐏, we define

M_X_Lt_C(𝐏, 𝑐)∶ 𝐏op →→→Pos Bool

𝑝∗ ↦,,,→ 𝑝∗ ≺𝐏 𝑐
(118)

This construction is described by the schema M_X_Lt_C (Section 26.3.67).

Lemma 18.70. M_X_lt_C (𝐏, 𝑐) is not Scott continuous or Scott co-continuous in general.
It is Scott continuous if 𝐏 is a fcpo and a total order.

Lemma 18.71 (Upper / lower image of M_X_lt_C).

𝐔𝐢M_X_lt_C (𝐏, 𝑐) ∶ Bool →PosU 𝐏op

⊥ ↦,,,→ 𝐏

⊤ ↦,,,→ ↑𝐏op 𝑐

(119)

𝐋𝐢M_X_lt_C (𝐏, 𝑐) ∶ Bool →PosL 𝐏op

⊥ ↦,,,→ 𝐏 ⧵ (↑𝐏op 𝑐)

⊤ ↦,,,→ 𝐏

(120)

Proof. Let 𝑓(𝑝) ≐ (𝑝 ≺ 𝑐). We compute
[𝐔𝐢 𝑓](⊤) = {𝑝 ∈ 𝐏 ∣ 𝑝 ≺ 𝑐} = ↓𝐏 𝑐 = ↑𝐏op 𝑐 (121)

18.12. Lower/upper set containment tests

18.12.1. Lower set containment tests

Definition 18.72
Given a poset 𝐏 and a lower set 𝐀 ∈ 𝐋𝐏, we define

M_ContainedInLowerSet(𝐏,𝐀)∶ 𝐏op →→→Pos Bool

𝑝∗ ↦,,,→ 𝑝∗ ∈ 𝐀
(122)

This construction is described by the schema M_ContainedInLowerSet (Section 26.3.7).

Note that the function M_ContainedInLowerSet is antitone.

Lemma 18.73. M_ContainedInLowerSet (𝐏,𝐀) is Scott co-continuous iff 𝐀 is closed under directed suprema. A sufficient condition is
that 𝐀 is fAWF.

Lemma 18.74 (Upper / lower image of M_ContainedInLowerSet).

𝐔𝐢M_ContainedInLowerSet (𝐏,𝐀) ∶ Bool →PosU 𝐏op

⊥ ↦,,,→ 𝐏

⊤ ↦,,,→ 𝐀

(123)
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𝐋𝐢M_ContainedInLowerSet (𝐏,𝐀) ∶ Bool →PosL 𝐏op

⊥ ↦,,,→ 𝐏 ⧵ 𝐀

⊤ ↦,,,→ 𝐏

(124)

18.12.2. Upper set containment tests

Definition 18.75
Given a poset 𝐏 and an upper set 𝐀 ∈ 𝐔𝐏, we define

M_ContainedInUpperSet(𝐏,𝐀)∶ 𝐏 →→→Pos Bool

𝑝 ↦,,,→ 𝑝 ∈ 𝐀
(125)

This construction is described by the schema M_ContainedInUpperSet (Section 26.3.8).

Lemma 18.76. M_ContainedInUpperSet (𝐏,𝐀) is Scott co-continuous iff 𝐀 is closed under filtered infima. A sufficient condition is that
𝐀 is fBWF.

Lemma 18.77 (Upper / lower image of M_ContainedInUpperSet).

𝐔𝐢M_ContainedInUpperSet (𝐏,𝐀) ∶ Bool →PosU 𝐏

⊥ ↦,,,→ 𝐏

⊤ ↦,,,→ 𝐀

(126)

𝐋𝐢M_ContainedInUpperSet (𝐏,𝐀) ∶ Bool →PosL 𝐏

⊥ ↦,,,→ 𝐏 ⧵ 𝐀

⊤ ↦,,,→ 𝐏

(127)

18.13. Order as a function

Definition 18.78
Given a poset 𝐏 we define

M_Leq(𝐏)∶ P_C_Product
(
J𝐏op, 𝐏K

)
→→→Pos Bool

⟨𝑥∗, 𝑦⟩ ↦,,,→ 𝑥∗ ⪯𝐏 𝑦
(128)

This construction is described by the schema M_Leq (Section 26.3.68).

Lemma 18.79. M_Leq (𝐏) is neither Scott co-continuous nor Scott continuous in general, not even on total orders.
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19. Monotone map compositions catalog

19.1. Constructions for single maps

19.1.1. Opposite of a map

Definition 19.1
Given a map 𝑓 ∶ 𝐏→Pos𝐐, the opposite of 𝑓 is the map M_C_Op(𝑓) ∶ 𝐏op→Pos𝐐op such that:

M_C_Op(𝑓) ∶ 𝑥 ↦ 𝑓(𝑥) (1)

This construction is described by the schema M_C_Op (Section 26.3.17).

Lemma 19.2. If 𝑓 is Scott continuous, then M_C_Op (𝑓) is Scott co-continuous, and viceversa.

19.2. Constructions for multiple maps

19.2.1. Parallel composition

Definition 19.3 (Parallel composition)
Given a list of𝑛maps J𝑓𝑘 ∶ 𝐏𝑘→Pos𝐐𝑘K the parallel composition of 𝑓𝑘 is the map

M_C_Parallel(J𝑓𝑘K)∶ P_C_Product (J𝐏𝑘K) →→→Pos P_C_Product
(
J𝐐𝑘K

)

⟨𝑥1, …, 𝑥𝑛⟩ ↦,,,→
⟨
𝑓1(𝑥1), …, 𝑓𝑛(𝑥𝑛)

⟩ (2)

This construction is described by the schema M_C_Parallel (Section 26.3.25).

Lemma 19.4. M_C_Parallel inherits the Scott flavor of the constituent maps: if all 𝑓𝑘 are Scott continuous (Scott co-continuous), then
M_C_Parallel is Scott continuous (Scott co-continuous).

Lemma 19.5.

𝐔𝐢M_C_Parallel
(
J𝑓𝑘K

)
= U1_C_Parallel

(
J𝐔𝐢𝑓𝑘K

)
(3)

𝐋𝐢M_C_Parallel
(
J𝑓𝑘K

)
= L1_C_Parallel

(
J𝐋𝐢 𝑓𝑘K

)
(4)

There is a variant of the parallel composition that is associative.

Definition 19.6 (Smash parallel composition)
Given a list of 𝑛maps J𝑓𝑘 ∶ 𝐏𝑘→Pos𝐐𝑘K the smash parallel composition is

M_C_ParallelSmash(J𝑓𝑘K)∶ P_C_ProductSmash (J𝐏𝑘K) →→→Pos P_C_ProductSmash
(
J𝐐𝑘K

)

[𝑥1 ∣⋯ ∣ 𝑥𝑛] ↦,,,→
[
𝑓1(𝑥1) ∣⋯ ∣ 𝑓𝑛(𝑥𝑛)

] (5)

This construction is described by the schema M_C_ParallelSmash (Section 26.3.26).

Finally, we can define hybrid versions of the product and smash product of maps that go from the product of domains to the smash product
of codomains

M_C_DomProdCodSmash(J𝑓𝑘K)∶ P_C_Product (J𝐏𝑘K)→Pos P_C_ProductSmash
(
J𝐐𝑘K

)
(6)
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This construction is described by the schema M_C_DomProdCodSmash (Section 26.3.22).

Or, viceversa:
M_C_DomSmashCodProd(J𝑓𝑘K)∶ P_C_ProductSmash (J𝐏𝑘K)→Pos P_C_Product

(
J𝐐𝑘K

)
(7)

This construction is described by the schema M_C_DomSmashCodProd (Section 26.3.23).

These are based on the isomorphism
P_C_ProductSmash (J𝐏𝑘K) ↔Pos P_C_Product (J𝐏𝑘K) (8)

19.2.2. Series composition

Definition 19.7
The series composition of a list of 𝑛maps J𝑓𝑘 ∶ 𝐏𝑘→Pos𝐐𝑘K is defined whenever for 𝑘 = 1,… , 𝑛 − 1, 𝐐𝑘 ⊆ 𝐏𝑘+1. It is given by:

M_C_Series(J𝑓𝑘K)∶ 𝐏1 →→→Pos 𝐐𝑛

𝑥 ↦,,,→ 𝑓𝑛(𝑓𝑛−1(… (𝑓1(𝑥)) …))
(9)

Lemma 19.8.
If all 𝑓𝑖 are Scott continuous, then M_C_Series(J𝑓𝑘K) is Scott continuous.
If all 𝑓𝑖 are Scott co-continuous, then M_C_Series(J𝑓𝑘K) is Scott co-continuous.

Lemma 19.9.

𝐔𝐢M_C_Series
(
J𝑓𝑘K

)
= U1_C_Series(reversed

(
J𝐔𝐢𝑓𝑘K

)
) (10)

𝐋𝐢M_C_Series
(
J𝑓𝑘K

)
= L1_C_Series(reversed

(
J𝐋𝐢 𝑓𝑘K

)
) (11)

(12)

This construction is described by the schema M_C_Series (Section 26.3.29).

19.2.3. Product of maps

Definition 19.10
Given a list of 𝑛maps J𝑓𝑘 ∶ 𝐏→Pos𝐐𝑘K their product is the map

M_C_Product(J𝑓𝑘K)∶ 𝐏 →→→Pos P_C_Product
(
J𝐐𝑘K

)

𝑥 ↦,,,→
⟨
𝑓1(𝑥), …, 𝑓𝑛(𝑥)

⟩ (13)

This construction is described by the schema M_C_Product (Section 26.3.27).

Lemma 19.11. M_C_Product inherits the Scott flavor of the constituent maps:

Lemma 19.12.

𝐔𝐢M_C_Product
(
J𝑓𝑘K

)
= U1_C_ProdIntersection

(
J𝐔𝐢𝑓𝑘K

)
(14)

𝐋𝐢M_C_Product
(
J𝑓𝑘K

)
= L1_C_ProdIntersection

(
J𝐋𝐢 𝑓𝑘K

)
(15)
(16)

Definition 19.13
Given a list of 𝑛maps J𝑓𝑘 ∶ 𝐏→Pos𝐐𝑘K their smash product is the map

M_C_ProductSmash(J𝑓𝑘K)∶ 𝐏 →→→Pos P_C_ProductSmash
(
J𝐐𝑘K

)

𝑥 ↦,,,→
[
𝑓1(𝑥) ∣ … ∣ 𝑓𝑛(𝑥)

] (17)

This construction is described by the schema M_C_ProductSmash (Section 26.3.28).

108



19.2.4. Sum of maps

Definition 19.14
Given a list of 𝑛maps J𝑓𝑘 ∶ 𝐏𝑘→Pos𝐐𝑘K the sum of 𝑓𝑘 is the map

M_C_Sum(J𝑓𝑘K)∶ P_C_Sum (J𝐏𝑘K) → P_C_Sum
(
J𝐐𝑘K

)
,

⟨𝑖, 𝑥𝑖⟩ ↦,→ ⟨𝑖, 𝑓𝑖(𝑥𝑖)⟩.
(18)

This construction is described by the schema M_C_Sum (Section 26.3.30).

By isomorphism we also construct the map

M_C_SumSmash(J𝑓𝑘K)∶ P_C_SumSmash (J𝐏𝑘K)→Pos P_C_SumSmash
(
J𝐐𝑘K

)
(19)

This construction is described by the schema M_C_SumSmash (Section 26.3.31).

Lemma 19.15. M_C_Sum inherits the Scott flavor of the constituent maps:

Lemma 19.16.

𝐔𝐢M_C_Sum
(
J𝑓𝑘K

)
= U1_C_Sum

(
J𝐔𝐢𝑓𝑘K

)
(20)

𝐋𝐢M_C_Sum
(
J𝑓𝑘K

)
= L1_C_Sum

(
J𝐋𝐢 𝑓𝑘K

)
(21)

Proof. Let 𝑔 ≐ M_C_Sum
(
J𝑓𝑘K

)
] and evaluate it at a point ⟨𝑗, 𝑦⟩ for 𝑦 ∈ 𝐐𝑗 . We see that the points in the domain must be as well in

the 𝑗-th component:

[𝐔𝐢 𝑔](⟨𝑗, 𝑦⟩) ≐ {𝑥 such that ⟨𝑗, 𝑦⟩ ⪯ 𝑔(𝑥)} (22)
= {⟨𝑗, 𝜓⟩ such that ⟨𝑗, 𝑦⟩ ⪯ 𝑔(⟨𝑗, 𝜓⟩)} (23)
= {⟨𝑗, 𝜓⟩ such that 𝑦 ⪯ 𝑔𝑗(𝜓)} (24)
= {⟨𝑗, 𝜓⟩ for𝜓 ∈ 𝐔𝐢 𝑔𝑗(𝑦)} (25)

(26)

19.2.5. Coproduct of maps

Definition 19.17
Given a list of 𝑛maps J𝑓𝑘 ∶ 𝐏𝑘→Pos𝐐K the coproduct of 𝑓𝑘 is the map

M_C_Coproduct(J𝑓𝑘K)∶ P_C_Sum (J𝐏𝑘K) →→→Pos 𝐐

⟨𝑖, 𝑥𝑖⟩ ↦,,,→ 𝑓𝑖(𝑥𝑖)
(27)

This construction is described by the schema M_C_Coproduct (Section 26.3.20).

Lemma 19.18. M_C_Coproduct inherits the Scott flavor of the constituent maps.

Lemma 19.19.

𝐔𝐢M_C_Coproduct
(
J𝑓𝑘K

)
= U1_CoproductCod

(
J𝐔𝐢𝑓𝑘K

)
(28)

𝐋𝐢M_C_Coproduct
(
J𝑓𝑘K

)
= L1_CoproductCod

(
J𝐋𝐢 𝑓𝑘K

)
(29)
(30)

By isomorphism we define the smash coproduct of maps:

M_C_CoproductSmash(J𝑓𝑘K)∶ P_C_SumSmash (J𝐏𝑘K)→Pos𝐐 (31)

This construction is described by the schema M_C_CoproductSmash (Section 26.3.21).
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19.2.6. Domain union

Definition 19.20 (Domain union of maps)
Given a list of 𝑛maps J𝑓𝑘 ∶ 𝐏𝑘→Pos𝐐K such that all 𝐏𝑘 are subposets of 𝐏, and whenever 𝑥 ∈ 𝐏𝑖 ∩ 𝐏𝑗 we have that 𝑓𝑖(𝑥) = 𝑓𝑗(𝑥),
then the domain union of the maps is defined as

M_C_DomUnion(J𝑓𝑘K)∶ P_C_Union (J𝐏𝑘K) →→→Pos 𝐐

𝑥 ↦,,,→ 𝑓𝑘(𝑥), where 𝑘 is the smallest 𝑘 such that 𝑥 ∈ 𝐏𝑘
(32)

This construction is described by the schema M_C_DomUnion (Section 26.3.24).

This is a definition that does not make much sense mathematically – if the maps are equal on the intersection, then they are the same map.
However, when the maps are considered as “algorithms”, the domain union is the formalway to combine the algorithms for special cases
into a single algorithm.

Lemma 19.21.

𝐔𝐢M_C_DomUnion
(
J𝑓𝑘K

)
= U1_C_Union

(
J𝐔𝐢𝑓𝑘K

)
(33)

𝐋𝐢M_C_DomUnion
(
J𝑓𝑘K

)
= L1_C_Union

(
J𝐋𝐢 𝑓𝑘K

)
(34)
(35)
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20. PosL and PosU catalog

20.1. Identity morphisms

The identity morphisms are equal to ↓ id𝐏 and ↑ id𝐏 maps on the posets.

Definition 20.1
Given a poset 𝐏, we define

L1_Identity(𝐏) ∶ 𝐏 →PosL 𝐏

𝑟 ↦,,,→ ↓ 𝑟
(1)

This construction is described by the schema L1_Identity (Section 26.4.4).

Definition 20.2
Given a poset 𝐏, we define

U1_Identity(𝐏) ∶ 𝐏 →PosU 𝐏

𝑓∗ ↦,,,→ ↑𝑓∗
(2)

This construction is described by the schema U1_Identity (Section 26.5.4).

20.2. Lifting maps

Definition 20.3 (Lifting map to PosL)
Given a map 𝑔 ∶ 𝗄𝖽𝗈𝗆→Pos 𝗄𝖼𝗈𝖽 we can lift it to

L1_Lift(𝑔) ∶ 𝗄𝖽𝗈𝗆 →PosL 𝗄𝖼𝗈𝖽

𝑟 ↦,,,→ ↓𝑔(𝑟)
(3)

This construction is described by the schema L1_Lift (Section 26.4.28).

Definition 20.4 (Lifting map to PosU)
Given a map 𝑔 ∶ 𝗄𝖽𝗈𝗆op→Pos 𝗄𝖼𝗈𝖽 we can lift it to

U1_Lift(𝑔) ∶ 𝗄𝖽𝗈𝗆 →PosU 𝗄𝖼𝗈𝖽

𝑓∗ ↦,,,→ ↑𝑔(𝑓∗)
(4)

This construction is described by the schema U1_Lift (Section 26.5.28).

20.3. Catalog maps

Definition 20.5 (L1 Catalog map)
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Given two posets 𝐅 and 𝐑, a catalog of options J⟨𝑓𝑘 , 𝑟∗𝑘⟩K, we define the map

L1_Catalog(J⟨𝑓𝑘 , 𝑟∗𝑘⟩K) ∶ 𝐑 →PosL 𝐅

𝑟 ↦,,,→ ↓
⋃

𝑘
{{𝑓𝑘} if 𝑟∗𝑘 ⪯ 𝑟,
∅ otherwise

(5)

This construction is described by the schema L1_Catalog (Section 26.4.6).

Definition 20.6 (U1 Catalog map)
Given two posets 𝐅 and 𝐑, a catalog of options J⟨𝑓𝑘 , 𝑟∗𝑘⟩K, we define the map

U1_Catalog(J⟨𝑓𝑘 , 𝑟∗𝑘⟩K) ∶ 𝐅 →PosU 𝐑

𝑓∗ ↦,,,→ ↑
⋃

𝑘
{{𝑟

∗
𝑘} if 𝑓∗ ⪯ 𝑓𝑘 ,

∅ otherwise
(6)

This construction is described by the schema U1_Catalog (Section 26.5.6).

20.4. Union and intersection of principal lower sets

Definition 20.7 (Intersection of principal lower sets)
Given 𝑛 posets J𝐏𝑘K that are subposets of 𝐏, we define the map

L1_IntersectionOfPrinLowerSets(J𝐏𝑘K) ∶ P_C_Product (J𝐏𝑘K) →PosL 𝐏

⟨𝑟1, …, 𝑟𝑛⟩ ↦,,,→
⋂

𝑘
↓ 𝑟𝑘

(7)

This construction is described by the schema L1_IntersectionOfPrinLowerSets (Section 26.4.7).

Definition 20.8 (Intersection of principal upper sets)
Given 𝑛 posets J𝐏𝑘K that are subposets of 𝐏, we define the map

U1_IntersectionOfPrinUpperSets(J𝐏𝑘K) ∶ P_C_Product (J𝐏𝑘K) →PosU 𝐏
⟨
𝑓∗1 , …, 𝑓∗𝑛

⟩
↦,,,→

⋂

𝑘
↑𝑓∗𝑘

(8)

This construction is described by the schema U1_IntersectionOfPrinUpperSets (Section 26.5.7).

Definition 20.9 (Union of principal lower sets)
Given 𝑛 posets J𝐏𝑘K that are subposets of 𝐏, we define the map

L1_UnionOfPrinLowerSets(J𝐏𝑘K) ∶ P_C_Product (J𝐏𝑘K) →PosL 𝐏

⟨𝑟1, …, 𝑟𝑛⟩ ↦,,,→
⋃

𝑘
↓ 𝑟𝑘

(9)

This construction is described by the schema L1_UnionOfPrinLowerSets (Section 26.4.9).

Definition 20.10 (Union of principal upper sets)
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Given 𝑛 posets J𝐏𝑘K that are subposets of 𝐏, we define the map

U1_UnionOfPrinUpperSets(J𝐏𝑘K) ∶ P_C_Product (J𝐏𝑘K) →PosU 𝐏
⟨
𝑓∗1 , …, 𝑓∗𝑛

⟩
↦,,,→

⋃

𝑘
↑𝑓∗𝑘

(10)

This construction is described by the schema U1_UnionOfPrinUpperSets (Section 26.5.9).

20.5. Representing principal lower and upper sets

Definition 20.11
Given two posets 𝗄𝖽𝗈𝗆 and 𝗄𝖼𝗈𝖽 that are both subposets of a common ambient poset 𝐏, we can define the map

L1_RepresentPrincipalLowerSet(𝐏, 𝗄𝖽𝗈𝗆, 𝗄𝖼𝗈𝖽) ∶ 𝗄𝖽𝗈𝗆 →PosL 𝗄𝖼𝗈𝖽

𝑟 ↦,,,→ (↓𝐏 𝑟) ∩ 𝗄𝖼𝗈𝖽
(11)

This construction is described by the schema L1_RepresentPrincipalLowerSet (Section 26.4.8).

The idea is that we want to “represent” the principal lower set ↓𝑃 𝑟 in terms of the codomain 𝗄𝖼𝗈𝖽.
For example, consider the case
• 𝗄𝖽𝗈𝗆 = 2ℤ, the even integers
• 𝗄𝖼𝗈𝖽 = 3ℤ, the multiples of 3
They are both subposets of the ambient poset ℤ. The map would associate each even integer 𝑥 with the down closure of the largest
multiple of 3 less than or equal to 𝑥:

10 ↦ ↓9
8 ↦ ↓6
6 ↦ ↓6
4 ↦ ↓3
2 ↦ ↓0
0 ↦ ↓0

In general, the posets are not total orders, so the result is not necessarily a principal lower set.

Definition 20.12
Given two posets 𝗄𝖽𝗈𝗆 and 𝗄𝖼𝗈𝖽 that are both subposets of a common ambient poset 𝐏, we can define the map

U1_RepresentPrincipalUpperSet(𝐏, 𝗄𝖽𝗈𝗆, 𝗄𝖼𝗈𝖽) ∶ 𝗄𝖽𝗈𝗆 →PosU 𝗄𝖼𝗈𝖽

𝑓∗ ↦,,,→ (↑𝐏 𝑓∗) ∩ 𝗄𝖼𝗈𝖽
(12)

This construction is described by the schema U1_RepresentPrincipalUpperSet (Section 26.5.8).

20.6. Generic inverses for mathematical operations

In this section we discuss the schemas used to indicate the approximations of the upper/lower inverse of addition and multiplication.
Let 𝐏 be a poset in which there is defined an addition operation add𝑛 ∶ 𝐏𝑛 × 𝐏 → 𝐏. In Section 18.4 we have discussed at length the cases
of 𝐏 = ℝ.
Consider the upper inverse of addition:

𝐔𝐢 add𝑛 ∶ 𝐏 →PosU 𝐏𝑛

𝑓∗ ↦,,,→ {⟨𝑥1, …, 𝑥𝑛⟩ such that𝑓∗ ⪯ add𝑛(𝑥1, … , 𝑥𝑛)}
(13)

The schemas U1_InvSum_Pes and U1_InvSum_Opt are not fully specified as function, but rather they are defined by the following
properties.
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Definition 20.13
Given a poset 𝐏, a dimensionality 𝑛 ≥ 2 and a resolution 𝑟 ∈ ℕ, we define U1_InvSum_Pes(𝐏, 𝑛, 𝑟) as indicating any family of maps
that satisfy the following properties any map that satisfies:
• It is a pessimistic approximation of𝐔𝐢 add𝑛 for any fixed 𝑟:

U1_InvSum_Pes(𝐏, 𝑛, 𝑟) ⪯ 𝐔𝐢 add𝑛 (14)

• It is increasing in 𝑛:
U1_InvSum_Pes(𝐏, 𝑛, 𝑟) ⪯ U1_InvSum_Pes(𝐏, 𝑛, 𝑟 + 1) (15)

• It approximates𝐔𝐢 add𝑛 in the limit:
sup
𝑟
U1_InvSum_Pes(𝐏, 𝑛, 𝑟) = 𝐔𝐢 add𝑛 (16)

This construction is described by the schema U1_InvSum_Pes (Section 26.5.25).

The definition for U1_InvSum_Opt is analogous.

Definition 20.14
Given a poset 𝐏, a dimensionality 𝑛 ≥ 2, and a resolution 𝑟 ∈ ℕ, we define U1_InvSum_Opt(𝐏, 𝑛, 𝑟) as indicating any family of maps
that satisfy the following properties any map that satisfies:
• It is an optimistic approximation of𝐔𝐢 add𝑛 for any fixed 𝑛:

𝐔𝐢 add𝑟 ≤ U1_InvSum_Opt(𝐏, 𝑛, 𝑟) (17)

• It is decreasing in 𝑟:
U1_InvSum_Opt(𝐏, 𝑛, 𝑟 + 1) ⪯ U1_InvSum_Opt(𝐏, 𝑛, 𝑟) (18)

• It approximates𝐔𝐢 add𝑛 in the limit:
inf
𝑟
U1_InvSum_Opt(𝐏, 𝑛, 𝑟) = 𝐔𝐢 add𝑛 (19)

This construction is described by the schema U1_InvSum_Opt (Section 26.5.24).

The definition for L1_InvSum_Pes and L1_InvSum_Opt is analogous, replacing𝐔𝐢 with 𝐋𝐢.
As for the maps L1_InvMul_Opt, U1_InvMul_Opt, L1_InvMul_Pes, U1_InvMul_Pes the definition is analogous, replacing add with
mul.

20.7. Filtering

Definition 20.15
Given a poset 𝐏 and a monotone map 𝑔 ∶ 𝐏 →Pos Bool, we define

L1_FromFilter(𝑔) ∶ 𝐏 →PosL 𝐏

𝑟 ↦,,,→ ↓ {{𝑟} if 𝑔(𝑟)
∅ otherwise

(20)

This construction is described by the schema L1_FromFilter (Section 26.4.26).

Definition 20.16
Given a poset 𝐏 and a monotone map 𝑔 ∶ 𝐏op →Pos Bool, we define

U1_FromFilter(𝑔) ∶ 𝐏 →PosU 𝐏

𝑓∗ ↦,,,→ ↑ {{𝑓
∗} if 𝑔(𝑓∗)

∅ otherwise
(21)
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This construction is described by the schema U1_FromFilter (Section 26.5.26).

20.8. Parallel composition

Definition 20.17 (Parallel composition for PosL)
For a family of maps J𝓁𝑘 ∶ 𝗄𝖽𝗈𝗆𝑘 →PosL 𝗄𝖼𝗈𝖽𝑘K, the monoidal product is defined as:

L1_C_Parallel(J𝓁𝑘K) ∶ P_C_Product (J𝗄𝖽𝗈𝗆𝑘K) →PosL P_C_Product (J𝗄𝖼𝗈𝖽𝑘K)

⟨𝑟1, …, 𝑟𝑛⟩ ↦,,,→ ⊗𝑘 𝓁𝑘(𝑟𝑘)
(22)

where⊗ is set product.

This construction is described by the schema L1_C_Parallel (Section 26.4.13).

Definition 20.18 (Parallel composition for PosU)
For a family of maps J𝓊𝑘 ∶ 𝗄𝖽𝗈𝗆𝑘 →PosU 𝗄𝖼𝗈𝖽𝑘K, the monoidal product is defined as:

U1_C_Parallel(J𝓊𝑘K) ∶ P_C_Product (J𝗄𝖽𝗈𝗆𝑘K) →PosU P_C_Product (J𝗄𝖼𝗈𝖽𝑘K)
⟨
𝑓∗1 , …, 𝑓∗𝑛

⟩
↦,,,→ ⊗𝑘 𝓊𝑘(𝑓∗𝑘)

(23)

where⊗ is set product.

This construction is described by the schema U1_C_Parallel (Section 26.5.13).

20.9. Sum

Definition 20.19 (Sum for PosL)
For a list of maps J𝓁𝑘 ∶ 𝗄𝖽𝗈𝗆𝑘 →PosL 𝗄𝖼𝗈𝖽𝑘K we define the sum as

L1_C_Sum(J𝓁𝑘K) ∶ P_C_Sum (J𝗄𝖽𝗈𝗆𝑘K) →PosL P_C_Sum (J𝗄𝖼𝗈𝖽𝑘K)

⟨𝑘, 𝑟⟩ ↦,,,→ 𝓁𝑘(𝑟) # ↓ inj𝑘
(24)

where inj𝑘 is the injection from 𝗄𝖼𝗈𝖽𝑘 to P_C_Sum (J𝗄𝖼𝗈𝖽𝑘K).

Definition 20.20 (Sum for PosU)
For a list of maps J𝓊𝑘 ∶ 𝗄𝖽𝗈𝗆𝑘 →PosU 𝗄𝖼𝗈𝖽𝑘K we define the sum as

U1_C_Sum(J𝓊𝑘K) ∶ P_C_Sum (J𝗄𝖽𝗈𝗆𝑘K) →PosU P_C_Sum (J𝗄𝖼𝗈𝖽𝑘K)

⟨𝑘, 𝑓∗⟩ ↦,,,→ 𝓊𝑘(𝑓∗) # ↑ inj𝑘
(25)

where inj𝑘 is the injection from 𝗄𝖼𝗈𝖽𝑘 to P_C_Sum (J𝗄𝖼𝗈𝖽𝑘K).

20.10. Codomain Sum

Definition 20.21 (Codomain sum for PosL)
For a list of maps J𝓁𝑘 ∶ 𝗄𝖽𝗈𝗆 →PosL 𝗄𝖼𝗈𝖽𝑘K with the same domain, the codomain sum of these maps is a map that combines the
codomains of all maps:

L1_C_CodSum(J𝓁𝑘K) ∶ 𝗄𝖽𝗈𝗆 →PosL P_C_Sum (J𝗄𝖼𝗈𝖽𝑘K)

𝑟 ↦,,,→
⋃

𝑘
𝓁𝑘(𝑟) # ↓ inj𝑘

(26)
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where inj𝑘 is the injection from 𝗄𝖼𝗈𝖽𝑘 to P_C_Sum (J𝗄𝖼𝗈𝖽𝑘K).

This construction is described by the schema L1_C_CodSum (Section 26.4.10).

Definition 20.22 (Codomain sum for PosU)
For a list of maps J𝓊𝑘 ∶ 𝗄𝖽𝗈𝗆 →PosU 𝗄𝖼𝗈𝖽𝑘K with the same domain, the codomain sum of these maps is a map that combines the
codomains of all maps:

U1_C_CodSum(J𝓊𝑘K) ∶ 𝗄𝖽𝗈𝗆 →PosU P_C_Sum (J𝗄𝖼𝗈𝖽𝑘K)

𝑓∗ ↦,,,→
⋃

𝑘
𝓊𝑘(𝑓∗) # ↑ inj𝑘

(27)

where inj𝑘 is the injection from 𝗄𝖼𝗈𝖽𝑘 to P_C_Sum (J𝗄𝖼𝗈𝖽𝑘K).

This construction is described by the schema U1_C_CodSum (Section 26.5.10).

20.11. Product of maps

Definition 20.23 (Product for PosL)
For a list of maps J𝓁𝑘 ∶ 𝗄𝖽𝗈𝗆 →PosL 𝗄𝖼𝗈𝖽𝑘K, we define:

L1_C_Product(J𝓁𝑘K) ∶ 𝗄𝖽𝗈𝗆 →PosL P_C_Product (J𝗄𝖼𝗈𝖽𝑘K)

𝑟 ↦,,,→ ⊗𝑘 𝓁𝑘(𝑟)
(28)

where⊗ is set product.

This construction is described by the schema L1_C_Product (Section 26.4.15).

Definition 20.24 (Product for PosU)
For a list of maps J𝓊𝑘 ∶ 𝗄𝖽𝗈𝗆 →PosU 𝗄𝖼𝗈𝖽𝑘K, we define:

U1_C_Product(J𝓊𝑘K) ∶ 𝗄𝖽𝗈𝗆 →PosU P_C_Product (J𝗄𝖼𝗈𝖽𝑘K)

𝑓∗ ↦,,,→ ⊗𝑘 𝓊𝑘(𝑓∗)
(29)

where⊗ is set product.

This construction is described by the schema U1_C_Product (Section 26.5.15).

20.12. Series composition

Definition 20.25 (Binary series composition for PosL)
Given two maps 𝓁1 ∶ 𝗄𝖽𝗈𝗆1 →PosL 𝗄𝖼𝗈𝖽1 and 𝓁2 ∶ 𝗄𝖽𝗈𝗆2 →PosL 𝗄𝖼𝗈𝖽2 where 𝗄𝖼𝗈𝖽1 ⊆ 𝗄𝖽𝗈𝗆2, the series composition is:

(𝓁1 # 𝓁2) ∶ 𝗄𝖽𝗈𝗆1 →PosL 𝗄𝖼𝗈𝖽2

𝑟 ↦,,,→
⋃

𝑦∈𝓁1(𝑟)
𝓁2(𝑦) (30)

This operation is associative and so the 𝑛-ary series composition L1_C_Series(J𝓁𝑘K) is defined for a family of maps 𝓁𝑘 ∶ 𝗄𝖽𝗈𝗆𝑘 →PosL 𝗄𝖼𝗈𝖽𝑘
whenever for 𝑘 = 1,… , 𝑛 − 1, 𝗄𝖼𝗈𝖽𝑘 ⊆ 𝗄𝖽𝗈𝗆𝑘+1.

This construction is described by the schema L1_C_Series (Section 26.4.16).
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Definition 20.26 (Binary series composition for PosU)
Given two maps 𝓊1 ∶ 𝗄𝖽𝗈𝗆1 →PosU 𝗄𝖼𝗈𝖽1 and 𝓊2 ∶ 𝗄𝖽𝗈𝗆2 →PosU 𝗄𝖼𝗈𝖽2 where 𝗄𝖼𝗈𝖽1 ⊆ 𝗄𝖽𝗈𝗆2, the series composition is:

(𝓊1 #𝓊2) ∶ 𝗄𝖽𝗈𝗆1 →PosU 𝗄𝖼𝗈𝖽2

𝑓∗ ↦,,,→
⋃

𝑦∈𝓊1(𝑓∗)
𝓊2(𝑦) (31)

This operation is associative and so the𝑛-ary series compositionU1_C_Series(J𝓊𝑘K) is defined for a family ofmaps𝓊𝑘 ∶ 𝗄𝖽𝗈𝗆𝑘 →PosU 𝗄𝖼𝗈𝖽𝑘
whenever for 𝑘 = 1,… , 𝑛 − 1, 𝗄𝖼𝗈𝖽𝑘 ⊆ 𝗄𝖽𝗈𝗆𝑘+1.

This construction is described by the schema U1_C_Series (Section 26.5.16).

20.13. Union and Intersection of maps

Definition 20.27 (Union for PosL)
For a family of maps J𝓁𝑘 ∶ 𝗄𝖽𝗈𝗆 →PosL 𝗄𝖼𝗈𝖽K, we define:

L1_C_Union(J𝓁𝑘K) ∶ 𝗄𝖽𝗈𝗆 →PosL 𝗄𝖼𝗈𝖽

𝑟 ↦,,,→
⋃

𝑘
𝓁𝑘(𝑟)

(32)

This construction is described by the schema L1_C_Union (Section 26.4.18).

Definition 20.28 (Union for PosU)
For a list of maps J𝓊𝑘 ∶ 𝗄𝖽𝗈𝗆 →PosU 𝗄𝖼𝗈𝖽𝑘K, we define:

U1_C_Union(J𝓊𝑘K) ∶ 𝗄𝖽𝗈𝗆 →PosU 𝗄𝖼𝗈𝖽

𝑓∗ ↦,,,→
⋃

𝑘
𝓊𝑘(𝑓∗)

(33)

This construction is described by the schema U1_C_Union (Section 26.5.18).

Definition 20.29 (Intersection for PosL)
For a list of maps J𝓁𝑘 ∶ 𝗄𝖽𝗈𝗆 →PosL 𝗄𝖼𝗈𝖽𝑘K, we define:

L1_C_Intersection(J𝓁𝑘K) ∶ 𝗄𝖽𝗈𝗆 →PosL 𝗄𝖼𝗈𝖽

𝑟 ↦,,,→
⋂

𝑘
𝓁𝑘(𝑟)

(34)

This construction is described by the schema L1_C_Intersection (Section 26.4.17).

Definition 20.30 (Intersection for PosU)
For a list of maps J𝓊𝑘 ∶ 𝗄𝖽𝗈𝗆 →PosU 𝗄𝖼𝗈𝖽𝑘K, we define:

U1_C_Intersection(J𝓊𝑘K) ∶ 𝗄𝖽𝗈𝗆 →PosU 𝗄𝖼𝗈𝖽

𝑓∗ ↦,,,→
⋂

𝑘
𝓊𝑘(𝑓∗)

(35)

This construction is described by the schema U1_C_Intersection (Section 26.5.17).

20.14. Trace
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Definition 20.31 (L1_C_Trace)
Given a morphism

𝓁0 ∶ P_C_Product(J𝗄𝖽𝗈𝗆1, 𝗄𝖽𝗈𝗆2K) →PosL P_C_Product(J𝗄𝖼𝗈𝖽1, 𝗄𝖼𝗈𝖽2K) (36)
such that 𝗄𝖼𝗈𝖽2 ⊆ 𝗄𝖽𝗈𝗆2 we define the morphism

L1_C_Trace(𝓁0) ∶ 𝗄𝖽𝗈𝗆1 →PosL 𝗄𝖼𝗈𝖽1

𝑟1 ↦,,,→ ↓ {𝑓1 ∈ 𝗄𝖼𝗈𝖽1 such that∃𝑓2 ∈ 𝗄𝖼𝗈𝖽2 ∶ ⟨𝑓1, 𝑓2⟩ ∈ 𝓁0(𝑟1, 𝑓2)}
(37)

This construction is described by the schema L1_C_Trace (Section 26.4.20).

Definition 20.32 (U1_C_Trace)
Given a morphism

𝓊0 ∶ P_C_Product(J𝗄𝖽𝗈𝗆1, 𝗄𝖽𝗈𝗆2K) →PosU P_C_Product(J𝗄𝖼𝗈𝖽1, 𝗄𝖼𝗈𝖽2K) (38)
such that 𝗄𝖼𝗈𝖽2 ⊆ 𝗄𝖽𝗈𝗆2 we define the morphism

U1_C_Trace(𝓊0) ∶ 𝗄𝖽𝗈𝗆1 →PosU 𝗄𝖼𝗈𝖽1

𝑓∗1 ↦,,,→ ↑ {𝑟1 ∈ 𝗄𝖼𝗈𝖽1 such that∃𝑟2 ∈ 𝗄𝖼𝗈𝖽2 ∶ ⟨𝑟1, 𝑟2⟩ ∈ 𝓊0(𝑓∗1 , 𝑟2)}
(39)

This construction is described by the schema U1_C_Trace (Section 26.5.20).
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21. PosLI and PosUI catalog

21.1. Identity

Definition 21.1
Given a poset 𝐏, we define

L_Identity(𝐏) ∶ 𝐏 →PosLI 𝐏 {𝟏}

𝑟 ↦,,,,→ ↓⟨𝑟, ∗⟩
(1)

This construction is described by the schema L_Identity (Section 26.6.2).

Here, 𝟏 is the smash product of 0 posets, ∗ is the unique element of 𝟏.

Definition 21.2
Given a poset 𝐏, we define

U_Identity(𝐏) ∶ 𝐏 →PosUI 𝐏 {𝟏}

𝑓∗ ↦,,,,→ ↑⟨𝑓∗, ∗⟩
(2)

This construction is described by the schema U_Identity (Section 26.7.2).

21.2. Constant maps

Definition 21.3
Given a poset 𝗄𝖽𝗈𝗆, a poset 𝗄𝖼𝗈𝖽, a poset 𝗄𝗂𝗆𝗉 and an antichain 𝐀 of P_C_Lexicographic (J𝗄𝖼𝗈𝖽, 𝗄𝗂𝗆𝗉opK), we define the constant
map

L_Constant(𝗄𝖽𝗈𝗆, 𝗄𝖼𝗈𝖽, 𝗄𝗂𝗆𝗉,𝐀) ∶ 𝗄𝖽𝗈𝗆 →PosLI 𝗄𝖼𝗈𝖽 {𝗄𝗂𝗆𝗉}

𝑟 ↦,,,,→ ↓𝐀
(3)

This construction is described by the schema L_Constant (Section 26.6.1).

Definition 21.4
Given a poset 𝗄𝖽𝗈𝗆, a poset 𝗄𝖼𝗈𝖽, a poset 𝗄𝗂𝗆𝗉 and an antichain 𝐁 of P_C_Lexicographic (J𝗄𝖼𝗈𝖽, 𝗄𝗂𝗆𝗉K), we define the constant map

U_Constant(𝗄𝖽𝗈𝗆, 𝗄𝖼𝗈𝖽, 𝗄𝗂𝗆𝗉, 𝐁) ∶ 𝗄𝖽𝗈𝗆 →PosUI 𝗄𝖼𝗈𝖽 {𝗄𝗂𝗆𝗉}

𝑓∗ ↦,,,,→ ↑𝐁
(4)

This construction is described by the schema U_Constant (Section 26.7.1).

21.3. Catalog maps

Definition 21.5
Given three posets 𝐅,𝐑, 𝐈 and a list of options

J⟨𝑓𝑘 , 𝑟∗𝑘 , 𝑖𝑘⟩K ⊆ P_C_Product(J𝐅, 𝐑op, 𝐈K) (5)
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we define the catalog map
L_Catalog(J⟨𝑓𝑘 , 𝑟∗𝑘 , 𝑖𝑘⟩K) ∶ 𝐑 →PosLI 𝐅 {𝐈}

𝑟 ↦,,,,→ ↓
⋃

𝑖
{{⟨𝑓𝑘 , 𝑖𝑘⟩} if 𝑟∗𝑘 ⪯ 𝑟,
∅ otherwise

(6)

This construction is described by the schema L_Catalog (Section 26.6.4).

Definition 21.6
Given three posets 𝐅,𝐑, 𝐈 and a list of options

J⟨𝑓𝑘 , 𝑟∗𝑘 , 𝑖𝑘⟩K ⊆ P_C_Product(J𝐅, 𝐑op, 𝐈K) (7)

we define the catalog map

U_Catalog(J⟨𝑓𝑘 , 𝑟∗𝑘 , 𝑖𝑘⟩K) ∶ 𝐅 →PosUI 𝐑{𝐈}

𝑓∗ ↦,,,,→ ↑
⋃

𝑖
{{⟨𝑟

∗
𝑘 , 𝑖𝑘⟩} if 𝑓∗ ⪯ 𝑓𝑘 ,

∅ otherwise
(8)

This construction is described by the schema U_Catalog (Section 26.7.4).

21.4. Lifting maps

Definition 21.7
Given a morphism

𝓁∶ 𝗄𝖽𝗈𝗆 →PosL 𝗄𝖼𝗈𝖽 (9)
and a monotone map

tr∶ 𝗄𝖼𝗈𝖽 × 𝗄𝖽𝗈𝗆op →Pos 𝗄𝗂𝗆𝗉 (10)
we construct a new morphism

L_L_Lift1_Transform(𝓁, tr) ∶ 𝗄𝖽𝗈𝗆 →PosLI 𝗄𝖼𝗈𝖽 {𝗄𝗂𝗆𝗉}

𝑟 ↦,,,,→ ↓
⋃

𝑓∈𝓁(𝑟) {⟨𝑓, tr(𝑓, 𝑟)⟩}
(11)

This construction is described by the schema L_L_Lift1_Transform (Section 26.6.14).

Definition 21.8
Given a morphism

𝓊∶ 𝗄𝖽𝗈𝗆 →PosU 𝗄𝖼𝗈𝖽 (12)
and a monotone map

tr∶ P_C_Product (J𝗄𝖼𝗈𝖽, 𝗄𝖽𝗈𝗆opK) →Pos 𝗄𝗂𝗆𝗉 (13)
we construct a new morphism

U_L_Lift1_Transform(𝓊, tr) ∶ 𝗄𝖽𝗈𝗆 →PosUI 𝗄𝖼𝗈𝖽 {𝗄𝗂𝗆𝗉}

𝑓∗ ↦,,,,→ ↑⋃𝑟∈𝓊(𝑓∗) {⟨𝑟, tr(𝑟, 𝑓
∗)⟩}

(14)

This construction is described by the schema U_L_Lift1_Transform (Section 26.7.14).

Definition 21.9
Given a morphism

𝓁∶ 𝗄𝖽𝗈𝗆 →PosL 𝗄𝖼𝗈𝖽, (15)
a poset 𝗄𝗂𝗆𝗉 and a value 𝑖0 ∈ 𝗄𝗂𝗆𝗉we construct a newmorphismL_L_Lift1_Constant(𝓁, 𝗄𝗂𝗆𝗉, 𝑖0) as a particular case of L_L_Lift1_Transform
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where 𝑔 is the constant map 𝑔(𝑦, 𝑥) = 𝑖0.

This construction is described by the schema L_L_Lift1_Constant (Section 26.6.13).

Definition 21.10
Given a morphism

𝓊∶ 𝗄𝖽𝗈𝗆 →PosU 𝗄𝖼𝗈𝖽, (16)
a poset 𝗄𝗂𝗆𝗉 and a value 𝑖0 ∈ 𝗄𝗂𝗆𝗉we construct a newmorphismU_L_Lift1_Constant(𝓊, 𝗄𝗂𝗆𝗉, 𝑖0) as a particular case ofU_L_Lift1_Transform
where 𝑔 is the constant map 𝑔(𝑦, 𝑥) = 𝑖0.

This construction is described by the schema U_L_Lift1_Constant (Section 26.7.13).

21.5. Series composition

Definition 21.11 (Binary series composition)
Given two morphisms

𝓁1 ∶ 𝗄𝖽𝗈𝗆1 →PosLI 𝗄𝖼𝗈𝖽1 {𝗄𝗂𝗆𝗉1} and 𝓁2 ∶ 𝗄𝖽𝗈𝗆2 →PosLI 𝗄𝖼𝗈𝖽2 {𝗄𝗂𝗆𝗉2} (17)
such that 𝗄𝖼𝗈𝖽1 ⊆ 𝗄𝖽𝗈𝗆2, the series composition is the morphism

L_C_Series(J𝓁1, 𝓁2K) ∶ 𝗄𝖽𝗈𝗆1 →PosLI 𝗄𝖼𝗈𝖽2 {P_C_ProductSmash(J𝗄𝗂𝗆𝗉1, 𝗄𝗂𝗆𝗉2K)}

𝑟 ↦,,,,→ ↓
⋃

⟨𝑥1 , 𝑖1⟩∈𝓁1(𝑟)
{⟨𝑥2, [𝑖1 ∣ 𝑖2]⟩ ∣ ⟨𝑥2, 𝑖2⟩ ∈ 𝓁2(𝑥1)}

(18)

This composition is associative, therefore we can define L_C_Series(J𝓁𝑖K) whenever we have a list of morphisms J𝓁𝑖K such that 𝗄𝖼𝗈𝖽𝑖 ⊆
𝗄𝖽𝗈𝗆𝑖+1 for all 𝑖 = 1, … , 𝑛 − 1.

This construction is described by the schema L_C_Series (Section 26.6.6).

We repeat the same construction for the series composition in PosUI.

Definition 21.12 (Binary series composition)
Given two morphisms

𝓊1 ∶ 𝗄𝖽𝗈𝗆1 →PosUI 𝗄𝖼𝗈𝖽1 {𝗄𝗂𝗆𝗉1} and 𝓊2 ∶ 𝗄𝖽𝗈𝗆2 →PosUI 𝗄𝖼𝗈𝖽2 {𝗄𝗂𝗆𝗉2} (19)
such that 𝗄𝖼𝗈𝖽1 ⊆ 𝗄𝖽𝗈𝗆2, the series composition is the morphism

U_C_Series(J𝓊1, 𝓊2K) ∶ 𝗄𝖽𝗈𝗆1 →PosUI 𝗄𝖼𝗈𝖽2 {P_C_ProductSmash(J𝗄𝗂𝗆𝗉1, 𝗄𝗂𝗆𝗉2K)}

𝑓∗ ↦,,,,→ ↑⋃⟨𝑥1 , 𝑖1⟩∈𝓊1(𝑓∗)
{⟨𝑥2, [𝑖1 ∣ 𝑖2]⟩ ∣ ⟨𝑥2, 𝑖2⟩ ∈ 𝓊2(𝑥1)}

(20)

This composition is associative, therefore we can define U_C_Series(J𝓊𝑖K) whenever we have a list of morphisms J𝓊𝑖K such that 𝗄𝖼𝗈𝖽𝑖 ⊆
𝗄𝖽𝗈𝗆𝑖+1 for all 𝑖 = 1, … , 𝑛 − 1.

This construction is described by the schema U_C_Series (Section 26.7.6).

21.6. Parallel composition

Definition 21.13 (Parallel composition in PosLI)
Given a list of 𝑛morphisms J𝓁𝑘 ∶ 𝗄𝖽𝗈𝗆𝑘 →PosLI 𝗄𝖼𝗈𝖽𝑘 {𝗄𝗂𝗆𝗉𝑘} K we define the parallel composition as the morphism

L_C_Parallel(J𝓁𝑘K) ∶ P_C_Product (J𝗄𝖽𝗈𝗆𝑘K) →PosUI P_C_Product (J𝗄𝖽𝗈𝗆𝑘K) {P_C_ProductSmash
(
J𝗄𝗂𝗆𝗉𝑘K

)
}

⟨𝑟1, …, 𝑟𝑛⟩ ↦,,,,→ ↓ ∪⋯
⋃

⟨𝑦𝑘 , 𝑖𝑘 ⟩∈𝓁𝑘 (𝑟𝑘 )
⋯∪

⏟⎴⎴⎴⏟⎴⎴⎴⏟
𝑘=1∶𝑛 times

{⟨⟨𝑦1, …, 𝑦𝑛⟩, [𝑖1 ∣⋯ ∣ 𝑖𝑛]⟩} (21)

This construction is described by the schema L_C_Parallel (Section 26.6.5).
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Definition 21.14 (Parallel composition in PosUI)
Given a list of 𝑛morphisms J𝓊𝑘 ∶ 𝗄𝖽𝗈𝗆𝑘 →PosUI 𝗄𝖼𝗈𝖽𝑘 {𝗄𝗂𝗆𝗉𝑘} K we define the parallel composition as the morphism

U_C_Parallel(J𝓊𝑘K) ∶ P_C_Product (J𝗄𝖽𝗈𝗆𝑘K) →PosUI P_C_Product (J𝗄𝖽𝗈𝗆𝑘K) {P_C_ProductSmash
(
J𝗄𝗂𝗆𝗉𝑘K

)
}

⟨
𝑓∗1 , …, 𝑓∗𝑛

⟩
↦,,,,→ ↑ ∪⋯

⋃

⟨𝑟𝑘 , 𝑖𝑘 ⟩∈𝓊𝑘 (𝑓∗𝑘 )
⋯∪

⏟⎴⎴⎴⏟⎴⎴⎴⏟
𝑘=1∶𝑛 times

{⟨⟨𝑟1, …, 𝑟𝑛⟩, [𝑖1 ∣⋯ ∣ 𝑖𝑛]⟩} (22)

This construction is described by the schema U_C_Parallel (Section 26.7.5).

21.7. Intersection of maps

Definition 21.15 (Intersection of maps)
Given a poset 𝗄𝖽𝗈𝗆, a meet semilattice 𝗄𝖼𝗈𝖽, and a list of 𝑛 morphisms J𝓁𝑘 ∶ 𝗄𝖽𝗈𝗆 →PosLI 𝗄𝖼𝗈𝖽 {𝗄𝗂𝗆𝗉𝑘} K we define the intersection
as the morphism

L_C_Intersection(J𝓁𝑘K) ∶ 𝗄𝖽𝗈𝗆 →PosLI 𝗄𝖼𝗈𝖽 {P_C_ProductSmash
(
J𝗄𝗂𝗆𝗉𝑘K

)
}

⟨𝑟1, …, 𝑟𝑛⟩ ↦,,,,→ ↓ ∪⋯
⋃

⟨𝑦𝑘 , 𝑖𝑘 ⟩∈𝓁𝑘 (𝑟𝑘 )
⋯∪

⏟⎴⎴⎴⏟⎴⎴⎴⏟
𝑘=1∶𝑛 times

{
⟨
∧𝑛𝗄𝖼𝗈𝖽(𝑦1, …, 𝑦𝑛), [𝑖1 ∣⋯ ∣ 𝑖𝑛]

⟩
} (23)

where ∧𝑛𝗄𝖼𝗈𝖽 is the meet of 𝑛 elements in 𝗄𝖼𝗈𝖽.

This construction is described by the schema L_C_Intersection (Section 26.6.7).

Definition 21.16 (Intersection of maps)
Given a poset 𝗄𝖽𝗈𝗆, a join semilattice 𝗄𝖼𝗈𝖽, and a list of 𝑛 morphisms J𝓊𝑘 ∶ 𝗄𝖽𝗈𝗆 →PosUI 𝗄𝖼𝗈𝖽 {𝗄𝗂𝗆𝗉𝑘} K we define the intersection
as the morphism

U_C_Intersection(J𝓊𝑘K) ∶ 𝗄𝖽𝗈𝗆 →PosUI 𝗄𝖼𝗈𝖽 {P_C_ProductSmash
(
J𝗄𝗂𝗆𝗉𝑘K

)
}

⟨
𝑓∗1 , …, 𝑓∗𝑛

⟩
↦,,,,→ ↑ ∪⋯

⋃

⟨𝑟𝑘 , 𝑖𝑘 ⟩∈𝓊𝑘 (𝑓∗𝑘 )
⋯∪

⏟⎴⎴⎴⏟⎴⎴⎴⏟
𝑘=1∶𝑛 times

{
⟨
∨𝑛𝗄𝖼𝗈𝖽(𝑟1, …, 𝑟𝑛), [𝑖1 ∣⋯ ∣ 𝑖𝑛]

⟩
} (24)

where ∨𝑛𝗄𝖼𝗈𝖽 is the join of 𝑛 elements in 𝗄𝖼𝗈𝖽.

This construction is described by the schema U_C_Intersection (Section 26.7.7).

21.8. Union of maps

Definition 21.17 (Union of maps)
Given a poset 𝗄𝖽𝗈𝗆, a meet semilattice 𝗄𝖼𝗈𝖽, and a list of 𝑛 morphisms J𝓁𝑘 ∶ 𝗄𝖽𝗈𝗆 →PosLI 𝗄𝖼𝗈𝖽 {𝗄𝗂𝗆𝗉𝑘} K we define the union as the
morphism

L_C_Union(J𝓁𝑘K) ∶ 𝗄𝖽𝗈𝗆 →PosLI 𝗄𝖼𝗈𝖽 {P_C_SumSmash
(
J𝗄𝗂𝗆𝗉𝑘K

)
}

⟨𝑟1, …, 𝑟𝑛⟩ ↦,,,,→ ↓
⋃

𝑘

⋃

⟨𝑦, 𝑖⟩∈𝓁𝑘 (𝑟𝑘 )

⟨
𝑦, inj𝑘(𝑖)

⟩ (25)

where inj𝑘 is the injection from 𝗄𝗂𝗆𝗉𝑘 to P_C_SumSmash
(
J𝗄𝗂𝗆𝗉𝑘K

)
.

This construction is described by the schema L_C_Union (Section 26.6.8).
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Definition 21.18 (Union of maps)
Given a poset 𝗄𝖽𝗈𝗆, a join semilattice 𝗄𝖼𝗈𝖽, and a list of 𝑛morphisms J𝓊𝑘 ∶ 𝗄𝖽𝗈𝗆 →PosUI 𝗄𝖼𝗈𝖽 {𝗄𝗂𝗆𝗉𝑘} K we define the morphism

U_C_Union(J𝓊𝑘K) ∶ 𝗄𝖽𝗈𝗆 →PosUI 𝗄𝖼𝗈𝖽 {P_C_SumSmash
(
J𝗄𝗂𝗆𝗉𝑘K

)
}

⟨
𝑓∗1 , …, 𝑓∗𝑛

⟩
↦,,,,→ ↑

⋃

𝑘

⋃

⟨𝑟, 𝑖⟩∈𝓊𝑘 (𝑓∗)

⟨
𝑟, inj𝑘(𝑖)

⟩ (26)

where inj𝑘 is the injection from 𝗄𝗂𝗆𝗉𝑘 to P_C_SumSmash
(
J𝗄𝗂𝗆𝗉𝑘K

)
.

This construction is described by the schema U_C_Union (Section 26.7.8).

21.9. Transforming maps

Definition 21.19
Given a morphism

𝓁0 ∶ 𝗄𝖽𝗈𝗆 →PosLI 𝗄𝖼𝗈𝖽 {𝗄𝗂𝗆𝗉} (27)
and a monotone map

𝑔∶ 𝗄𝗂𝗆𝗉 →Pos 𝗄𝗂𝗆𝗉′ (28)
we construct a new morphism

L_C_ITransform(𝓁0, 𝑔) ∶ 𝗄𝖽𝗈𝗆 →PosLI 𝗄𝖼𝗈𝖽 {𝗄𝗂𝗆𝗉′}

𝑟 ↦,,,,→ ↓
⋃

⟨𝑓, 𝑖⟩∈𝓁0(𝑟)
{⟨𝑓, 𝑔(𝑖)⟩} (29)

This construction is described by the schema L_C_ITransform (Section 26.6.9).

Definition 21.20
Given a morphism

𝓊0 ∶ 𝗄𝖽𝗈𝗆 →PosUI 𝗄𝖼𝗈𝖽 {𝗄𝗂𝗆𝗉} (30)
and a monotone map

𝑔∶ 𝗄𝗂𝗆𝗉 →Pos 𝗄𝗂𝗆𝗉′ (31)
we construct a new morphism

U_C_ITransform(𝓊0, 𝑔) ∶ 𝗄𝖽𝗈𝗆 →PosUI 𝗄𝖼𝗈𝖽 {𝗄𝗂𝗆𝗉′}

𝑓∗ ↦,,,,→ ↑
⋃

⟨𝑟, 𝑖⟩∈𝓊0(𝑓∗)
{⟨𝑟, 𝑔(𝑖)⟩} (32)

This construction is described by the schema U_C_ITransform (Section 26.7.9).

21.10. Trace

Definition 21.21
Given a morphism

𝓁0 ∶ P_C_Product(J𝗄𝖽𝗈𝗆1, 𝗄𝖽𝗈𝗆2K) →PosLI P_C_Product(J𝗄𝖼𝗈𝖽1, 𝗄𝖼𝗈𝖽2K) {𝗄𝗂𝗆𝗉} (33)
such that 𝗄𝖼𝗈𝖽2 ⊆ 𝗄𝖽𝗈𝗆2 we define the morphism

L_C_Trace(𝓁0) ∶ 𝗄𝖽𝗈𝗆1 →PosLI 𝗄𝖼𝗈𝖽1 {𝗄𝗂𝗆𝗉}

𝑟1 ↦,,,,→ ↓ {⟨𝑓1, 𝑖⟩ such that∃𝑓2 ∈ 𝗄𝖼𝗈𝖽2 ∶ ⟨⟨𝑓1, 𝑓2⟩, 𝑖⟩ ∈ 𝓁0(𝑟1, 𝑓2)}
(34)

This construction is described by the schema L_C_Trace (Section 26.6.11).
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Definition 21.22
Given a morphism

𝓊0 ∶ P_C_Product(J𝗄𝖽𝗈𝗆1, 𝗄𝖽𝗈𝗆2K) →PosUI P_C_Product(J𝗄𝖼𝗈𝖽1, 𝗄𝖼𝗈𝖽2K) {𝗄𝗂𝗆𝗉} (35)
such that 𝗄𝖼𝗈𝖽2 ⊆ 𝗄𝖽𝗈𝗆2 we define the morphism

U_C_Trace(𝓊0) ∶ 𝗄𝖽𝗈𝗆1 →PosUI 𝗄𝖼𝗈𝖽1 {𝗄𝗂𝗆𝗉}

𝑓∗1 ↦,,,,→ ↑ {⟨𝑟1, 𝑖⟩ such that∃𝑟2 ∈ 𝗄𝖼𝗈𝖽2 ∶ ⟨⟨𝑟1, 𝑟2⟩, 𝑖⟩ ∈ 𝓊0(𝑓∗1 , 𝑟2)}
(36)

This construction is described by the schema U_C_Trace (Section 26.7.11).
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22. SPosL and SPosU catalog

22.1. Identities

The identity morphism for SPosL can be defined as

SL1_Identity(𝐏) ≐ SL1_Exact (L1_Identity(𝐏)) (1)

This construction is described by the schema SL1_Identity (Section 26.8.3).

Likewise the identity morphism for SPosU can be defined as

SU1_Identity(𝐏) ≐ SU1_Exact (U1_Identity(𝐏)) (2)

This construction is described by the schema SU1_Identity (Section 26.9.3).

22.2. Lifting

Definition 22.1 (Lift of a PosL to a SPosL)
Given a PosL morphism

𝓁∶ 𝗄𝖽𝗈𝗆 →PosLI 𝗄𝖼𝗈𝖽, (3)
we can lift it as a morphism of SPosL

SL1_Exact(𝓁)∶ {𝖲} 𝗄𝖽𝗈𝗆 →SPosL 𝗄𝖼𝗈𝖽 (4)
by setting

𝖲⌣ = 𝖲⌢ = 𝟏 (5)
and

𝗌𝗅⌣ ∶ ∗ ↦ 𝓁 (6)
𝗌𝗅⌢ ∶ ∗ ↦ 𝓁 (7)

This construction is described by the schema SL1_Exact (Section 26.8.14).

Definition 22.2 (Lift of a PosU to a SPosU)
Given a PosUmorphism

𝓊∶ 𝗄𝖽𝗈𝗆 →PosUI 𝗄𝖼𝗈𝖽, (8)
we can lift it as a morphism of SPosU

SU1_Exact(𝓊)∶ {𝖲} 𝗄𝖽𝗈𝗆 →SPosU 𝗄𝖼𝗈𝖽 (9)
by setting

𝖲⌣ = 𝖲⌢ = 𝟏 (10)
and

𝗌𝗎⌣ ∶ ∗ ↦ 𝓊 (11)
𝗌𝗎⌢ ∶ ∗ ↦ 𝓊 (12)

This construction is described by the schema SU1_Exact (Section 26.9.14).
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22.3. Parallel composition

Definition 22.3
Given a list of 𝑛morphisms

J𝗌𝗅𝑘 ∶ {𝖲𝑘} 𝗄𝖽𝗈𝗆𝑘 →SPosL 𝗄𝖼𝗈𝖽𝑘K (13)
the parallel composition is

SL1_C_Parallel(J𝗌𝗅𝑘K)∶ {𝖲} P_C_Product (J𝗄𝖽𝗈𝗆𝑘K) →SPosL P_C_Product (J𝗄𝖼𝗈𝖽𝑘K) (14)

with

𝖲⌣ = P_C_ProductSmash
(
J𝖲⌣

𝑘K
)

𝖲⌢ = P_C_ProductSmash
(
J𝖲⌢

𝑘K
)

(15)

given by

𝗌𝗅⌣ ∶ [𝑜1 ∣⋯ ∣ 𝑜𝑛] ↦ L1_C_Parallel(J𝗌𝗅⌣𝑘 (𝑜𝑘)K) (16)
𝗌𝗅⌢ ∶ [𝑝1 ∣⋯ ∣ 𝑝𝑛] ↦ L1_C_Parallel(J𝗌𝗅⌢𝑘 (𝑝𝑘)K) (17)

This construction is described by the schema SL1_C_Parallel (Section 26.8.1).

Definition 22.4
Given a list of 𝑛morphisms

J𝗌𝗎𝑘 ∶ {𝖲𝑘} 𝗄𝖽𝗈𝗆𝑘 →SPosU 𝗄𝖼𝗈𝖽𝑘K (18)
the parallel composition is

SU1_C_Parallel(J𝗌𝗎𝑘K)∶ {𝖲} P_C_Product (J𝗄𝖽𝗈𝗆𝑘K) →SPosU P_C_Product (J𝗄𝖼𝗈𝖽𝑘K) (19)

with

𝖲⌣ = P_C_ProductSmash
(
J𝖲⌣

𝑘K
)

𝖲⌢ = P_C_ProductSmash
(
J𝖲⌢

𝑘K
)

(20)

given by

𝗌𝗎⌣ ∶ [𝑜1 ∣⋯ ∣ 𝑜𝑛] ↦ U1_C_Parallel(J𝗌𝗎⌣

𝑘 (𝑜𝑘)K) (21)
𝗌𝗎⌢ ∶ [𝑝1 ∣⋯ ∣ 𝑝𝑛] ↦ U1_C_Parallel(J𝗌𝗎⌢

𝑘 (𝑝𝑘)K) (22)

This construction is described by the schema SU1_C_Parallel (Section 26.9.1).

22.4. Series composition

Definition 22.5
Given a list of 𝑛morphisms

J𝗌𝗅𝑘 ∶ {𝖲𝑘} 𝗄𝖽𝗈𝗆𝑘 →SPosL 𝗄𝖼𝗈𝖽𝑘K (23)
such that for all 𝑘 = 1,… , 𝑛 − 1, we have 𝗄𝖼𝗈𝖽𝑘 ⊆ 𝗄𝖽𝗈𝗆𝑘+1, the series composition is

SL1_C_Series(J𝗌𝗅𝑘K)∶ {𝖲} 𝗄𝖽𝗈𝗆1 →SPosL 𝗄𝖼𝗈𝖽𝑛 (24)

with

𝖲⌣ = P_C_ProductSmash
(
J𝖲⌣

𝑘K
)

𝖲⌢ = P_C_ProductSmash
(
J𝖲⌢

𝑘K
)

(25)

given by

𝗌𝗅⌣ ∶ [𝑜1 ∣⋯ ∣ 𝑜𝑛] ↦ L1_C_Series(J𝗌𝗅⌣𝑘 (𝑜𝑘)K) (26)
𝗌𝗅⌢ ∶ [𝑝1 ∣⋯ ∣ 𝑝𝑛] ↦ L1_C_Series(J𝗌𝗅⌢𝑘 (𝑝𝑘)K) (27)

This construction is described by the schema SL1_C_Series (Section 26.8.2).
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Definition 22.6
Given a list of 𝑛morphisms

J𝗌𝗎𝑘 ∶ {𝖲𝑘} 𝗄𝖽𝗈𝗆𝑘 →SPosU 𝗄𝖼𝗈𝖽𝑘K (28)
the series composition is

SU1_C_Series(J𝗌𝗎𝑘K)∶ {𝖲} 𝗄𝖽𝗈𝗆 →SPosU 𝗄𝖼𝗈𝖽 (29)
with

𝖲⌣ = P_C_ProductSmash
(
J𝖲⌣

𝑘K
)

𝖲⌢ = P_C_ProductSmash
(
J𝖲⌢

𝑘K
)

(30)

given by

𝗌𝗎⌣ ∶ [𝑜1 ∣⋯ ∣ 𝑜𝑛] ↦ U1_C_Series(J𝗌𝗎⌣

𝑘 (𝑜𝑘)K) (31)
𝗌𝗎⌢ ∶ [𝑝1 ∣⋯ ∣ 𝑝𝑛] ↦ U1_C_Series(J𝗌𝗎⌢

𝑘 (𝑝𝑘)K) (32)

This construction is described by the schema SU1_C_Series (Section 26.9.2).

22.5. Union

Definition 22.7
Given two posets 𝗄𝖽𝗈𝗆 and 𝗄𝖼𝗈𝖽 and a list of maps

J𝗌𝗅𝑘 ∶ {𝖲𝑘} 𝗄𝖽𝗈𝗆 →SPosL 𝗄𝖼𝗈𝖽K (33)

the union composition is
SL1_C_Union(J𝗌𝗅𝑘K)∶ {𝖲} 𝗄𝖽𝗈𝗆 →SPosL 𝗄𝖼𝗈𝖽 (34)

with

𝖲⌣ = P_C_ProductSmash
(
J𝖲⌣

𝑘K
)

𝖲⌢ = P_C_ProductSmash
(
J𝖲⌢

𝑘K
)

(35)

given by

𝗌𝗅⌣ ∶ [𝑜1 ∣⋯ ∣ 𝑜𝑛] ↦ L1_C_Union(J𝗌𝗅⌣𝑘 (𝑜𝑘)K) (36)
𝗌𝗅⌢ ∶ [𝑝1 ∣⋯ ∣ 𝑝𝑛] ↦ L1_C_Union(J𝗌𝗅⌢𝑘 (𝑝𝑘)K) (37)

This construction is described by the schema SL1_C_Union (Section 26.8.10).

Definition 22.8
Given two posets 𝗄𝖽𝗈𝗆 and 𝗄𝖼𝗈𝖽 and a list of maps

J𝗌𝗎𝑘 ∶ {𝖲𝑘} 𝗄𝖽𝗈𝗆 →SPosU 𝗄𝖼𝗈𝖽K (38)

the union composition is the morphism

SU1_C_Union(J𝗌𝗎𝑘K)∶ {𝖲} 𝗄𝖽𝗈𝗆 →SPosU 𝗄𝖼𝗈𝖽 (39)

with

𝖲⌣ = P_C_ProductSmash
(
J𝖲⌣

𝑘K
)

𝖲⌢ = P_C_ProductSmash
(
J𝖲⌢

𝑘K
)

(40)

given by

𝗌𝗎⌣ ∶ [𝑜1 ∣⋯ ∣ 𝑜𝑛] ↦ U1_C_Union(J𝗌𝗎⌣

𝑘 (𝑜𝑘)K) (41)
𝗌𝗎⌢ ∶ [𝑝1 ∣⋯ ∣ 𝑝𝑛] ↦ U1_C_Union(J𝗌𝗎⌢

𝑘 (𝑝𝑘)K) (42)

This construction is described by the schema SU1_C_Union (Section 26.9.10).
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22.6. Intersection

Definition 22.9
Given two posets 𝗄𝖽𝗈𝗆 and 𝗄𝖼𝗈𝖽 and a list of 𝑛morphisms

J𝗌𝗅𝑘 ∶ {𝖲𝑘} 𝗄𝖽𝗈𝗆 →SPosL 𝗄𝖼𝗈𝖽K (43)

the intersection composition is
SL1_C_Intersection(J𝗌𝗅𝑘K)∶ {𝖲} 𝗄𝖽𝗈𝗆 →SPosL 𝗄𝖼𝗈𝖽 (44)

with

𝖲⌣ = P_C_ProductSmash
(
J𝖲⌣

𝑘K
)

𝖲⌢ = P_C_ProductSmash
(
J𝖲⌢

𝑘K
)

(45)

given by

𝗌𝗅⌣ ∶ [𝑜1 ∣⋯ ∣ 𝑜𝑛] ↦ L1_C_Intersection(J𝗌𝗅⌣𝑘 (𝑜𝑘)K) (46)
𝗌𝗅⌢ ∶ [𝑝1 ∣⋯ ∣ 𝑝𝑛] ↦ L1_C_Intersection(J𝗌𝗅⌢𝑘 (𝑝𝑘)K) (47)

This construction is described by the schema SL1_C_Intersection (Section 26.8.9).

Definition 22.10
Given two posets 𝗄𝖽𝗈𝗆 and 𝗄𝖼𝗈𝖽 and a list of 𝑛morphisms

J𝗌𝗎𝑘 ∶ {𝖲𝑘} 𝗄𝖽𝗈𝗆 →SPosU 𝗄𝖼𝗈𝖽K (48)

the intersection composition is
SU1_C_Intersection(J𝗌𝗎𝑘K)∶ {𝖲} 𝗄𝖽𝗈𝗆 →SPosU 𝗄𝖼𝗈𝖽 (49)

with

𝖲⌣ = P_C_ProductSmash
(
J𝖲⌣

𝑘K
)

𝖲⌢ = P_C_ProductSmash
(
J𝖲⌢

𝑘K
)

(50)

given by

𝗌𝗎⌣ ∶ [𝑜1 ∣⋯ ∣ 𝑜𝑛] ↦ U1_C_Intersection(J𝗌𝗎⌣

𝑘 (𝑜𝑘)K) (51)
𝗌𝗎⌢ ∶ [𝑝1 ∣⋯ ∣ 𝑝𝑛] ↦ U1_C_Intersection(J𝗌𝗎⌢

𝑘 (𝑝𝑘)K) (52)

This construction is described by the schema SU1_C_Intersection (Section 26.9.9).

22.7. Trace

Definition 22.11
Given a morphism

𝗌𝗅0 ∶ {𝖲} P_C_Product(J𝗄𝖽𝗈𝗆1, 𝗄𝖽𝗈𝗆2K) →SPosL P_C_Product(J𝗄𝖼𝗈𝖽1, 𝗄𝖼𝗈𝖽2K) (53)
such that 𝗄𝖼𝗈𝖽2 ⊆ 𝗄𝖽𝗈𝗆2 we define the morphism

SL1_C_Trace(𝗌𝗅)∶ {𝖲} 𝗄𝖽𝗈𝗆1 →SPosL 𝗄𝖼𝗈𝖽1 (54)

given by

𝗌𝗅⌣ ∶ 𝑜 ↦ L1_C_Trace(𝗌𝗅⌣0 (𝑜)) (55)
𝗌𝗅⌢ ∶ 𝑝 ↦ L1_C_Trace(𝗌𝗅⌢0 (𝑝)) (56)

This construction is described by the schema SL1_C_Trace (Section 26.8.12).

Definition 22.12
Given a morphism

𝗌𝗎0 ∶ {𝖲} P_C_Product(J𝗄𝖽𝗈𝗆1, 𝗄𝖽𝗈𝗆2K) →SPosU P_C_Product(J𝗄𝖼𝗈𝖽1, 𝗄𝖼𝗈𝖽2K) (57)
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such that 𝗄𝖼𝗈𝖽2 ⊆ 𝗄𝖽𝗈𝗆2 we define the morphism

SU1_C_Trace(𝗌𝗎)∶ {𝖲} 𝗄𝖽𝗈𝗆1 →SPosU 𝗄𝖼𝗈𝖽1 (58)

given by

𝗌𝗎⌣ ∶ 𝑜 ↦ U1_C_Trace(𝗌𝗎⌣

0 (𝑜)) (59)
𝗌𝗎⌢ ∶ 𝑝 ↦ U1_C_Trace(𝗌𝗎⌢

0 (𝑝)) (60)

This construction is described by the schema SU1_C_Trace (Section 26.9.12).

22.8. Product

Definition 22.13
Given a list of 𝑛morphisms

J𝗌𝗅𝑘 ∶ {𝖲𝑘} 𝗄𝖽𝗈𝗆 →SPosL 𝗄𝖼𝗈𝖽𝑘K (61)
the parallel composition is

SL1_C_Product(J𝗌𝗅𝑘K)∶ {𝖲} 𝗄𝖽𝗈𝗆 →SPosL P_C_Product (J𝗄𝖼𝗈𝖽𝑘K) (62)
with

𝖲⌣ = P_C_ProductSmash
(
J𝖲⌣

𝑘K
)

𝖲⌢ = P_C_ProductSmash
(
J𝖲⌢

𝑘K
)

(63)

given by

𝗌𝗅⌣ ∶ [𝑜1 ∣⋯ ∣ 𝑜𝑛] ↦ L1_C_Product(J𝗌𝗅⌣𝑘 (𝑜𝑘)K) (64)
𝗌𝗅⌢ ∶ [𝑝1 ∣⋯ ∣ 𝑝𝑛] ↦ L1_C_Product(J𝗌𝗅⌢𝑘 (𝑝𝑘)K) (65)

This construction is described by the schema SL1_C_Product (Section 26.8.8).

Definition 22.14
Given a list of 𝑛morphisms

J𝗌𝗎𝑘 ∶ {𝖲𝑘} 𝗄𝖽𝗈𝗆 →SPosU 𝗄𝖼𝗈𝖽𝑘K (66)
the parallel composition is

SU1_C_Product(J𝗌𝗎𝑘K)∶ {𝖲} 𝗄𝖽𝗈𝗆 →SPosU P_C_Product (J𝗄𝖼𝗈𝖽𝑘K) (67)
with

𝖲⌣ = P_C_ProductSmash
(
J𝖲⌣

𝑘K
)

𝖲⌢ = P_C_ProductSmash
(
J𝖲⌢

𝑘K
)

(68)

given by

𝗌𝗎⌣ ∶ [𝑜1 ∣⋯ ∣ 𝑜𝑛] ↦ U1_C_Product(J𝗌𝗎⌣

𝑘 (𝑜𝑘)K) (69)
𝗌𝗎⌢ ∶ [𝑝1 ∣⋯ ∣ 𝑝𝑛] ↦ U1_C_Product(J𝗌𝗎⌢

𝑘 (𝑝𝑘)K) (70)

This construction is described by the schema SU1_C_Product (Section 26.9.8).

22.9. Sum

Definition 22.15
Given a list of 𝑛morphisms

J𝗌𝗅𝑘 ∶ {𝖲𝑘} 𝗄𝖽𝗈𝗆 →SPosL 𝗄𝖼𝗈𝖽𝑘K (71)
the parallel composition is

SL1_C_CodSum(J𝗌𝗅𝑘K)∶ {𝖲} 𝗄𝖽𝗈𝗆 →SPosL P_C_Sum (J𝗄𝖼𝗈𝖽𝑘K) (72)
with

𝖲⌣ = P_C_ProductSmash
(
J𝖲⌣

𝑘K
)

𝖲⌢ = P_C_ProductSmash
(
J𝖲⌢

𝑘K
)

(73)
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given by

𝗌𝗅⌣ ∶ [𝑜1 ∣⋯ ∣ 𝑜𝑛] ↦ L1_C_CodSum(J𝗌𝗅⌣𝑘 (𝑜𝑘)K) (74)
𝗌𝗅⌢ ∶ [𝑝1 ∣⋯ ∣ 𝑝𝑛] ↦ L1_C_CodSum(J𝗌𝗅⌢𝑘 (𝑝𝑘)K) (75)

This construction is described by the schema SL1_C_CodSum (Section 26.8.5).

Definition 22.16
Given a list of 𝑛morphisms

J𝗌𝗎𝑘 ∶ {𝖲𝑘} 𝗄𝖽𝗈𝗆 →SPosU 𝗄𝖼𝗈𝖽𝑘K (76)
the parallel composition is

SU1_C_CodSum(J𝗌𝗎𝑘K)∶ {𝖲} 𝗄𝖽𝗈𝗆 →SPosU P_C_Sum (J𝗄𝖼𝗈𝖽𝑘K) (77)
with

𝖲⌣ = P_C_ProductSmash
(
J𝖲⌣

𝑘K
)

𝖲⌢ = P_C_ProductSmash
(
J𝖲⌢

𝑘K
)

(78)

given by

𝗌𝗎⌣ ∶ [𝑜1 ∣⋯ ∣ 𝑜𝑛] ↦ U1_C_CodSum(J𝗌𝗎⌣

𝑘 (𝑜𝑘)K) (79)
𝗌𝗎⌢ ∶ [𝑝1 ∣⋯ ∣ 𝑝𝑛] ↦ U1_C_CodSum(J𝗌𝗎⌢

𝑘 (𝑝𝑘)K) (80)

This construction is described by the schema SU1_C_CodSum (Section 26.9.5).

Definition 22.17
Given a list of 𝑛morphisms

J𝗌𝗅𝑘 ∶ {𝖲𝑘} 𝗄𝖽𝗈𝗆 →SPosL 𝗄𝖼𝗈𝖽𝑘K (81)
the parallel composition is

SL1_C_CodSumSmash(J𝗌𝗅𝑘K)∶ {𝖲} 𝗄𝖽𝗈𝗆 →SPosL P_C_Sum (J𝗄𝖼𝗈𝖽𝑘K) (82)

with

𝖲⌣ = P_C_ProductSmash
(
J𝖲⌣

𝑘K
)

𝖲⌢ = P_C_ProductSmash
(
J𝖲⌢

𝑘K
)

(83)

given by

𝗌𝗅⌣ ∶ [𝑜1 ∣⋯ ∣ 𝑜𝑛] ↦ L1_C_CodSumSmash(J𝗌𝗅⌣𝑘 (𝑜𝑘)K) (84)
𝗌𝗅⌢ ∶ [𝑝1 ∣⋯ ∣ 𝑝𝑛] ↦ L1_C_CodSumSmash(J𝗌𝗅⌢𝑘 (𝑝𝑘)K) (85)

This construction is described by the schema SL1_C_CodSumSmash (Section 26.8.6).

Definition 22.18
Given a list of 𝑛morphisms

J𝗌𝗎𝑘 ∶ {𝖲𝑘} 𝗄𝖽𝗈𝗆 →SPosU 𝗄𝖼𝗈𝖽𝑘K (86)
the parallel composition is

SU1_C_CodSumSmash(J𝗌𝗎𝑘K)∶ {𝖲} 𝗄𝖽𝗈𝗆 →SPosU P_C_Sum (J𝗄𝖼𝗈𝖽𝑘K) (87)

with

𝖲⌣ = P_C_ProductSmash
(
J𝖲⌣

𝑘K
)

𝖲⌢ = P_C_ProductSmash
(
J𝖲⌢

𝑘K
)

(88)

given by

𝗌𝗎⌣ ∶ [𝑜1 ∣⋯ ∣ 𝑜𝑛] ↦ U1_C_CodSumSmash(J𝗌𝗎⌣

𝑘 (𝑜𝑘)K) (89)
𝗌𝗎⌢ ∶ [𝑝1 ∣⋯ ∣ 𝑝𝑛] ↦ U1_C_CodSumSmash(J𝗌𝗎⌢

𝑘 (𝑝𝑘)K) (90)
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This construction is described by the schema SU1_C_CodSumSmash (Section 26.9.6).

22.10. Product intersection

Definition 22.19
Given a list of 𝑛morphisms

J𝗌𝗅𝑘 ∶ {𝖲𝑘} 𝗄𝖽𝗈𝗆 →SPosL 𝗄𝖼𝗈𝖽K (91)
the parallel composition is

SL1_C_ProdIntersection(J𝗌𝗅𝑘K)∶ {𝖲} 𝗄𝖽𝗈𝗆 →SPosL 𝗄𝖼𝗈𝖽 (92)
with

𝖲⌣ = P_C_ProductSmash
(
J𝖲⌣

𝑘K
)

𝖲⌢ = P_C_ProductSmash
(
J𝖲⌢

𝑘K
)

(93)

given by

𝗌𝗅⌣ ∶ [𝑜1 ∣⋯ ∣ 𝑜𝑛] ↦ L1_C_Intersection(J𝗌𝗅⌣𝑘 (𝑜𝑘)K) (94)
𝗌𝗅⌢ ∶ [𝑝1 ∣⋯ ∣ 𝑝𝑛] ↦ L1_C_Intersection(J𝗌𝗅⌢𝑘 (𝑝𝑘)K) (95)

This construction is described by the schema SL1_C_ProdIntersection (Section 26.8.7).

Definition 22.20
Given a list of 𝑛morphisms

J𝗌𝗎𝑘 ∶ {𝖲𝑘} 𝗄𝖽𝗈𝗆 →SPosU 𝗄𝖼𝗈𝖽𝑘K (96)
the parallel composition is

SU1_C_ProdIntersection(J𝗌𝗎𝑘K)∶ {𝖲} 𝗄𝖽𝗈𝗆 →SPosU 𝗄𝖼𝗈𝖽 (97)
with

𝖲⌣ = P_C_ProductSmash
(
J𝖲⌣

𝑘K
)

𝖲⌢ = P_C_ProductSmash
(
J𝖲⌢

𝑘K
)

(98)

given by

𝗌𝗎⌣ ∶ [𝑜1 ∣⋯ ∣ 𝑜𝑛] ↦ U1_C_Intersection(J𝗌𝗎⌣

𝑘 (𝑜𝑘)K) (99)
𝗌𝗎⌢ ∶ [𝑝1 ∣⋯ ∣ 𝑝𝑛] ↦ U1_C_Intersection(J𝗌𝗎⌢

𝑘 (𝑝𝑘)K) (100)

This construction is described by the schema SU1_C_ProdIntersection (Section 26.9.7).

22.11. Scalable inverse of sum and multiplication operations

These maps are wrappers around the maps defined in Section 20.6.

Definition 22.21
The map

SU1_InvSum(𝐏, 𝑛)∶ {ℕ} 𝐏 →SPosU 𝐏𝑛 (101)
is given by the two maps

𝗌𝗎⌣ ∶ 𝑟 ↦ U1_InvSum_Opt(𝐏, 𝑛, 𝑟) (102)
𝗌𝗎⌢ ∶ 𝑟 ↦ U1_InvSum_Pes(𝐏, 𝑛, 𝑟) (103)

This construction is described by the schema SU1_InvSum (Section 26.9.16).
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Definition 22.22
The map

SL1_InvSum(𝐏, 𝑛)∶ {ℕ} 𝐏 →SPosL 𝐏𝑛 (104)
is given by the two maps

𝗌𝗅⌣ ∶ 𝑟 ↦ SL1_InvSum_Opt(𝐏, 𝑛, 𝑟) (105)
𝗌𝗅⌢ ∶ 𝑟 ↦ SL1_InvSum_Pes(𝐏, 𝑛, 𝑟) (106)

This construction is described by the schema SL1_InvSum (Section 26.8.16).

Lemma 22.23. We have constructed these maps so that they can be used to approximate in a resolution-complete way the queries induced
by the lifted versions of add.

SU1_InvSum(𝐏, 𝑛) ∈ 𝖥𝖱⋆

𝖿 (DP_LiftL add
𝑛) (107)

SL1_InvSum(𝐏, 𝑛) ∈ 𝖱𝖥⋆

𝖿 (DP_LiftU add𝑛) (108)

Definition 22.24
The map

SU1_InvMultiply(𝐏, 𝑛)∶ {ℕ} 𝐏 →SPosU 𝐏𝑛 (109)
is given by the two maps

𝗌𝗎⌣ ∶ 𝑟 ↦ U1_InvMul_Opt(𝐏, 𝑛, 𝑟) (110)
𝗌𝗎⌢ ∶ 𝑟 ↦ U1_InvMul_Pes(𝐏, 𝑛, 𝑟) (111)

This construction is described by the schema SU1_InvMultiply (Section 26.9.15).

Definition 22.25
The map

SL1_InvMultiply(𝐏, 𝑛)∶ {ℕ} 𝐏 →SPosL 𝐏𝑛 (112)
is given by the two maps

𝗌𝗅⌣ ∶ 𝑟 ↦ L1_InvMul_Opt(𝐏, 𝑛, 𝑟) (113)
𝗌𝗅⌢ ∶ 𝑟 ↦ L1_InvMul_Pes(𝐏, 𝑛, 𝑟) (114)

This construction is described by the schema SL1_InvMultiply (Section 26.8.15).

Lemma 22.26.
SU1_InvMultiply(𝐏, 𝑛) ∈ 𝖥𝖱⋆

𝖿 (DP_LiftLmul
𝑛) (115)

SL1_InvMultiply(𝐏, 𝑛) ∈ 𝖱𝖥⋆

𝖿 (DP_LiftUmul𝑛) (116)

22.12. Explicit approximation

Definition 22.27 (Constructing multi-resolution SPosL)
Fixed a poset 𝗄𝖽𝗈𝗆 and a poset 𝗄𝖼𝗈𝖽, and given
• A chain of𝑚morphisms J𝗌𝗅⌢𝑘 K in PosLI(𝗄𝖽𝗈𝗆, 𝗄𝖼𝗈𝖽)

• A chain of 𝑛morphisms J𝗌𝗅⌣𝑘 K in PosLI(𝗄𝖽𝗈𝗆, 𝗄𝖼𝗈𝖽)op

we define the morphism
SL1_C_ExplicitApprox(J𝗌𝗅⌢𝑘 K, J𝗌𝗅⌣𝑘 K)∶ 𝗄𝖽𝗈𝗆 →SPosLI 𝗄𝖼𝗈𝖽 (117)

by

𝖲⌣ = J1, 2, …, 𝑚K (118)

𝖲⌢ = J1, 2, …, 𝑛K (119)
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𝗌𝗅⌣ ∶ 𝑖 ↦ 𝗌𝗅⌢𝑖 (120)
𝗌𝗅⌢ ∶ 𝑗 ↦ 𝗌𝗅⌣𝑗 (121)

This construction is described by the schema SL1_C_ExplicitApprox (Section 26.8.17).

Definition 22.28 (Constructing multi-resolution SPosU)
Fixed a poset 𝗄𝖽𝗈𝗆 and a poset 𝗄𝖼𝗈𝖽, and given
• A chain of𝑚morphisms J𝗌𝗎⌢

𝑘 K in PosUI(𝗄𝖽𝗈𝗆, 𝗄𝖼𝗈𝖽)

• A chain of 𝑛morphisms J𝗌𝗎⌣

𝑘 K in PosUI(𝗄𝖽𝗈𝗆, 𝗄𝖼𝗈𝖽)op

we define the morphism
SU1_C_ExplicitApprox(J𝗌𝗎⌢

𝑘 K, J𝗌𝗎⌣

𝑘 K)∶ 𝗄𝖽𝗈𝗆 →SPosUI 𝗄𝖼𝗈𝖽 (122)
by

𝖲⌣ = J1, 2, …, 𝑚K (123)

𝖲⌢ = J1, 2, …, 𝑛K (124)
𝗌𝗎⌣ ∶ 𝑖 ↦ 𝗌𝗎⌢

𝑖 (125)
𝗌𝗎⌢ ∶ 𝑗 ↦ 𝗌𝗎⌣

𝑗 (126)

This construction is described by the schema SU1_C_ExplicitApprox (Section 26.9.17).
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23. SPosLI and SPosUI catalog

23.1. Lifts

Definition 23.1 (Lift of a PosLI to a SPosLI)
Given a PosLImorphism

𝓁∶ 𝗄𝖽𝗈𝗆 →PosLI 𝗄𝖼𝗈𝖽 {𝗄𝗂𝗆𝗉} (1)
we can lift it as a morphism of SPosLI

SL_L_Exact(𝓁)∶ {𝟏} 𝗄𝖽𝗈𝗆 →SPosLI 𝗄𝖼𝗈𝖽 {𝗄𝗂𝗆𝗉} (2)

by setting

𝗌𝗅⌣ ∶ ∗ ↦ 𝓁 (3)
𝗌𝗅⌢ ∶ ∗ ↦ 𝓁 (4)

This construction is described by the schema SL_L_Exact (Section 26.10.11).

Definition 23.2 (Lift of a PosUI to a SPosUI)
Given a PosUImorphism

𝓊∶ 𝗄𝖽𝗈𝗆 →PosUI 𝗄𝖼𝗈𝖽, (5)
we can lift it as a morphism of SPosUI

SU_L_Exact(𝓊)∶ {𝟏} 𝗄𝖽𝗈𝗆 →SPosUI 𝗄𝖼𝗈𝖽 {𝗄𝗂𝗆𝗉} (6)

by setting

𝗌𝗎⌣ ∶ ∗ ↦ 𝓊 (7)
𝗌𝗎⌢ ∶ ∗ ↦ 𝓊 (8)

This construction is described by the schema SU_L_Exact (Section 26.11.11).

23.2. Explicit approximations

Definition 23.3 (Constructing multi-resolution SPosLI)
Fixed a poset 𝗄𝖽𝗈𝗆 and a poset 𝗄𝖼𝗈𝖽, and given
• A chain of𝑚morphisms J𝗌𝗅⌢𝑘 K in PosLI(𝗄𝖽𝗈𝗆, 𝗄𝖼𝗈𝖽)

• A chain of 𝑛morphisms J𝗌𝗅⌣𝑘 K in PosLI(𝗄𝖽𝗈𝗆, 𝗄𝖼𝗈𝖽)op

we define the morphism
SL_L_Explicit_Approx(J𝗌𝗅⌢𝑘 K, J𝗌𝗅⌣𝑘 K)∶ 𝗄𝖽𝗈𝗆 →SPosLI 𝗄𝖼𝗈𝖽 (9)

by

𝖲⌣ = J1, 2, …, 𝑚K (10)

𝖲⌢ = J1, 2, …, 𝑛K (11)
𝗌𝗅⌣ ∶ 𝑖 ↦ 𝗌𝗅⌢𝑖 (12)
𝗌𝗅⌢ ∶ 𝑗 ↦ 𝗌𝗅⌣𝑗 (13)

This construction is described by the schema SL_L_Explicit_Approx (Section 26.10.12).
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Definition 23.4 (Constructing multi-resolution SPosUI)
Fixed a poset 𝗄𝖽𝗈𝗆 and a poset 𝗄𝖼𝗈𝖽, and given
• A chain of𝑚morphisms J𝗌𝗎⌢

𝑘 K in PosUI(𝗄𝖽𝗈𝗆, 𝗄𝖼𝗈𝖽)

• A chain of 𝑛morphisms J𝗌𝗎⌣

𝑘 K in PosUI(𝗄𝖽𝗈𝗆, 𝗄𝖼𝗈𝖽)op

we define the morphism
SU_L_Explicit_Approx(J𝗌𝗎⌢

𝑘 K, J𝗌𝗎⌣

𝑘 K)∶ 𝗄𝖽𝗈𝗆 →SPosUI 𝗄𝖼𝗈𝖽 (14)
by

𝖲⌣ = J1, 2, …, 𝑚K (15)

𝖲⌢ = J1, 2, …, 𝑛K (16)
𝗌𝗎⌣ ∶ 𝑖 ↦ 𝗌𝗎⌢

𝑖 (17)
𝗌𝗎⌢ ∶ 𝑗 ↦ 𝗌𝗎⌣

𝑗 (18)

This construction is described by the schema SU_L_Explicit_Approx (Section 26.11.12).

23.3. Parallel composition

Definition 23.5
Given a list of 𝑛morphisms

J𝗌𝗅𝑘 ∶ {𝖲𝑘} 𝗄𝖽𝗈𝗆𝑘 →SPosLI 𝗄𝖼𝗈𝖽𝑘 {𝗄𝗂𝗆𝗉𝑘} K (19)
the parallel composition is

SL_C_Parallel(J𝗌𝗅𝑘K)∶ {𝖲} P_C_Product (J𝗄𝖽𝗈𝗆𝑘K) →SPosLI P_C_Product (J𝗄𝖼𝗈𝖽𝑘K) {P_C_ProductSmash
(
J𝗄𝗂𝗆𝗉𝑘K

)
} (20)

with

𝖲⌣ = P_C_ProductSmash
(
J𝖲⌣

𝑘K
)

𝖲⌢ = P_C_ProductSmash
(
J𝖲⌢

𝑘K
)

(21)

given by

𝗌𝗅⌣ ∶ ⟨𝑜1, …, 𝑜𝑛⟩ ↦ L_C_Parallel(J𝗌𝗅⌣𝑘 (𝑜𝑘)K) (22)
𝗌𝗅⌢ ∶ ⟨𝑝1, …, 𝑝𝑛⟩ ↦ L_C_Parallel(J𝗌𝗅⌢𝑘 (𝑝𝑘)K) (23)

This construction is described by the schema SL_C_Parallel (Section 26.10.4).

Definition 23.6
Given a list of 𝑛morphisms

J𝗌𝗎𝑘 ∶ {𝖲𝑘} 𝗄𝖽𝗈𝗆𝑘 →SPosUI 𝗄𝖼𝗈𝖽𝑘 {𝗄𝗂𝗆𝗉𝑘} K (24)
the parallel composition is

SU_C_Parallel(J𝗌𝗎𝑘K)∶ {𝖲} P_C_Product (J𝗄𝖽𝗈𝗆𝑘K) →SPosUI P_C_Product (J𝗄𝖼𝗈𝖽𝑘K) {P_C_ProductSmash
(
J𝗄𝗂𝗆𝗉𝑘K

)
} (25)

with

𝖲⌣ = P_C_ProductSmash
(
J𝖲⌣

𝑘K
)

𝖲⌢ = P_C_ProductSmash
(
J𝖲⌢

𝑘K
)

(26)

given by

𝗌𝗎⌣ ∶ [𝑜1 ∣⋯ ∣ 𝑜𝑛] ↦ U_C_Parallel(J𝗌𝗎⌣

𝑘 (𝑜𝑘)K) (27)
𝗌𝗎⌢ ∶ [𝑝1 ∣⋯ ∣ 𝑝𝑛] ↦ U_C_Parallel(J𝗌𝗎⌢

𝑘 (𝑝𝑘)K) (28)

This construction is described by the schema SU_C_Parallel (Section 26.11.4).
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23.4. Series composition

Definition 23.7
Given a list of 𝑛morphisms

J𝗌𝗅𝑘 ∶ {𝖲𝑘} 𝗄𝖽𝗈𝗆𝑘 →SPosLI 𝗄𝖼𝗈𝖽𝑘 {𝗄𝗂𝗆𝗉𝑘} K (29)
such that for all 𝑘 = 1,… , 𝑛 − 1, we have 𝗄𝖼𝗈𝖽𝑘 ⊆ 𝗄𝖽𝗈𝗆𝑘+1, the series composition is

SL_C_Series(J𝗌𝗅𝑘K)∶ {𝖲} 𝗄𝖽𝗈𝗆1 →SPosLI 𝗄𝖼𝗈𝖽𝑛 {P_C_ProductSmash
(
J𝗄𝗂𝗆𝗉𝑘K

)
} (30)

with

𝖲⌣ = P_C_ProductSmash
(
J𝖲⌣

𝑘K
)

𝖲⌢ = P_C_ProductSmash
(
J𝖲⌢

𝑘K
)

(31)

given by

𝗌𝗅⌣ ∶ [𝑜1 ∣⋯ ∣ 𝑜𝑛] ↦ L_C_Series(J𝗌𝗅⌣𝑘 (𝑜𝑘)K) (32)
𝗌𝗅⌢ ∶ [𝑝1 ∣⋯ ∣ 𝑝𝑛] ↦ L_C_Series(J𝗌𝗅⌢𝑘 (𝑝𝑘)K) (33)

This construction is described by the schema SL_C_Series (Section 26.10.5).

Definition 23.8
Given a list of 𝑛morphisms

J𝗌𝗎𝑘 ∶ {𝖲𝑘} 𝗄𝖽𝗈𝗆𝑘 →SPosUI 𝗄𝖼𝗈𝖽𝑘 {𝗄𝗂𝗆𝗉𝑘} K (34)
the series composition is

SU_C_Series(J𝗌𝗎𝑘K)∶ {𝖲} 𝗄𝖽𝗈𝗆 →SPosUI 𝗄𝖼𝗈𝖽 {P_C_ProductSmash
(
J𝗄𝗂𝗆𝗉𝑘K

)
} (35)

with

𝖲⌣ = P_C_ProductSmash
(
J𝖲⌣

𝑘K
)

𝖲⌢ = P_C_ProductSmash
(
J𝖲⌢

𝑘K
)

(36)

given by

𝗌𝗎⌣ ∶ [𝑜1 ∣⋯ ∣ 𝑜𝑛] ↦ U_C_Series(J𝗌𝗎⌣

𝑘 (𝑜𝑘)K) (37)
𝗌𝗎⌢ ∶ [𝑝1 ∣⋯ ∣ 𝑝𝑛] ↦ U_C_Series(J𝗌𝗎⌢

𝑘 (𝑝𝑘)K) (38)

This construction is described by the schema SU_C_Series (Section 26.11.5).

23.5. Intersection

Definition 23.9
Given two posets 𝗄𝖽𝗈𝗆 and 𝗄𝖼𝗈𝖽 and a list of 𝑛morphisms

J𝗌𝗅𝑘 ∶ {𝖲𝑘} 𝗄𝖽𝗈𝗆 →SPosLI 𝗄𝖼𝗈𝖽 {𝗄𝗂𝗆𝗉𝑘} K (39)

the intersection composition is

SL_C_Intersection(J𝗌𝗅𝑘K)∶ {𝖲} 𝗄𝖽𝗈𝗆 →SPosLI 𝗄𝖼𝗈𝖽 {P_C_ProductSmash
(
J𝗄𝗂𝗆𝗉𝑘K

)
} (40)

with

𝖲⌣ = P_C_ProductSmash
(
J𝖲⌣

𝑘K
)

𝖲⌢ = P_C_ProductSmash
(
J𝖲⌢

𝑘K
)

(41)

given by

𝗌𝗅⌣ ∶ [𝑜1 ∣⋯ ∣ 𝑜𝑛] ↦ L_C_Intersection(J𝗌𝗅⌣𝑘 (𝑜𝑘)K) (42)
𝗌𝗅⌢ ∶ [𝑝1 ∣⋯ ∣ 𝑝𝑛] ↦ L_C_Intersection(J𝗌𝗅⌢𝑘 (𝑝𝑘)K) (43)

This construction is described by the schema SL_C_Intersection (Section 26.10.3).
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Definition 23.10
Given two posets 𝗄𝖽𝗈𝗆 and 𝗄𝖼𝗈𝖽 and a list of 𝑛morphisms

J𝗌𝗎𝑘 ∶ {𝖲𝑘} 𝗄𝖽𝗈𝗆 →SPosUI 𝗄𝖼𝗈𝖽 {𝗄𝗂𝗆𝗉𝑘} K (44)

the intersection composition is

SU_C_Intersection(J𝗌𝗎𝑘K)∶ {𝖲} 𝗄𝖽𝗈𝗆 →SPosUI 𝗄𝖼𝗈𝖽 {P_C_ProductSmash
(
J𝗄𝗂𝗆𝗉𝑘K

)
} (45)

with

𝖲⌣ = P_C_ProductSmash
(
J𝖲⌣

𝑘K
)

𝖲⌢ = P_C_ProductSmash
(
J𝖲⌢

𝑘K
)

(46)

given by

𝗌𝗎⌣ ∶ [𝑜1 ∣⋯ ∣ 𝑜𝑛] ↦ U_C_Intersection(J𝗌𝗎⌣

𝑘 (𝑜𝑘)K) (47)
𝗌𝗎⌢ ∶ [𝑝1 ∣⋯ ∣ 𝑝𝑛] ↦ U_C_Intersection(J𝗌𝗎⌢

𝑘 (𝑝𝑘)K) (48)

This construction is described by the schema SU_C_Intersection (Section 26.11.3).

23.6. Union

Definition 23.11
Given two posets 𝗄𝖽𝗈𝗆 and 𝗄𝖼𝗈𝖽 and a list of maps

J𝗌𝗅𝑘 ∶ {𝖲𝑘} 𝗄𝖽𝗈𝗆 →SPosLI 𝗄𝖼𝗈𝖽 {𝗄𝗂𝗆𝗉𝑘} K (49)

the union composition is

SL_C_Union(J𝗌𝗅𝑘K)∶ {𝖲} 𝗄𝖽𝗈𝗆 →SPosLI 𝗄𝖼𝗈𝖽 {P_C_ProductSmash
(
J𝗄𝗂𝗆𝗉𝑘K

)
} (50)

with

𝖲⌣ = P_C_ProductSmash
(
J𝖲⌣

𝑘K
)

𝖲⌢ = P_C_ProductSmash
(
J𝖲⌢

𝑘K
)

(51)

given by

𝗌𝗅⌣ ∶ [𝑜1 ∣⋯ ∣ 𝑜𝑛] ↦ L_C_Union(J𝗌𝗅⌣𝑘 (𝑜𝑘)K) (52)
𝗌𝗅⌢ ∶ [𝑝1 ∣⋯ ∣ 𝑝𝑛] ↦ L_C_Union(J𝗌𝗅⌢𝑘 (𝑝𝑘)K) (53)

This construction is described by the schema SL_C_Union (Section 26.10.6).

Definition 23.12
Given two posets 𝗄𝖽𝗈𝗆 and 𝗄𝖼𝗈𝖽 and a list of maps

J𝗌𝗎𝑘 ∶ {𝖲𝑘} 𝗄𝖽𝗈𝗆 →SPosUI 𝗄𝖼𝗈𝖽 {𝗄𝗂𝗆𝗉𝑘} K (54)

the union composition is the morphism

SU_C_Union(J𝗌𝗎𝑘K)∶ {𝖲} 𝗄𝖽𝗈𝗆 →SPosUI 𝗄𝖼𝗈𝖽 {P_C_ProductSmash
(
J𝗄𝗂𝗆𝗉𝑘K

)
} (55)

with

𝖲⌣ = P_C_ProductSmash
(
J𝖲⌣

𝑘K
)

𝖲⌢ = P_C_ProductSmash
(
J𝖲⌢

𝑘K
)

(56)

given by

𝗌𝗎⌣ ∶ [𝑜1 ∣⋯ ∣ 𝑜𝑛] ↦ U_C_Union(J𝗌𝗎⌣

𝑘 (𝑜𝑘)K) (57)
𝗌𝗎⌢ ∶ [𝑝1 ∣⋯ ∣ 𝑝𝑛] ↦ U_C_Union(J𝗌𝗎⌢

𝑘 (𝑝𝑘)K) (58)

This construction is described by the schema SU_C_Union (Section 26.11.6).
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23.7. Trace

Definition 23.13
Given a morphism

𝗌𝗅0 ∶ {𝖲} P_C_Product(J𝗄𝖽𝗈𝗆1, 𝗄𝖽𝗈𝗆2K) →SPosLI P_C_Product(J𝗄𝖼𝗈𝖽1, 𝗄𝖼𝗈𝖽2K) {𝗄𝗂𝗆𝗉} (59)

such that 𝗄𝖼𝗈𝖽2 ⊆ 𝗄𝖽𝗈𝗆2 we define the morphism

SL_C_Trace(𝗌𝗅)∶ {𝖲} 𝗄𝖽𝗈𝗆1 →SPosLI 𝗄𝖼𝗈𝖽1 {𝗄𝗂𝗆𝗉} (60)

given by

𝗌𝗅⌣ ∶ 𝑜 ↦ L_C_Trace(𝗌𝗅⌣0 (𝑜)) (61)
𝗌𝗅⌢ ∶ 𝑝 ↦ L_C_Trace(𝗌𝗅⌢0 (𝑝)) (62)

This construction is described by the schema SL_C_Trace (Section 26.10.9).

Definition 23.14
Given a morphism

𝗌𝗎0 ∶ {𝖲} P_C_Product(J𝗄𝖽𝗈𝗆1, 𝗄𝖽𝗈𝗆2K) →SPosUI P_C_Product(J𝗄𝖼𝗈𝖽1, 𝗄𝖼𝗈𝖽2K) {𝗄𝗂𝗆𝗉} (63)

such that 𝗄𝖼𝗈𝖽2 ⊆ 𝗄𝖽𝗈𝗆2 we define the morphism

SU_C_Trace(𝗌𝗎)∶ {𝖲} 𝗄𝖽𝗈𝗆1 →SPosUI 𝗄𝖼𝗈𝖽1 {𝗄𝗂𝗆𝗉} (64)

given by

𝗌𝗎⌣ ∶ 𝑜 ↦ U_C_Trace(𝗌𝗎⌣

0 (𝑜)) (65)
𝗌𝗎⌢ ∶ 𝑝 ↦ U_C_Trace(𝗌𝗎⌢

0 (𝑝)) (66)

This construction is described by the schema SU_C_Trace (Section 26.11.9).
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24. DP catalog

24.1. Identity

Definition 24.1 (Identity)
Given a poset 𝐏, the identity DP is defined as

DP_Identity(𝐏) ∶ 𝐏 →DP 𝐏

⟨𝑓∗, 𝑟⟩ ↦,,→ 𝑓∗ ⪯𝐏 𝑟
(1)

This construction is described by the schema DP_Identity (Section 26.12.2).

Lemma 24.2 (Query solutions for the identity).

𝖥𝖱DP_Identity (𝐏) = U1_Identity (𝐏) (2)
𝖱𝖥DP_Identity (𝐏) = L1_Identity (𝐏) (3)

(4)

This construction is a particular case of DP_LiftL and DP_Iso:

DP_Identity(𝐏) = DP_LiftL(id𝐏) (5)
= DP_Iso(id𝐏) (6)

24.2. Ambient conversion

Definition 24.3 (Ambient conversion)
Given a poset 𝐏 and two posets 𝐅,𝐑⊆ 𝐏, the ambient conversion DP is defined as

DP_AmbientConversion(𝐏, 𝐅,𝐑) ∶ 𝐅 →DP 𝐑

⟨𝑓∗, 𝑟⟩ ↦,,→ 𝑓∗ ⪯𝐏 𝑟
(7)

Lemma 24.4 (Query solutions of DP_AmbientConversion).

𝖥𝖱DP_AmbientConversion (𝐏, 𝐅,𝐑) = U1_RepresentPrincipalUpperSet(𝐏, 𝐅,𝐑) (8)
𝖱𝖥DP_AmbientConversion (𝐏, 𝐅,𝐑) = L1_RepresentPrincipalLowerSet(𝐏,𝐑, 𝐅) (9)

This construction is described by the schema DP_AmbientConversion (Section 26.12.5).

24.3. Isomorphism

Definition 24.5 (Isomorphism of posets)
Given two posets 𝐅 and 𝐑, and an order isomorphism

⟨
𝑔, 𝑔−1

⟩
∶ 𝐅↔Pos 𝐑, (10)

we can define the DP
DP_Iso(𝐅,𝐑) ∶ 𝐏 →DP 𝐏

⟨𝑓∗, 𝑟⟩ ↦,,→ 𝑓∗ ⪯𝐏 𝑔−1(𝑟) = 𝑔(𝑓∗) ⪯𝐏 𝑟
(11)
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This construction is described by the schema DP_Iso (Section 26.12.7).

Lemma 24.6 (Isomorphisms of DP_Iso).
DP_Iso(𝑔) # DP_Iso(ℎ) ≅B DP_Iso(𝑔 # ℎ) (12)

Lemma 24.7 (Query solutions for DP_Iso).

𝖥𝖱(DP_Iso(𝑔)) = U1_Lift (𝑔) (13)
𝖱𝖥(DP_Iso(𝑔)) = L1_Lift

(
𝑔−1

)
(14)
(15)

24.4. Lower lift of a map

Definition 24.8 (Lower lift of a monotone map to a DP)
Given a monotone map

ℎ∶ 𝐑→Pos 𝐅, (16)
we can lift it to a DP

DP_LiftL(ℎ) ∶ 𝐅 →DP 𝐑

⟨𝑓∗, 𝑟⟩ ↦,,→ 𝑓∗ ⪯𝐅 ℎ(𝑟)
(17)

Lemma 24.9 (Query solutions for DP_LiftL).

𝖥𝖱(DP_LiftU(ℎ)) = 𝐔𝐢 ℎ (18)
𝖱𝖥(DP_LiftU(ℎ)) = L1_Lift (ℎ) (19)

(20)

Lemma 24.10 (Isomorphisms of DP_LiftL).

DP_LiftL(𝑔) # DP_LiftL(ℎ) ≅B DP_LiftL(ℎ # 𝑔) (21)

Note that the order of the arguments in the composition is reversed.

24.5. Upper lift of a map

Definition 24.11 (Upper lift of a monotone map to a DPI)
Given a monotone map

ℎ∶ 𝐅op→Pos𝐑, (22)
we can lift it to a DP

DP_LiftU(ℎ) ∶ 𝐅 →DP 𝐑

⟨𝑓∗, 𝑟⟩ ↦,,→ ℎ(𝑓∗) ⪯𝐑 𝑟
(23)

This construction is described by the schema DP_LiftU (Section 26.12.9).

Lemma 24.12 (Isomorphisms of DP_LiftU).

DP_LiftU(𝑔) # DP_LiftU(ℎ) ≅B DP_LiftU(𝑔 # ℎ) (24)

Lemma 24.13 (Query solutions for DP_LiftU).

𝖥𝖱(DP_LiftU(𝑔)) = U1_Lift (𝑔) (25)
𝖱𝖥(DP_LiftU(𝑔)) = 𝐋𝐢 𝑔 (26)
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24.6. Functionalities/requirements limits

In this section we specify several DP constructions that are used as “plumbing” when compiling a MCDP.
This is not a minimal set: to have an efficient compiler, it is actually necessary to recognize useful special cases for which queries are
simpler to solve.
Most of these also only make sense when the posets in question are not lattices. If the posets are lattices then these constructions simplify.
We show some of the simplifications below.

24.6.1. Functionality not more than the requirement and constant

Definition 24.14 (Functionality not more than the requirement and constant)
Given two posets 𝐅,𝐑⊆ 𝐏, and a constant 𝑐 ∈ 𝐏, we define the DP

DP_FuncNotMoreThan(𝐏, 𝐅,𝐑, 𝑐) ∶ 𝐅 →DP 𝐑

⟨𝑓∗, 𝑟⟩ ↦,,→ (𝑓∗ ⪯𝐏 𝑟) ∧ (𝑓∗ ⪯𝐏 𝑐)
(27)

This construction is described by the schema DP_FuncNotMoreThan (Section 26.12.15).

Lemma 24.15.
𝖱𝖥DP_FuncNotMoreThan(𝐏, 𝐅,𝐑, 𝑐) = M_Threshold1(𝐏, 𝑐) (28)

24.6.2. Requirement not less than the functionality and constant

Definition 24.16 (Requirement not less than the functionality and constant)
Given two posets 𝐅,𝐑⊆ 𝐏, and a constant 𝑐 ∈ 𝐏, we define the DP

DP_ResNotLessThan(𝐏, 𝐅,𝐑, 𝑐) ∶ 𝐅 →DP 𝐑

⟨𝑓∗, 𝑟⟩ ↦,,→ (𝑓∗ ⪯𝐏 𝑟) ∧ (𝑐 ⪯𝐏 𝑟)
(29)

This construction is described by the schema DP_ResNotLessThan (Section 26.12.16).

Note that if 𝐏 was a lattice, we would have

DP_ResNotLessThan(𝐏, 𝐅,𝐑, 𝑐) = DP_LiftUM_JoinConstant(𝐏, 𝑐) (30)

Lemma 24.17.
𝖥𝖱DP_ResNotLessThan(𝐏, 𝐅,𝐑, 𝑐) = M_Threshold2(𝐏, 𝑐) (31)

24.6.3. All functionalities less than the requirement

Definition 24.18
Given 𝑛 posets J𝐅𝑘K and 𝐑all subposets of a poset 𝐏, we define the DP

DP_AllFiLeqR(𝐏, J𝐅𝑘K, 𝐑) ∶ P_C_Product (J𝐅𝑘K) →DP 𝐑
⟨⟨
𝑓∗1 , …, 𝑓∗𝑛

⟩
, 𝑟
⟩

↦,,→
⋀

𝑘
(𝑓∗𝑘 ⪯𝐏 𝑟)

(32)

If 𝐏 was a join semilattice, we would have ⋀
𝑘(𝑓

∗
𝑘 ⪯𝐏 𝑟) =

(⋁
𝑘 𝑓

∗
𝑘
)
⪯𝐏 𝑟 (33)

thus
DP_AllFiLeqR(𝐏, J𝐅𝑘K, 𝐑) = DP_LiftUM_Join (J𝐅𝑘K) (34)

This construction is described by the schema DP_All_Fi_Leq_R (Section 26.12.17).
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24.6.4. Any functionality less than the requirement

Definition 24.19
Given a poset J𝐅𝑘K and 𝐑all subposets of a poset 𝐏, we define the DP

DP_Any_Fi_Leq_R(𝐏, J𝐅𝑘K, 𝐑) ∶ P_C_Product (J𝐅𝑘K) →DP 𝐑
⟨⟨
𝑓∗1 , …, 𝑓∗𝑛

⟩
, 𝑟
⟩

↦,,→
⋁

𝑘
(𝑓∗𝑘 ⪯𝐏 𝑟)

(35)

This construction is described by the schema DP_Any_Fi_Leq_R (Section 26.12.18).

24.6.5. All requirements more than the functionality

Definition 24.20
Given a list of 𝑛 posets J𝐑𝑘K and 𝐑all subposets of a poset 𝐏, we define the DP

DP_All_Fi_Leq_R(𝐏, 𝐅, J𝐑𝑘K) ∶ 𝐅 →DP P_C_Product (J𝐑𝑘K)

⟨𝑓∗, ⟨𝑟1, …, 𝑟𝑛⟩⟩ ↦,,→
⋀

𝑘
(𝑓∗ ⪯𝐏 𝑟𝑘)

(36)

This construction is described by the schema DP_F_Leq_All_Ri (Section 26.12.19).

24.6.6. Any requirement more than the functionality

Definition 24.21
Given a list of 𝑛 posets J𝐑𝑘K and 𝐅 all subposets of a poset 𝐏, we define the DP

DP_F_Leq_Any_Ri(𝐏, 𝐅, J𝐑𝑘K) ∶ 𝐅 →DP P_C_Product (J𝐑𝑘K)

⟨𝑓∗, ⟨𝑟1, …, 𝑟𝑛⟩⟩ ↦,,→
⋁

𝑘
(𝑓∗ ⪯𝐏 𝑟𝑘)

(37)

This construction is described by the schema DP_F_Leq_Any_Ri (Section 26.12.20).

24.6.7. All constants less than the requirement

Definition 24.22
Given a poset 𝐏 and a list of 𝑛 constants J𝑐𝑘K we define the DP

DP_All_Constants_Leq_R(𝐏, J𝑐𝑘K) ∶ 𝟙 →DP 𝐏

⟨∗, 𝑟⟩ ↦,,→
⋀

𝑘
(𝑐𝑘 ⪯𝐏 𝑟)

(38)

This construction is described by the schema DP_All_Constants_Leq_R (Section 26.12.21).

24.6.8. Functionality less than all constants

Definition 24.23
Given a poset 𝐏 and a list of 𝑛 constants J𝑐𝑘K we define the DP

DP_F_Leq_All_Constants(𝐏, J𝑐𝑘K) ∶ 𝐏 →DP 𝟙

⟨𝑓∗, ∗⟩ ↦,,→
⋀

𝑘
(𝑓∗ ⪯𝐏 𝑐𝑘)

(39)

This construction is described by the schema DP_F_Leq_All_Constants (Section 26.12.22).
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24.6.9. Functionality and all constants less than the requirement

Definition 24.24
Given a poset 𝐏 and a list of 𝑛 constants J𝑐𝑘K we define the DP

DP_All_Constants_And_F_Leq_R(𝐏, J𝑐𝑘K) ∶ 𝐏 →DP 𝐏

⟨𝑓∗, 𝑟⟩ ↦,,→ (𝑓∗ ⪯𝐏 𝑟) ∧
⋀

𝑘
(𝑐𝑘 ⪯𝐏 𝑟)

(40)

This construction is described by the schema DP_All_Constants_And_F_Leq_R (Section 26.12.23).

24.6.10. Functionality or any constant less than the requirement

Definition 24.25
Given a poset 𝐏 and a list of 𝑛 constants J𝑐𝑘K we define the DP

DP_Any_Constants_Or_F_Leq_R(𝐏, J𝑐𝑘K) ∶ 𝐏 →DP 𝐏

⟨𝑓∗, 𝑟⟩ ↦,,→ (𝑓∗ ⪯𝐏 𝑟) ∨
⋁

𝑘
(𝑐𝑘 ⪯𝐏 𝑟)

(41)

This construction is described by the schema DP_Any_Constants_Or_F_Leq_R (Section 26.12.24).

24.6.11. Functionality less than the requirement and all constants

Definition 24.26
Given a poset 𝐏 and a list of 𝑛 constants J𝑐𝑘K we define the DP

DP_F_Leq_All_R_And_Constants(𝐏, J𝑐𝑘K) ∶ 𝐏 →DP 𝐏

⟨𝑓∗, 𝑟⟩ ↦,,→ (𝑓∗ ⪯𝐏 𝑟) ∧
⋀

𝑘
(𝑐𝑘 ⪯𝐏 𝑟)

(42)

This construction is described by the schema DP_F_Leq_All_R_And_Constants (Section 26.12.25).

24.6.12. Functionality less than the requirement or any constant

Definition 24.27
Given a poset 𝐏 and a list of 𝑛 constants J𝑐𝑘K we define the DP

DP_F_Leq_Any_R_And_Constants(𝐏, J𝑐𝑘K) ∶ 𝐏 →DP 𝐏

⟨𝑓∗, 𝑟⟩ ↦,,→ (𝑓∗ ⪯𝐏 𝑟) ∨
⋁

𝑘
(𝑐𝑘 ⪯𝐏 𝑟)

(43)

This construction is described by the schema DP_F_Leq_Any_R_And_Constants (Section 26.12.26).
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25. DPI catalog

25.1. True and false

25.1.1. True

The true DPI is the one that allows any combination of functionality and requirements using the same blueprint.

Definition 25.1
Given arbitrary posets 𝐅,𝐑,ℬ and a value 𝑏0 ∈ ℬ, we define the DP

DP_True(𝐅,𝐑,ℬ, 𝑏0)∶ 𝐅→DPI𝐑{ℬ} (1)

by the data

𝐈 = P_C_ProductSmash (J𝐅, 𝐑opK) (2)
𝗉𝗋𝗈𝗏∶ [𝑓 ∣ 𝑟∗] ↦ 𝑓 (3)
𝗋𝖾𝗊∶ [𝑓 ∣ 𝑟∗] ↦ 𝑟∗ (4)

avail∶ [𝑓∗ ∣ 𝑟] ↦ ⊤ (5)
feas∶ [𝑓 ∣ 𝑟∗] ↦ ⊤ (6)
IB∶ [𝑓 ∣ 𝑟∗] ↦ 𝑏0 (7)

(8)

This construction is described by the schema DP_True (Section 26.12.3).

Note that

DP_True(𝐅1, 𝐑1, ℬ1, 𝑏1) # DP_True(𝐅2, 𝐑2, ℬ2, 𝑏2) ≅B DP_True(𝐅1, 𝐑2,P_C_ProductSmash(ℬ1, ℬ2), [𝑏1 ∣ 𝑏2]), (9)

however, the expressions DP_True(… ) # 𝐝 and 𝐝 # DP_True(… ) do not simplify.

25.1.2. False

The false DPI is the one that does not allow any combination of functionality and requirements.

Definition 25.2
Given arbitrary posets 𝐅,𝐑,ℬ we define the DP

DP_False(𝐅,𝐑,ℬ)∶ 𝐅→DPI𝐑{ℬ} (10)

by the data

𝐈 = P_C_ProductSmash (J𝐅, 𝐑opK) (11)
𝗉𝗋𝗈𝗏∶ [𝑓 ∣ 𝑟∗] ↦ 𝑓 (12)
𝗋𝖾𝗊∶ [𝑓 ∣ 𝑟∗] ↦ 𝑟∗ (13)

avail∶ [𝑓∗ ∣ 𝑟] ↦ ⊥ (14)
feas∶ [𝑓 ∣ 𝑟∗] ↦ ⊥ (15)
IB∶ ∅ → ∅ (16)

This construction is described by the schema DP_False (Section 26.12.4).

144



Note that we do not need to specify IB because the domain is empty.
This construction is useful during compilation, as in certain cases we can prove that the DP is infeasible, in the sense that the compiler
can simplify the DP to DP_False.

Lemma 25.3 (Absorption properties of DP_False). For any 𝐝∶ 𝐅2→DPI𝐑2 {ℬ2}

DP_False((𝐅1, 𝐑1, ℬ1) # 𝐝 ≅B DP_False((𝐅1, 𝐑2,P_C_ProductSmash(ℬ1, ℬ2)) (17)

and for any 𝐝∶ 𝐅1→DPI𝐑1 {ℬ1}

𝐝 # DP_False((𝐅2, 𝐑2, ℬ2) ≅B DP_False((𝐅1, 𝐑2,P_C_ProductSmash(ℬ1, ℬ2)). (18)

Similar absorption properties hold for parallel and trace composition.

25.2. Catalogs

Definition 25.4
Given arbitrary posets 𝐅,𝐑, 𝐈0, ℬ and a list of options

J⟨𝑓𝑘 , 𝑟∗𝑘 , 𝑖𝑘 , 𝑏𝑘⟩K ⊆ P_C_Product(J𝐅, 𝐑op, 𝐈0, ℬK) (19)

with the constraint that for all 𝑎, 𝑏, 𝑖𝑎 ⪯𝐈0 𝑖𝑏 implies 𝑏𝑎 ⪯ℬ 𝑏𝑏, we can define the catalog

DP_Catalog∶ 𝐅→DPI𝐑{ℬ} (20)

by choosing the implementation space 𝐈 as the poset that has as carrier the set {⟨𝑖𝑖 , 𝑖𝑖⟩} and the order given by lexicographic order
whose first component is

𝑖𝑖 ⪯𝐈 𝑖𝑗 ⟺ (𝑓𝑖 ⪯𝐅 𝑓𝑗) ∧ (𝑟𝑗 ⪯𝐑 𝑟𝑖) (21)
and whose second component is the original order on 𝐈0. The remaining data is

𝗉𝗋𝗈𝗏∶ 𝑖𝑘 ↦ 𝑓𝑘 (22)
𝗋𝖾𝗊∶ 𝑖𝑘 ↦ 𝑟∗𝑘 (23)

avail∶ 𝑖𝑘 ↦ ⊤ (24)
feas∶ 𝑖𝑘 ↦ ⊤ (25)
IB∶ 𝑖𝑘 ↦ 𝑏𝑘 (26)

(27)

This construction is described by the schema DP_Catalog (Section 26.12.6).

The intuition is that the arbitrary poset 𝐈0 represents an internal “preference” on the implementation space that is independent of the
functionality and requirements of each implementation. However, in the DPI we want to first order the implementations by functionality
and requirements, and only in case of ties by the internal preference order. With this construction, we are guaranteed that 𝗉𝗋𝗈𝗏, 𝗋𝖾𝗊, IB are
monotone maps.

Lemma 25.5 (Query solutions for DP_Catalog).

𝖥𝖱(DP_Catalog(J⟨𝑓𝑘 , 𝑟∗𝑘 , 𝑖𝑘 , 𝑏𝑘⟩K)) = U1_Catalog
(
J⟨𝑓𝑘 , 𝑟∗𝑘⟩K

)
(28)

𝖥𝖱𝖨(DP_Catalog(J⟨𝑓𝑘 , 𝑟∗𝑘 , 𝑖𝑘 , 𝑏𝑘⟩K)) = U_Catalog
(
J⟨𝑓𝑘 , 𝑟∗𝑘 , 𝑏𝑘⟩K

)
(29)

𝖥𝖱𝖡(DP_Catalog(J⟨𝑓𝑘 , 𝑟∗𝑘 , 𝑖𝑘 , 𝑏𝑘⟩K)) = U_Catalog
(
J⟨𝑓𝑘 , 𝑟∗𝑘 , 𝑖𝑘⟩K

)
(30)

𝖱𝖥(DP_Catalog(J⟨𝑓𝑘 , 𝑟∗𝑘 , 𝑖𝑘 , 𝑏𝑘⟩K)) = L1_Catalog
(
J⟨𝑓𝑘 , 𝑟∗𝑘⟩K

)
(31)

𝖱𝖥𝖨(DP_Catalog(J⟨𝑓𝑘 , 𝑟∗𝑘 , 𝑖𝑘 , 𝑏𝑘⟩K)) = L_Catalog
(
J⟨𝑓𝑘 , 𝑟∗𝑘 , 𝑏𝑘⟩K

)
(32)

𝖱𝖥𝖡(DP_Catalog(J⟨𝑓𝑘 , 𝑟∗𝑘 , 𝑖𝑘 , 𝑏𝑘⟩K)) = L_Catalog
(
J⟨𝑓𝑘 , 𝑟∗𝑘 , 𝑖𝑘⟩K

)
(33)

The construction DP_GenericConstant is a special case of the construction DP_Catalog which has only a single blueprint 𝑏0 ∈ ℬ.

This construction is described by the schema DP_GenericConstant (Section 26.12.1).
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25.3. Parallel composition

Definition 25.6
Given 𝑛 DPIs

J𝐝𝑘 ∶ 𝐅𝑘→DPI𝐑𝑘 {ℬ𝑘} K (34)
the parallel composition

DP_C_Parallel(J𝐝𝑘K)∶ P_C_Product (J𝐅𝑘K)→DPI P_C_Product (J𝐑𝑘K) {P_C_Product (Jℬ𝑘K) } (35)

is a DPI that consists of:

𝐈 = P_C_Product (J𝐈𝑘K) (36)
𝗉𝗋𝗈𝗏 = M_C_Parallel

(
J𝗉𝗋𝗈𝗏𝑘K

)
(37)

𝗋𝖾𝗊 = M_C_Parallel
(
J𝗋𝖾𝗊𝑘K

)
(38)

avail = M_C_CodMeetBool (M_C_Parallel (Javail𝑘K)) (39)
feas = M_C_CodMeetBool (M_C_Parallel (Jfeas𝑘K)) (40)
IB = M_C_Parallel (JIB𝑘K) (41)

This construction is described by the schema DP_C_Parallel (Section 26.12.10).

Lemma 25.7 (Query functoriality for the parallel composition).

𝖥𝖱(DP_C_Parallel (J𝐝𝑘K)) = U1_C_Parallel(J𝖥𝖱𝐝𝑘K) (42)
𝖥𝖱𝖨(DP_C_Parallel (J𝐝𝑘K)) = U_C_Parallel(J𝖥𝖱𝖨 𝐝𝑘K) (43)
𝖥𝖱𝖡(DP_C_Parallel (J𝐝𝑘K)) = U_C_Parallel(J𝖥𝖱𝖡𝐝𝑘K) (44)
𝖱𝖥(DP_C_Parallel (J𝐝𝑘K)) = L1_C_Parallel(J𝖱𝖥𝐝𝑘K) (45)
𝖱𝖥𝖨(DP_C_Parallel (J𝐝𝑘K)) = L_C_Parallel(J𝖱𝖥𝖨 𝐝𝑘K) (46)
𝖱𝖥𝖡(DP_C_Parallel (J𝐝𝑘K)) = L_C_Parallel(J𝖱𝖥𝖡𝐝𝑘K) (47)

Lemma 25.8 (Approximation results for the parallel composition). For ? ∈ {✓, ⌢, ⌣, ⋆},

𝓊𝑘 ∈ (𝖥𝖱?𝖿 𝐝𝑘)

U1_C_Parallel (J𝓊𝑘K) ∈ 𝖥𝖱?𝖿 (DP_C_Parallel (J𝐝𝑘K)) (48)

𝓊𝑘 ∈ (𝖥𝖱𝖨?𝖿 𝐝𝑘)

U_C_Parallel (J𝓊𝑘K) ∈ 𝖥𝖱𝖨?𝖿 (DP_C_Parallel (J𝐝𝑘K)) (49)

𝓊𝑘 ∈ (𝖥𝖱𝖡?𝖿 𝐝𝑘)

U_C_Parallel (J𝓊𝑘K) ∈ 𝖥𝖱𝖡?𝖿 (DP_C_Parallel (J𝐝𝑘K)) (50)

𝓁𝑘 ∈ (𝖱𝖥?𝖿 𝐝𝑘)

L1_C_Parallel (J𝓁𝑘K) ∈ 𝖱𝖥?𝖿 (DP_C_Parallel (J𝐝𝑘K)) (51)

𝓁𝑘 ∈ (𝖱𝖥𝖨?𝖿 𝐝𝑘)

L_C_Parallel (J𝓁𝑘K) ∈ 𝖱𝖥𝖨?𝖿 (DP_C_Parallel (J𝐝𝑘K)) (52)

𝓁𝑘 ∈ (𝖱𝖥𝖡?𝖿 𝐝𝑘)

L_C_Parallel (J𝓁𝑘K) ∈ 𝖱𝖥𝖡?𝖿 (DP_C_Parallel (J𝐝𝑘K)) (53)
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25.4. Series

Here is one way to define the series of two DPIs.

Definition 25.9 (Binary series)
Given two DPIs 𝐝1 and 𝐝2 such that 𝐑1 and 𝐅2 are subposets of a poset 𝐏, the series of 𝐝1 and 𝐝2 is the DPI

𝐝1 # 𝐝2 ∶ 𝐅1→DPI𝐑𝑛 {ℬ1 × ℬ2} (54)

defined by

𝐈 = P_C_Product(J𝐈1, 𝐈2K) (55)
𝗉𝗋𝗈𝗏 ∶ ⟨𝑖1, 𝑖2⟩ ↦ 𝗉𝗋𝗈𝗏1(𝑖1) (56)
𝗋𝖾𝗊 ∶ ⟨𝑖1, 𝑖2⟩ ↦ 𝗋𝖾𝗊2(𝑖2) (57)

avail ∶ ⟨𝑖1, 𝑖2⟩ ↦ avail1(𝑖1) ∧ avail2(𝑖2) (58)
IB ∶ ⟨𝑖1, 𝑖2⟩ ↦ ⟨IB1(𝑖1), IB2(𝑖2)⟩ (59)

feas ∶ ⟨𝑖1, 𝑖2⟩ ↦ feas1(𝑖1) ∧ feas2(𝑖2) ∧ (𝗋𝖾𝗊1(𝑖1) ⪯𝐏 𝗉𝗋𝗈𝗏2(𝑖2)) (60)

This construction is not associative.
The following is a way to define the n-ary series of a list of DPIs in a way that is associative.

Definition 25.10 (n-ary series)
Given a list of DPIs J𝐝𝑘K, such that for all 𝑘 = 1…𝑛 − 1, 𝐑𝑘 and 𝐅𝑘+1 are subposets of a poset 𝐏𝑘 , the series

DP_C_Series(J𝐝𝑘K)∶ 𝐅1→DPI𝐑𝑛 {P_C_ProductSmash (Jℬ𝑘K) } (61)

is the DPI that consists of:

𝐈 = P_C_ProductSmash (J𝐈𝑘K) (62)
𝗉𝗋𝗈𝗏 ∶ [𝑖1 ∣⋯ ∣ 𝑖𝑛] ↦ 𝗉𝗋𝗈𝗏1 𝑖1 (63)
𝗋𝖾𝗊 ∶ [𝑖1 ∣⋯ ∣ 𝑖𝑛] ↦ 𝗋𝖾𝗊𝑛 𝑖𝑛 (64)
IB = M_C_ParallelSmash (JIB𝑘K) (65)

avail = M_C_CodMeetBool(M_C_DomSmashCodProd (Javail𝑘K) ) (66)

feas ∶ [𝑖1 ∣⋯ ∣ 𝑖𝑛] ↦
𝑛⋀

𝑘=1
feas𝑘(𝑖𝑘) ∧

𝑛−1⋀

𝑘=1

(
𝗋𝖾𝗊𝑘(𝑖𝑘) ⪯𝐏𝑘 𝗉𝗋𝗈𝗏𝑘+1(𝑖𝑘+1)

)
(67)

This construction is described by the schema DP_C_Series (Section 26.12.11).

Lemma 25.11.

𝖥𝖱DP_C_Series (J𝐝𝑘K) = U1_C_Series (J𝖥𝖱𝐝𝑘K) (68)
𝖥𝖱𝖨DP_C_Series (J𝐝𝑘K) = U_C_Series (J𝖥𝖱𝖨 𝐝𝑘K) (69)
𝖥𝖱𝖡DP_C_Series (J𝐝𝑘K) = U_C_Series (J𝖥𝖱𝖡𝐝𝑘K) (70)
𝖱𝖥DP_C_Series (J𝐝𝑘K) = L1_C_Series (reversed (J𝖱𝖥𝐝𝑘K)) (71)
𝖱𝖥𝖨DP_C_Series (J𝐝𝑘K) = L_C_Series (reversed (J𝖱𝖥𝖨 𝐝𝑘K)) (72)
𝖱𝖥𝖡DP_C_Series (J𝐝𝑘K) = L_C_Series (reversed (J𝖱𝖥𝖡𝐝𝑘K)) (73)

Lemma 25.12 (Approximation results for the series). For ? ∈ {✓, ⌢, ⌣, ⋆},

𝓊𝑘 ∈ (𝖥𝖱?𝖿 𝐝𝑘)

U1_C_Series (J𝓊𝑘K) ∈ 𝖥𝖱?𝖿 (DP_C_Series (J𝐝𝑘K)) (74)

𝓊𝑘 ∈ (𝖥𝖱𝖨?𝖿 𝐝𝑘)

U_Series (J𝓊𝑘K) ∈ 𝖥𝖱𝖨?𝖿 (DP_C_Series (J𝐝𝑘K)) (75)
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𝓊𝑘 ∈ (𝖥𝖱𝖡?𝖿 𝐝𝑘)

U_Series (J𝓊𝑘K) ∈ 𝖥𝖱𝖡?𝖿 (DP_C_Series (J𝐝𝑘K)) (76)

𝓁𝑘 ∈ (𝖱𝖥?𝖿 𝐝𝑘)

L1_C_Series (reversed (J𝓁𝑘K)) ∈ 𝖱𝖥?𝖿 (DP_C_Series (J𝐝𝑘K)) (77)

𝓁𝑘 ∈ (𝖱𝖥𝖨?𝖿 𝐝𝑘)

L_Series (reversed (J𝓁𝑘K)) ∈ 𝖱𝖥𝖨?𝖿 (DP_C_Series (J𝐝𝑘K)) (78)

𝓁𝑘 ∈ (𝖱𝖥𝖡?𝖿 𝐝𝑘)

L_Series (reversed (J𝓁𝑘K)) ∈ 𝖱𝖥𝖡?𝖿 (DP_C_Series (J𝐝𝑘K)) (79)

25.5. Intersection

Definition 25.13
Given 𝑛 DPIs

J𝐝𝑘 ∶ 𝐅𝑘→DPI𝐑𝑘 {ℬ𝑘} K (80)

whose 𝐅𝑘 are subposets of a meet-semilattice 𝐅 and 𝐑𝑘 are subposets of a join-semilattice 𝐑, their intersection

DP_C_Intersection(J𝐝𝑘K)∶ 𝐅→DPI𝐑{P_C_ProductSmash (Jℬ𝑘K) } (81)

is the DPI that consists of:

𝐈 = P_C_ProductSmash (J𝐈𝑘K) (82)
𝗉𝗋𝗈𝗏 = M_C_CodMeet𝐅 (M_C_DomSmashCodProd

(
J𝗉𝗋𝗈𝗏𝑘K

)
) (83)

𝗋𝖾𝗊 = M_C_CodJoin𝐑 (M_C_DomSmashCodProd
(
J𝗋𝖾𝗊𝑘K

)
) (84)

avail = M_C_CodMeetBool (M_C_DomSmashCodProd (Javail𝑘K)) (85)
feas = M_C_CodMeetBool (M_C_DomSmashCodProd (Jfeas𝑘K)) (86)
IB = M_C_ParallelSmash (JIB𝑘K) (87)

This construction is described by the schema DP_C_Intersection (Section 26.12.12).

Lemma 25.14 (Query functoriality for the intersection).

𝖥𝖱DP_C_Intersection (J𝐝𝑘K) = U1_C_Intersection (J𝖥𝖱𝐝𝑘K) (88)
𝖥𝖱𝖨DP_C_Intersection (J𝐝𝑘K) = U_C_Intersection (J𝖥𝖱𝖨 𝐝𝑘K) (89)
𝖥𝖱𝖡DP_C_Intersection (J𝐝𝑘K) = U_C_Intersection (J𝖥𝖱𝖡𝐝𝑘K) (90)
𝖱𝖥DP_C_Intersection (J𝐝𝑘K) = L1_C_Intersection (J𝖱𝖥𝐝K) (91)
𝖱𝖥𝖨DP_C_Intersection (J𝐝𝑘K) = L_C_Intersection (J𝖱𝖥𝖨 𝐝K) (92)
𝖱𝖥𝖡DP_C_Intersection (J𝐝𝑘K) = L_C_Intersection (J𝖱𝖥𝖡𝐝K) (93)

Lemma 25.15 (Approximation results for the intersection). For ? ∈ {✓, ⌢, ⌣, ⋆},

𝓊𝑘 ∈ (𝖥𝖱?𝖿 𝐝𝑘)

U1_C_Intersection (J𝓊𝑘K) ∈ 𝖥𝖱?𝖿 (DP_C_Intersection (J𝐝𝑘K)) (94)

𝓊𝑘 ∈ (𝖥𝖱𝖨?𝖿 𝐝𝑘)

U_C_Intersection (J𝓊𝑘K) ∈ 𝖥𝖱𝖨?𝖿 (DP_C_Intersection (J𝐝𝑘K)) (95)
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𝓊𝑘 ∈ (𝖥𝖱𝖡?𝖿 𝐝𝑘)

U_C_Intersection (J𝓊𝑘K) ∈ 𝖥𝖱𝖡?𝖿 (DP_C_Intersection (J𝐝𝑘K)) (96)

𝓁𝑘 ∈ (𝖱𝖥?𝖿 𝐝𝑘)

L1_C_Intersection (J𝓁𝑘K) ∈ 𝖱𝖥?𝖿 (DP_C_Intersection (J𝐝𝑘K)) (97)

𝓁𝑘 ∈ (𝖱𝖥𝖨?𝖿 𝐝𝑘)

L_C_Intersection (J𝓁𝑘K) ∈ 𝖱𝖥𝖨?𝖿 (DP_C_Intersection (J𝐝𝑘K)) (98)

𝓁𝑘 ∈ (𝖱𝖥𝖡?𝖿 𝐝𝑘)

L_C_Intersection (J𝓁𝑘K) ∈ 𝖱𝖥𝖡?𝖿 (DP_C_Intersection (J𝐝𝑘K)) (99)

25.6. Union

Definition 25.16
Given 𝑛 DPIs J𝐝𝑘 ∶ 𝐅𝑘→DPI𝐑𝑘 {ℬ𝑘} K whose 𝐅𝑘 are subposets of a poset 𝐅 and 𝐑𝑘 are subposets of a poset 𝐑, their union

DP_C_Union(J𝐝𝑘K)∶ 𝐅→DPI𝐑{P_C_SumSmash (Jℬ𝑘K) } (100)

is the DPI that consists of:

𝐈 = P_C_SumSmash (J𝐈𝑘K) (101)
𝗉𝗋𝗈𝗏 = M_C_CoproductSmash

(
J𝗉𝗋𝗈𝗏𝑘K

)
(102)

𝗋𝖾𝗊 = M_C_CoproductSmash
(
J𝗋𝖾𝗊𝑘K

)
(103)

avail = M_C_CoproductSmash (Javail𝑘K) (104)
feas = M_C_CoproductSmash (Jfeas𝑘K) (105)
IB = M_C_SumSmash (JIB𝑘K) (106)

This construction is described by the schema DP_C_Union (Section 26.12.13).

Lemma 25.17 (Query functoriality for the union).

𝖥𝖱DP_C_Union (J𝐝𝑘K) = U1_C_Union
(
J𝖥𝖱𝐝𝑘𝑘K

)
(107)

𝖥𝖱𝖨DP_C_Union (J𝐝𝑘K) = U_C_Union
(
J𝖥𝖱𝖨 𝐝𝑘𝑘K

)
(108)

𝖥𝖱𝖡DP_C_Union (J𝐝𝑘K) = U_C_Union
(
J𝖥𝖱𝖡𝐝𝑘𝑘K

)
(109)

𝖱𝖥DP_C_Union (J𝐝𝑘K) = L1_C_Union (J𝖱𝖥𝐝𝑘K) (110)
𝖱𝖥𝖨DP_C_Union (J𝐝𝑘K) = L_C_Union (J𝖱𝖥𝖨 𝐝𝑘K) (111)
𝖱𝖥𝖡DP_C_Union (J𝐝𝑘K) = L_C_Union (J𝖱𝖥𝖡𝐝𝑘K) (112)

Lemma 25.18 (Approximation results for the union). For ? ∈ {✓, ⌢, ⌣, ⋆},

𝓊𝑘 ∈ (𝖥𝖱?𝖿 𝐝𝑘)

U1_C_Union (J𝓊𝑘K) ∈ 𝖥𝖱?𝖿 (DP_C_Union (J𝐝𝑘K)) (113)

𝓊𝑘 ∈ (𝖥𝖱𝖨?𝖿 𝐝𝑘)

U_C_Union (J𝓊𝑘K) ∈ 𝖥𝖱𝖨?𝖿 (DP_C_Union (J𝐝𝑘K)) (114)

𝓊𝑘 ∈ (𝖥𝖱𝖡?𝖿 𝐝𝑘)

U_C_Union (J𝓊𝑘K) ∈ 𝖥𝖱𝖡?𝖿 (DP_C_Union (J𝐝𝑘K)) (115)
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𝓁𝑘 ∈ (𝖱𝖥?𝖿 𝐝𝑘)

L1_C_Union (J𝓁𝑘K) ∈ 𝖱𝖥?𝖿 (DP_C_Union (J𝐝𝑘K)) (116)

𝓁𝑘 ∈ (𝖱𝖥𝖨?𝖿 𝐝𝑘)

L_C_Union (J𝓁𝑘K) ∈ 𝖱𝖥𝖨?𝖿 (DP_C_Union (J𝐝𝑘K)) (117)

𝓁𝑘 ∈ (𝖱𝖥𝖡?𝖿 𝐝𝑘)

L_C_Union (J𝓁𝑘K) ∈ 𝖱𝖥𝖡?𝖿 (DP_C_Union (J𝐝𝑘K)) (118)

25.7. Trace

Definition 25.19
Given a DPI

𝐝0 ∶ P_C_Product(J𝐅1, 𝐅2K)→DPI P_C_Product(J𝐑1, 𝐑2K) {ℬ0} (119)
such that 𝐑2 and 𝐅2 are subposets of a poset 𝐏, the trace of 𝐝0 is the DPI

DP_C_Trace(𝐝0)∶ 𝐅1→DPI𝐑1 {ℬ0} (120)

whose data is:

𝐈 = 𝐈0 (121)
IB = IB0 (122)

𝗉𝗋𝗈𝗏 = 𝗉𝗋𝗈𝗏0 # 𝜋1 (123)
𝗋𝖾𝗊 = 𝗋𝖾𝗊0 # 𝜋1 (124)

avail = avail0 (125)
feas ∶ 𝑖 ↦ feas0(𝑖) ∧ ([𝗋𝖾𝗊0 # 𝜋2](𝑖) ⪯𝐏 [𝗉𝗋𝗈𝗏0 # 𝜋2](𝑖)) (126)

This construction is described by the schema DP_C_Trace (Section 26.12.14).

Lemma 25.20 (Query functoriality for the trace).

𝖥𝖱DP_C_Trace(𝐝0) = U1_C_Trace (𝖥𝖱 𝐝0) (127)
𝖥𝖱𝖨DP_C_Trace(𝐝0) = U_C_Trace (𝖥𝖱𝖨 𝐝0) (128)
𝖥𝖱𝖡DP_C_Trace(𝐝0) = U_C_Trace (𝖥𝖱𝖡 𝐝0) (129)
𝖱𝖥DP_C_Trace(𝐝0) = L1_C_Trace (𝖱𝖥 𝐝0) (130)
𝖱𝖥𝖨DP_C_Trace(𝐝0) = L_C_Trace (𝖱𝖥𝖨 𝐝0) (131)
𝖱𝖥𝖡DP_C_Trace(𝐝0) = L_C_Trace (𝖱𝖥𝖡 𝐝0) (132)

Lemma 25.21 (Approximation results for the trace). For ? ∈ {✓, ⌢, ⌣, ⋆},

𝓊0 ∈ (𝖥𝖱?𝖿 𝐝0)

U1_C_Trace (𝓊0) ∈ 𝖥𝖱?𝖿 (DP_C_Trace (𝐝0)) (133)

𝓊0 ∈ (𝖥𝖱𝖨?𝖿 𝐝0)

U_C_Trace (𝓊0) ∈ 𝖥𝖱𝖨?𝖿 (DP_C_Trace (𝐝0)) (134)

𝓊0 ∈ (𝖥𝖱𝖡?𝖿 𝐝0)

U_C_Trace (𝓊0) ∈ 𝖥𝖱𝖡?𝖿 (DP_C_Trace (𝐝0)) (135)

𝓁0 ∈ (𝖱𝖥?𝖿 𝐝0)

L1_C_Trace (𝓁0) ∈ 𝖱𝖥?𝖿 (DP_C_Trace (𝐝0)) (136)
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𝓁0 ∈ (𝖱𝖥𝖨?𝖿 𝐝0)

L_C_Trace (𝓁0) ∈ 𝖱𝖥𝖨?𝖿 (DP_C_Trace (𝐝0)) (137)

𝓁0 ∈ (𝖱𝖥𝖡?𝖿 𝐝0)

L_C_Trace (𝓁0) ∈ 𝖱𝖥𝖡?𝖿 (DP_C_Trace (𝐝0)) (138)
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26.1. Root - Top-level object types for what can be serialized in a file.

D
at
a

Property Symbol Type Description
version string? Version of the MCDP format used to serialize this object

(major.minor).
description string? A human-readable description of the object used for debug

purposes.
hash string? Unique hash for the object.
kind string Discriminator variable to distinguish subtypes.

The Root schema contains as subtypes all kinds of objects that can serialized in a MCDP file during an export operation.

Subtypes based on the value for kind

"Poset" A poset.
"MonotoneMap" Monotone maps
"L1Map" Map to lower sets of functionalities.
"U1Map" Map to upper sets of resources.
"LMap" Map to lower sets of functionalities and implementations.
"UMap" Map to upper sets of resources and implementations.
"SL1Map" Scalable map to lower sets of functionalities.
"SU1Map" Scalable map to upper sets of resources.
"SLMap" Scalable map to lower sets of functionalities and implementations.
"SUMap" Scalable map to upper sets of resources and implementations.
"DP" Design problem with implementations (DPI)
"NDP" Named DPs represent a graph of DPs with named nodes and node ports.
"NDPInterface" The interface of a named DP.
"NDPTemplate" A template for an NDP.
"Query" Queries
"Value" A typed value
"Check" Checks for the maps, as used in test cases.
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26.2. Poset - A poset.

D
at
a

Extends: Root(version, description, hash, kind = "Poset")

Property Symbol Type Description
address Address? Pointer to the entity that generated this object.
type string Discriminator variable to distinguish subtypes.

The Poset objects represent various kinds of posets.
Some of these are “primitive” posets, such as P_Decimal, P_Bool, P_Finite.
Some of these are “composite” posets. They are indicated by a prefix P_C_. Some examples are P_C_Product and P_C_Sum.
The posets whose name starts with P_F are “filters”. These represent a subposet of another poset. Some examples are P_F_Interval and
P_F_Subposet.
Each poset defines also the format in which its data can be serialized in YAML/CBOR.

Subtypes based on the value for type

"P_Bool" The poset of boolean values
"P_Decimal" Decimal numbers with fixed precision.
"P_Finite" Arbitrary finite poset
"P_Float" Poset of floating point numbers.
"P_Fractions" Fractions with a maximum absolute value for numerator and denominator.
"P_Integer" Poset of integers.
"P_Unknown" Placeholder for an unknown poset
"P_C_Arrow" Arrow constructors for posets.
"P_C_Discretized" Discretized version of a poset.
"P_C_LowerSets" The poset of lower sets of a given poset.
"P_C_Opposite" Opposite of a poset
"P_C_Power" Power poset of a given poset.
"P_C_Twisted" Twisted arrow construction of a poset.
"P_C_Units" A poset with units
"P_C_UpperSets" The poset of upper sets of a given poset.
"P_C_Lexicographic" Lexicographic product of posets
"P_C_Product" Cartesian product of posets
"P_C_ProductSmash" Poset smash product
"P_C_Sum" Direct sum of posets.
"P_C_SumSmash" Direct (smash) sum of posets
"P_F_Bounded" A subposet that allows to sample a numeric poset.
"P_F_C_Intersection" Intersection of posets.
"P_F_C_Union" Union of posets
"P_F_Interval" An interval in a poset.
"P_F_LowerClosure" Lower closure in a poset.
"P_F_Subposet" A finite subposet of an ambient poset.
"P_F_UpperClosure" Upper closure in a poset.

26.2.1. P_Bool - The poset of boolean values

D
at
a

Extends: Poset(address, type = "P_Bool")

Ex
am

pl
es {kind: Poset, type: P_Bool}

This is how to define the poset. There are no other parame-
ters.
Examples of values serialization:

true

false
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26.2.2. P_Decimal - Decimal numbers with fixed precision.

D
at
a

Extends: Poset(address, type = "P_Decimal")

Property Symbol Type Description
precision integer Number of decimal places.

Ex
am

pl
es

{kind: Poset, type: P_Decimal, precision: 9}

Examples of values serialization:

"0.0"

The value 0.0.

"+inf"

"-inf"

26.2.3. P_Finite - Arbitrary finite poset

D
at
a

Extends: Poset(address, type = "P_Finite")

Property Symbol Type Description
elements array[string] The elements of the poset, strings.
relations array[array[string]] The relations of the poset, each relation is a pair of elements. The

first element is less than the second element.
aliases dict[string,array[string]]? Aliases for the elements of the poset. The keys are the aliases, and

the values are arrays of elements that are equivalent to the alias.

A finite poset is a set of elements with a partial order defined by a set of relations.

Ex
am

pl
es

kind: Poset
type: P_Finite
elements: []
relations: []
aliases: {}

This is the empty poset.

kind: Poset
type: P_Finite
elements: [a, b]
relations: []

This is a poset with two elements that are not related.

kind: Poset
type: P_Finite
elements: [a, b]
relations: [[a, b]]

This is a poset with two elements with 𝑎 ≤ 𝑏.

kind: Poset
type: P_Finite
elements: [a, b, c]
relations: [[a, b], [b, c]]
aliases: {a: [a1, a2]}

This is a pre-order with 5 elements: a, b, c, a1, and a2. The
elements a, a1, a2 are equivalent. The element a is used as
the representative of the equivalence class.
Examples of values serialization:

a

a2
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26.2.4. P_Float - Poset of floating point numbers.

D
at
a

Extends: Poset(address, type = "P_Float")

Property Symbol Type Description
size string Precision of the floating point number. Current supported values

are f32 and f64.
Possible values: "f8", "f16", "f32", "f64", "f80", "f128"

Ex
am

pl
es

{kind: Poset, type: P_Float, size: f32}

26.2.5. P_Fractions - Fractions with a maximum absolute value for numerator and denominator.

D
at
a

Extends: Poset(address, type = "P_Fractions")

Property Symbol Type Description
size string Precision of the fraction.

Possible values: "i8", "i16", "i32", "i64", "i128"
max_abs_numerator integer Maximum absolute value for the numerator.
max_abs_denominator integer Maximum absolute value for the denominator.

Fractions with a maximum absolute value for numerator and denominator.

Ex
am

pl
es kind: Poset

type: P_Fractions
size: i32
max_abs_numerator: 1000
max_abs_denominator: 1000

Examples of values serialization:

"0"

"1/0"

"-1/0"

26.2.6. P_Integer - Poset of integers.

D
at
a

Extends: Poset(address, type = "P_Integer")

Property Symbol Type Description
size string Bit size of the integer.

Possible values: "i8", "i16", "i32", "i64", "i128"

Ex
am

pl
es

{kind: Poset, type: P_Integer, size: i32}

Examples of values serialization:

"0"

The value 0.

"1000000000000000"

A large positive integer.
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26.2.7. P_Unknown - Placeholder for an unknown poset

D
at
a

Extends: Poset(address, type = "P_Unknown")

Ex
am

pl
es

{kind: Poset, type: P_Unknown}

26.2.8. P_C_Arrow - Arrow constructors for posets.

D
at
a

Extends: Poset(address, type = "P_C_Arrow")

Property Symbol Type Description
poset Poset The base poset.

Discussed in Section 17.2.2 (Arrow constructions)

The arrow construction of a poset is a poset where the values are pairs of elements from the underlying poset.
This poset has the same elements as P_C_Twisted, but the order is different.

Ex
am

pl
es kind: Poset

type: P_C_Arrow
poset: {kind: Poset, type: P_Decimal}

Poset of intervals of decimal numbers.
Examples of values serialization:

["0", "10"]

The interval from 0 to 10, inclusive.

26.2.9. P_C_Discretized - Discretized version of a poset.

D
at
a

Extends: Poset(address, type = "P_C_Discretized")

Property Symbol Type Description
poset Poset The base poset.

Discussed in Section 17.2.3 (Discretized version of a poset)

Ex
am

pl
es

kind: Poset
type: P_C_Discretized
poset: {kind: Poset, type: P_Bool}

The poset of boolean values without the order
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26.2.10. P_C_LowerSets - The poset of lower sets of a given poset.

D
at
a

Extends: Poset(address, type = "P_C_LowerSets")

Property Symbol Type Description
poset Poset The base poset.

Discussed in Section 17.2.4 (Posets of subsets)

Ex
am

pl
es kind: Poset

type: P_C_LowerSets
poset: {kind: Poset, type: P_Decimal}

Poset of lowersets of decimal numbers.
Examples of values serialization:

["10"]

The lower set ↓ 10.

26.2.11. P_C_Opposite - Opposite of a poset

D
at
a

Extends: Poset(address, type = "P_C_Opposite")

Property Symbol Type Description
poset Poset The base poset.

Discussed in Section 17.2.1 (Opposite of a poset)

Ex
am

pl
es

kind: Poset
type: P_C_Opposite
poset: {kind: Poset, type: P_Decimal}

The opposite poset of decimal numbers.
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26.2.12. P_C_Power - Power poset of a given poset.

D
at
a

Extends: Poset(address, type = "P_C_Power")

Property Symbol Type Description
poset Poset The base poset.

Discussed in Section 17.2.4 (Posets of subsets)

Ex
am

pl
es

kind: Poset
type: P_C_Power
poset: {kind: Poset, type: P_Decimal}

Poset of powersets of decimal numbers.
Examples of values serialization:

["10", "20"]

The set {10, 20}.

[]

The empty subset.

26.2.13. P_C_Twisted - Twisted arrow construction of a poset.

D
at
a

Extends: Poset(address, type = "P_C_Twisted")

Property Symbol Type Description
poset Poset The base poset.

Discussed in Section 17.2.2 (Arrow constructions)

The twisted arrow construction of a poset is a poset where the values are pairs of elements from the underlying poset.
This poset has the same elements as P_C_Arrow, but the order is different.

Ex
am

pl
es kind: Poset

type: P_C_Twisted
poset: {kind: Poset, type: P_Decimal}

Poset of intervals of decimal numbers.
Examples of values serialization:

["0", "10"]

The interval from 0 to 10, inclusive.

26.2.14. P_C_Units - A poset with units

D
at
a

Extends: Poset(address, type = "P_C_Units")

Property Symbol Type Description
poset Poset The base poset.
units Unit The units of the poset.
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kind: Poset
type: P_C_Units
poset: {kind: Poset, type: P_Decimal}
units: {kind: Unit, type: Unit_Single, units: m^2/s}

The poset of decimal numbers with units of𝑚2∕𝑠.

kind: Poset
type: P_C_Units
poset:
kind: Poset
type: P_C_Product
subs:
- {kind: Poset, type: P_Decimal}
- {kind: Poset, type: P_Decimal}

units:
kind: Unit
type: Unit_Vector
subs:
- {kind: Unit, type: Unit_Single, units: m}
- {kind: Unit, type: Unit_Single, units: g}

This is how to assign the units m (meters) and g (grams) to
a product 𝑃 × 𝑄.

26.2.15. P_C_UpperSets - The poset of upper sets of a given poset.

D
at
a

Extends: Poset(address, type = "P_C_UpperSets")

Property Symbol Type Description
poset Poset The base poset.

Discussed in Section 17.2.4 (Posets of subsets)

Ex
am

pl
es kind: Poset

type: P_C_UpperSets
poset: {kind: Poset, type: P_Decimal}

Poset of uppersets of decimal numbers.
Examples of values serialization:

["10"]

The upper set ↑ 10.

26.2.16. P_C_Lexicographic - Lexicographic product of posets

D
at
a

Extends: Poset(address, type = "P_C_Lexicographic")

Property Symbol Type Description
subs array[Poset] A list of posets that are composed together.
labels array[string]? A list of labels for the posets.

Discussed in Section 17.3.3 (Lexicographic product of posets)

This is the lexicographic product of posets. The order is defined by the lexicographic order of the elements of the subs posets.
The elements are the same as in P_C_Product, but the order is different.

Ex
am

pl
es

kind: Poset
type: P_C_Lexicographic
subs:
- {kind: Poset, type: P_Decimal}
- {kind: Poset, type: P_Bool}
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26.2.17. P_C_Product - Cartesian product of posets

D
at
a

Extends: Poset(address, type = "P_C_Product")

Property Symbol Type Description
subs array[Poset] A list of posets that are composed together.
labels array[string]? A list of labels for the posets.

Discussed in Section 17.3.1 (Cartesian product of posets)

This is the Cartesian product of posets.

Ex
am

pl
es

kind: Poset
type: P_C_Product
subs:
- {kind: Poset, type: P_Decimal}
- {kind: Poset, type: P_Bool}

The product of a decimal poset and a boolean poset.
Examples of values serialization:

["10", true]

The element ⟨10, ⊤⟩.

{kind: Poset, type: P_C_Product, subs: []}
This is the empty product. It has exactly one element, the
empty tuple.
Examples of values serialization:

[]

The empty tuple

26.2.18. P_C_ProductSmash - Poset smash product

D
at
a

Extends: Poset(address, type = "P_C_ProductSmash")

Property Symbol Type Description
subs array[Poset] A list of posets that are composed together.
labels array[string]? A list of labels for the posets.
ranges array[Range] The ranges of the posets in the smash product. See also P_C_Sum
naked array[boolean] Whether each poset is "naked" or not.

Discussed in Section 17.3.1 (Smash product of posets)

This poset is the “smash product”. Its elements are concatenation of tuples of elements of the underlying posets.
We say that a subposet is “naked” if it is not of a “smash nature” and its elements need to be wrapped as a tuple.
The posets that are of a smash nature are:

• Other instances of P_C_ProductSmash
• Instances of P_C_SumSmash
• Instances of filters (e.g. P_F_Subposet or P_C_Units) whose underlying poset is of smash nature.

The ranges parameter describe what is the range in the tuple of each subposet.
Both the ranges and naked parameters are redundant in the sense that they can be computed from the subs, but they are provided for
convenience and to avoid recomputing them.

Ex
am

pl
es
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kind: Poset
type: P_C_ProductSmash
subs: []
naked: []
ranges: []

The empty smash product. It has exactly one element, the
empty tuple.
Examples of values serialization:

[]

The empty tuple

kind: Poset
type: P_C_ProductSmash
subs:
- {kind: Poset, type: P_Decimal}
- kind: Poset
type: P_C_ProductSmash
subs:
- {kind: Poset, type: P_Decimal}
- {kind: Poset, type: P_Bool}

naked: [true, true]
ranges:
- {type: Range, start: 0, stop: 1, ntot: 2}
- {type: Range, start: 1, stop: 2, ntot: 2}

- {kind: Poset, type: P_Decimal}
naked: [true, false, true]
ranges:
- {type: Range, start: 0, stop: 1, ntot: 4}
- {type: Range, start: 1, stop: 3, ntot: 4}
- {type: Range, start: 3, stop: 4, ntot: 4}

This is the smash product of 3 posets: booleans, a smash
product of two posets, and the decimals. The first and the
last posets are naked, while the middle one is not because
it is of a smash nature.
Examples of values serialization:

[true, "10", false, "20"]

26.2.19. P_C_Sum - Direct sum of posets.

D
at
a

Extends: Poset(address, type = "P_C_Sum")

Property Symbol Type Description
subs array[Poset] A list of posets that are composed together.
labels array[string]? A list of labels for the posets.

Discussed in Section 17.3.2 (Direct sum of posets)

Ex
am

pl
es

kind: Poset
type: P_C_Sum
subs:
- {kind: Poset, type: P_Decimal}
- {kind: Poset, type: P_Bool}

26.2.20. P_C_SumSmash - Direct (smash) sum of posets

D
at
a

Extends: Poset(address, type = "P_C_SumSmash")

Property Symbol Type Description
subs array[Poset] A list of posets that are composed together.
labels array[string]? A list of labels for the posets.
trivial boolean
ranges array[Range]
naked array[boolean]

Discussed in Section 17.3.2 (Direct (smash) sum of posets)

This is the direct sum of posets but of “smash nature”. See the description of P_C_ProductSmash for the description of ranges and naked.
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kind: Poset
type: P_C_SumSmash
trivial: false
subs:
- {kind: Poset, type: P_Decimal}
- {kind: Poset, type: P_Bool}

naked: [true, true]
ranges:
- {type: Range, start: 0, stop: 1, ntot: 2}
- {type: Range, start: 0, stop: 1, ntot: 2}

26.2.21. P_F_Bounded - A subposet that allows to sample a numeric poset.

D
at
a

Extends: Poset(address, type = "P_F_Bounded")

Property Symbol Type Description
poset Poset The ambient poset.
bottom B any The bottom element of the subposet.
top T any The top element of the subposet.
step S string The step size of the subposet.
offset O any The offset
bound_high H any An upper bound.
bound_low L any A lower bound.

A bounded poset is a subposet of a numeric poset that allows to discretize it.
It is defined by 5 values that satisfy:

B ≤ L ≤ O ≤ H ≤ T (1)

The subposet is defined by
{B, T} ∪ ([L,H] ∩ {O + 𝑖 ⋅ S ∣ 𝑖 ∈ ℤ}) (2)

where [L,H] is the closed interval between L and H.

Ex
am

pl
es

kind: Poset
type: P_F_Bounded
poset: {kind: Poset, type: P_Decimal}
bottom: "0"
bound_low: "0"
step: "1"
offset: "0"
bound_high: "+inf"
top: "+inf"

This defines the nonnegative integers.

kind: Poset
type: P_F_Bounded
poset: {kind: Poset, type: P_Decimal}
bottom: "-inf"
bound_low: "-inf"
step: "2"
offset: "1"
bound_high: "+inf"
top: "+inf"

This defines the odd integers. The offset is 1 and the step is
2.

kind: Poset
type: P_F_Bounded
poset: {kind: Poset, type: P_Decimal}
bottom: "-inf"
bound_low: "0"
offset: "0"
step: "1.5"
bound_high: "6"
top: "+inf"

This complex example describes the poset with the elements
{−∞, 0, 1.5, 3, 4.5, 6, +∞}.
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26.2.22. P_F_C_Intersection - Intersection of posets.

D
at
a

Extends: Poset(address, type = "P_F_C_Intersection")

Property Symbol Type Description
ambient Poset The ambient poset that includes the others.
subs array[Poset] The posets that are included in the intersection. They are all

subposets of the ambient poset.
labels array[string]? Labels for the posets.

Discussed in Section 17.4.4 (Union and Intersection of sub posets)

26.2.23. P_F_C_Union - Union of posets

D
at
a

Extends: Poset(address, type = "P_F_C_Union")

Property Symbol Type Description
ambient Poset The ambient poset that includes the others.
subs array[Poset] The posets that are included in the union. They are all subposets

of the ambient poset.
labels array[string]? Labels for the posets.

Discussed in Section 17.4.4 (Union and Intersection of sub posets)

Ex
am

pl
es

kind: Poset
type: P_F_C_Union
ambient: {kind: Poset, type: P_Decimal}
subs:
- kind: Poset
type: P_F_Interval
poset: {kind: Poset, type: P_Decimal}
low: "10"
high: "20"

- kind: Poset
type: P_F_Interval
poset: {kind: Poset, type: P_Decimal}
low: "30"
high: "35"

This describes the poset [10, 20] ∪ [30, 35] in the ambient
poset of decimal numbers.
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26.2.24. P_F_Interval - An interval in a poset.

D
at
a

Extends: Poset(address, type = "P_F_Interval")

Property Symbol Type Description
poset 𝑃 Poset The ambient poset.
low 𝑎 any The lower bound of the interval.
high 𝑏 any The upper bound of the interval.

Discussed in Section 17.4.2 (Interval in a poset)

Let 𝑃 be a poset, and let 𝑎 and 𝑏 be elements of 𝑃. Then this poset represents the subposet in 𝑃, given by {𝑥 ∈ 𝑃 ∣ 𝑎 ≤ 𝑥 ≤ 𝑏}.

Ex
am

pl
es

kind: Poset
type: P_F_Interval
poset: {kind: Poset, type: P_Decimal}
low: "10"
high: "20"

This describes the interval [10, 20] in the ambient poset of
decimal numbers.

26.2.25. P_F_LowerClosure - Lower closure in a poset.

D
at
a

Extends: Poset(address, type = "P_F_LowerClosure")

Property Symbol Type Description
poset Poset The ambient poset.
ls LowerSet The lower set.

Discussed in Section 17.4.3 (Lower and upper closure in a poset)

Ex
am

pl
es

kind: Poset
type: P_F_LowerClosure
poset:
kind: Poset
type: P_C_Product
subs:
- {kind: Poset, type: P_Decimal}
- {kind: Poset, type: P_Bool}

ls:
kind: LowerSet
type: LowerSet_LowerClosure
points: [["10", true], ["20", false]]

This describes the lower closure of the set {⟨10, ⊤⟩, ⟨20, ⊥⟩}
in the ambient poset of decimal numbers and booleans.

26.2.26. P_F_Subposet - A finite subposet of an ambient poset.

D
at
a

Extends: Poset(address, type = "P_F_Subposet")

Property Symbol Type Description
elements array[any] The elements of the subposet.
poset Poset The ambient poset that contains the elements.

Discussed in Section 17.4.1 (Finite subposet of an ambient poset)

A finite subposet of an ambient poset specified by a list of elements.
As a particular case, the list of elements can be empty.
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kind: Poset
type: P_F_Subposet
poset: {kind: Poset, type: P_Decimal}
elements: ["0.1", "0.2"]

This describes the subposet {0.1, 0.2} in the ambient poset
of decimal numbers.

kind: Poset
type: P_F_Subposet
poset: {kind: Poset, type: P_Decimal}
elements: []

This describes the empty subposet in the ambient poset of
decimal numbers.

26.2.27. P_F_UpperClosure - Upper closure in a poset.

D
at
a

Extends: Poset(address, type = "P_F_UpperClosure")

Property Symbol Type Description
poset Poset The ambient poset.
us UpperSet The upper set.

Discussed in Section 17.4.3 (Lower and upper closure in a poset)

Ex
am

pl
es

kind: Poset
type: P_F_UpperClosure
poset:
kind: Poset
type: P_C_Product
subs:
- {kind: Poset, type: P_Decimal}
- {kind: Poset, type: P_Bool}

us:
kind: UpperSet
type: UpperSet_UpperClosure
points: [["10", true], ["20", false]]

This describes the upper closure of the set {(10, ⊤), (20, ⊥)}
in the ambient poset of decimal numbers and booleans.
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26.3. MonotoneMap - Monotone maps

D
at
a

Extends: Root(version, description, hash, kind = "MonotoneMap")

Property Symbol Type Description
dom dom Poset Domain of the monotone map
cod cod Poset Codomain of the monotone map
type string Discriminator variable to distinguish subtypes.

Subtypes based on the value for type

"M_Constant" A constant function
"M_Empty" The unique map from the empty set to another
"M_Explicit" A map defined pointwise.
"M_Id" Identity map
"M_Undefined" Undefined map
"M_Unknown" Placeholder for an unknown map
"M_ContainedInLowerSet" Test for containment in a lower set
"M_ContainedInUpperSet" Test for containment in an upper set
"M_Injection" Injection into a poset sum
"M_Join" Join operation
"M_JoinConstant" Join with a constant value
"M_Meet" Meet operation
"M_MeetConstant" Meet with a constant
"M_RepresentPrincipalLower
Set_TotalOrderBounded"

Largest principal lower set in the poset.

"M_RepresentPrincipalUpper
Set_TotalOrderBounded"

Largest principal upper set in the poset.

"M_SmashInjection" Injection into a smash sum
"M_C_Op" Opposite of a map
"M_C_RefineDomain" A refinement of the domain of a monotone map
"M_C_WrapUnits" Wraps a monotone map with units descriptions for domain and codomain.
"M_C_Coproduct" Coproduct of monotone maps
"M_C_CoproductSmash" Smash coproduct of two monotone maps
"M_C_DomProdCodSmash" A monotone map from a product of domains to a smash product of codomains.
"M_C_DomSmashCodProd" A monotone map from the smash product of domains to the product of codomains.
"M_C_DomUnion" Domain union of monotone maps
"M_C_Parallel" Monoidal product of monotone maps
"M_C_ParallelSmash" Monoidal (smash) product of monotone maps
"M_C_Product" Product of monotone maps
"M_C_ProductSmash" Smash product of monotone maps
"M_C_Series" Series composition of monotone maps
"M_C_Sum" Sum of monotone maps
"M_C_SumSmash" Smash sum of monotone maps
"M_AddL" Addition in the L topology.
"M_AddLConstant" Add a constant in the L topology.
"M_AddU" Addition in the U topology.
"M_AddUConstant" Addition of constant in the U topology.
"M_Ceil0" Ceiling function relative
"M_DivideLConstant" Division by a constant (L topology)
"M_DivideUConstant" Division by a constant (U topology)
"M_Floor0" Floor function relative
"M_MultiplyL" Multiplication (L topology)
"M_MultiplyLConstant" Multiplication by a constant (L topology)
"M_MultiplyU" Multiplication (U topology)
"M_MultiplyUConstant" Multiplication by a constant (U topology)
"M_PowerFracL" Lift to the power of a fraction (L topology)
"M_PowerFracU" Lift to the power of a fraction (U topology)
"M_RoundDown" Round down
"M_RoundUp" Round up
"M_ScaleL" Scaling in the L topology by a fraction.
"M_ScaleU" Scaling in the U topology by a fraction.
"M_SubLConstant" Subtraction of a constant (L topology)
"M_SubUConstant" Subtraction by a constant (U topology)
"M_C_LiftToSubsets" Lift of a monotone map to subsets
"M_LiftToLowerSets" Lifts a monotone map to lower sets
"M_LiftToUpperSets" Lifts a monotone map to upper sets
"M_BottomIfNotTop" Maps top to top, and everything else to bottom.
"M_IdentityBelowThreshold" A monotone map that outputs a constant value if the input is above a threshold.
"M_Threshold1" Threshold map (r-to-f for DP_FuncNotMoreThan)
"M_Threshold2" Threshold map (f-to-r for DP_ResNotLessThan)
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"M_TopIfNotBottom" Maps bottom to bottom, and everything else to top.
"M_Lift" Lifts a value to a tuple with one element.
"M_TakeIndex" Projection of an element in a poset product.
"M_TakeRange" Projection of a range of elements in a smash poset product.
"M_Unlift" Unlifts a one-element tuple to its single element.
"M_C_Leq_X" Tests constant ≤ 𝑥
"M_C_Lt_X" Tests constant < 𝑥
"M_X_Leq_C" Tests 𝑥 ≤ constant
"M_X_Lt_C" Tests 𝑥 < constant
"M_Leq" Tests 𝑥1 ≤𝑃 𝑥2

26.3.1. M_Constant - A constant function

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_Constant")

Property Symbol Type Description
value 𝑣 Value The constant value of the map.

Discussed in Section 18.2 (Constant maps)

26.3.2. M_Empty - The unique map from the empty set to another

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_Empty")

26.3.3. M_Explicit - A map defined pointwise.

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_Explicit")

Property Symbol Type Description
options array[M_Explicit_Option] A list of pairs (𝑥, 𝑦) such that the map sends 𝑥 to 𝑦.

Discussed in Section 18.9 (Catalog)

M_Explicit_Option

D
at
a Property Symbol Type Description

x any
y any

26.3.4. M_Id - Identity map

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_Id")

Discussed in Section 18.1 (Identity map)
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26.3.5. M_Undefined - Undefined map

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_Undefined")

26.3.6. M_Unknown - Placeholder for an unknown map

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_Unknown")

26.3.7. M_ContainedInLowerSet - Test for containment in a lower set

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_ContainedInLowerSet")

Property Symbol Type Description
lower_set 𝐿 LowerSet The lower set
opspace 𝑃 Poset The poset in which the lower set is defined.

Discussed in Section 18.12.1 (Lower set containment tests)

This map tests whether the input is contained in the lower set:

𝑥 ↦ 𝑥 ∈ 𝐿 (3)

26.3.8. M_ContainedInUpperSet - Test for containment in an upper set

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_ContainedInUpperSet")

Property Symbol Type Description
upper_set 𝑈 UpperSet The upper set
opspace 𝑃 Poset The poset in which the upper set is defined

Discussed in Section 18.12.2 (Upper set containment tests)

This map tests whether the input is contained in the upper set:

𝑥 ↦ 𝑥 ∈ 𝑈 (4)

26.3.9. M_Injection - Injection into a poset sum

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_Injection")

Property Symbol Type Description
index integer Which space to inject into

Discussed in Section 18.8.2 (Injections)

This is the injection map into the 𝑖-th poset of a poset sum P_C_Sum.
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26.3.10. M_Join - Join operation

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_Join")

Property Symbol Type Description
opspaces array[Poset] The posets in which each join is defined.

Discussed in Section 18.6.1 (𝑛-ary Join)

The join operation is defined as follows:
𝑥 ↦

⋁

𝑖
𝑥𝑖 (5)

where 𝑥𝑖 is the 𝑖-th component of 𝑥 in the poset sum.

26.3.11. M_JoinConstant - Join with a constant value

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_JoinConstant")

Property Symbol Type Description
value 𝑐 Value The constant value to join with.
opspace 𝑃 Poset The poset in which the join operation is defined.

Discussed in Section 18.5 (Unary join and meet operations)

This map performs a join with a constant value:
𝑥 ↦ 𝑥 ∨ 𝑐 (6)

where 𝑐 is the constant value.

26.3.12. M_Meet - Meet operation

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_Meet")

Property Symbol Type Description
opspaces array[Poset] The posets in which each meet is defined.

Discussed in Section 18.6.2 (𝑛-ary Meet)

The meet operation is defined as follows:
𝑥 ↦

⋀

𝑖
𝑥𝑖 (7)

where 𝑥𝑖 is the 𝑖-th component of 𝑥 in the poset sum.
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26.3.13. M_MeetConstant - Meet with a constant

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_MeetConstant")

Property Symbol Type Description
value 𝑐 Value The constant value to meet with.
opspace 𝑃 Poset The poset in which the meet operation is defined.

Discussed in Section 18.5 (Unary join and meet operations)

This map performs a meet with a constant value:
𝑥 ↦ 𝑥 ∧ 𝑐 (8)

where 𝑐 is the constant value.

26.3.14. M_RepresentPrincipalLowerSet_TotalOrderBounded - Largest principal lower set in the poset.

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_RepresentPrincipalLowerSet_TotalOrderBounded")

This map𝑚 ∶ dom → cod, with dom, cod subposets of a common ambient posets. takes a point 𝑥 in the domain and returns the largest
lower set containing its down closure.

𝑥 ↦ argmax
𝑦≤𝑥

↓ 𝑦 (9)

The compilation process ensures that this map is constructed only when this is always well defined.
Example: dom = ℝ and cod = ℕ

26.3.15. M_RepresentPrincipalUpperSet_TotalOrderBounded - Largest principal upper set in the poset.

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_RepresentPrincipalUpperSet_TotalOrderBounded")

This map𝑚 ∶ dom → cod, with dom, cod subposets of a common ambient poset takes a point 𝑥 in the domain and returns the largest
upper set containing its closure.

𝑥 ↦ argmin
𝑦≥𝑥

↑ 𝑦

The compilation process ensures that this map is constructed only when this is always well defined.
Example: dom = ℝ and cod = ℕ

26.3.16. M_SmashInjection - Injection into a smash sum

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_SmashInjection")

Property Symbol Type Description
index integer Which space to inject into

Discussed in Section 18.8.2 (Injections)

This is the injection map into the 𝑖-th poset of a smash poset sum P_C_SumSmash.
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26.3.17. M_C_Op - Opposite of a map

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_C_Op")

Property Symbol Type Description
m 𝑚 MonotoneMap The original map

Discussed in Section 19.1.1 (Opposite of a map)

26.3.18. M_C_RefineDomain - A refinement of the domain of a monotone map

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_C_RefineDomain")

Property Symbol Type Description
m 𝑚 MonotoneMap The original map

26.3.19. M_C_WrapUnits - Wraps a monotone map with units descriptions for domain and codomain.

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_C_WrapUnits")

Property Symbol Type Description
m 𝑚 MonotoneMap The original map
dom_units Unit Units for the domain of the monotone map.
cod_units Unit Units for the codomain of the monotone map.

26.3.20. M_C_Coproduct - Coproduct of monotone maps

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_C_Coproduct")

Property Symbol Type Description
maps 𝑚𝑖 array[MonotoneMap] A list of monotone maps that are composed together.
labels array[string]? A list of labels for the monotone maps.

Discussed in Section 19.2.5 (Coproduct of maps)

The coproduct of two or more monotone maps is a monotone map that selects one or the other map depending on the input.
If 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐶 → 𝐵, then

M_C_Coproduct(𝑓, 𝑔) ∶ P_C_Sum(𝐴, 𝐶) → 𝐵 (10)
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26.3.21. M_C_CoproductSmash - Smash coproduct of two monotone maps

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_C_CoproductSmash")

Property Symbol Type Description
maps 𝑚𝑖 array[MonotoneMap] A list of monotone maps that are composed together.
labels array[string]? A list of labels for the monotone maps.

Discussed in Section 19.2.5 (Coproduct of maps)

The smash coproduct of two or more monotone maps is a monotone map that selects one or the other map depending on the input.
If 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐶 → 𝐵, then

M_C_CoproductSmash(𝑓, 𝑔) ∶ P_C_SumSmash(𝐴, 𝐶) → 𝐵 (11)

26.3.22. M_C_DomProdCodSmash - A monotone map from a product of domains to a smash product of codomains.

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_C_DomProdCodSmash")

Property Symbol Type Description
maps 𝑚𝑖 array[MonotoneMap] A list of monotone maps that are composed together.
labels array[string]? A list of labels for the monotone maps.

Discussed in Section 19.2.1 (Parallel composition)

For two monotone maps 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐶 → 𝐷, we can define the monotone map

M_C_DomProdCodSmash(𝑓, 𝑔) ∶ P_C_Product(𝐴, 𝐶) → P_C_ProductSmash(𝐵, 𝐷) (12)

in the obvious way.

26.3.23. M_C_DomSmashCodProd - A monotone map from the smash product of domains to the product of
codomains.

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_C_DomSmashCodProd")

Property Symbol Type Description
maps 𝑚𝑖 array[MonotoneMap] A list of monotone maps that are composed together.
labels array[string]? A list of labels for the monotone maps.

Discussed in Section 19.2.1 (Parallel composition)

For two monotone maps 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐶 → 𝐷, we can define the monotone map

M_C_DomSmashCodProd(𝑓, 𝑔) ∶ P_C_ProductSmash(𝐴, 𝐶) → P_C_Product(𝐵, 𝐷) (13)

in the obvious way.
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26.3.24. M_C_DomUnion - Domain union of monotone maps

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_C_DomUnion")

Property Symbol Type Description
maps 𝑚𝑖 array[MonotoneMap] A list of monotone maps that are composed together.
labels array[string]? A list of labels for the monotone maps.

Discussed in Section 19.2.6 (Domain union)

Given two monotone maps 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐶 → 𝐵, the domain union of these maps is a monotone map that combines the domains of
both maps:

M_C_DomUnion(𝑓, 𝑔) ∶ P_F_C_Union(𝐴, 𝐶) → 𝐵 (14)

The value is defined as follows:

M_C_DomUnion(𝑓, 𝑔) ∶ 𝑥 ↦ {𝑓(𝑥) if 𝑥 ∈ 𝐴
𝑔(𝑥) if 𝑥 ∈ 𝐶

(15)

Note that the order of the maps does matter. We use the first map whose domain contains the input.

26.3.25. M_C_Parallel - Monoidal product of monotone maps

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_C_Parallel")

Property Symbol Type Description
maps 𝑚𝑖 array[MonotoneMap] A list of monotone maps that are composed together.
labels array[string]? A list of labels for the monotone maps.

Discussed in Section 19.2.1 (Parallel composition)

If 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐶 → 𝐷, then

M_C_Parallel(𝑓, 𝑔) ∶ P_C_Product(𝐴, 𝐶) → P_C_Product(𝐵, 𝐷) (16)

26.3.26. M_C_ParallelSmash - Monoidal (smash) product of monotone maps

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_C_ParallelSmash")

Property Symbol Type Description
maps 𝑚𝑖 array[MonotoneMap] A list of monotone maps that are composed together.
labels array[string]? A list of labels for the monotone maps.

Discussed in Section 19.2.1 (Parallel composition)

If 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐶 → 𝐷, then

M_C_ParallelSmash(𝑓, 𝑔) ∶ P_C_ProductSmash(𝐴, 𝐶) → P_C_ProductSmash(𝐵, 𝐷) (17)

26.3.27. M_C_Product - Product of monotone maps

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_C_Product")

Property Symbol Type Description
maps 𝑚𝑖 array[MonotoneMap] A list of monotone maps that are composed together.
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D
at
a

labels array[string]? A list of labels for the monotone maps.

Discussed in Section 19.2.3 (Product of maps)

The product of two or more monotone maps with the same domain is a monotone map that combines the outputs of both maps in a
product.
If 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐴 → 𝐶, then

M_C_Product(𝑓, 𝑔) ∶ 𝐴 → P_C_Product(𝐵, 𝐷) (18)

26.3.28. M_C_ProductSmash - Smash product of monotone maps

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_C_ProductSmash")

Property Symbol Type Description
maps 𝑚𝑖 array[MonotoneMap] A list of monotone maps that are composed together.
labels array[string]? A list of labels for the monotone maps.

Discussed in Section 19.2.3 (Product of maps)

The product of two or more monotone maps with the same domain is a monotone map that combines the outputs of both maps in a smash
product.
If 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐴 → 𝐶, then

M_C_ProductSmash(𝑓, 𝑔) ∶ 𝐴 → P_C_ProductSmash(𝐵, 𝐷) (19)

26.3.29. M_C_Series - Series composition of monotone maps

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_C_Series")

Property Symbol Type Description
maps 𝑚𝑖 array[MonotoneMap] A list of monotone maps that are composed together.
labels array[string]? A list of labels for the monotone maps.

Discussed in Section 19.2.2 (Series composition)

26.3.30. M_C_Sum - Sum of monotone maps

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_C_Sum")

Property Symbol Type Description
maps 𝑚𝑖 array[MonotoneMap] A list of monotone maps that are composed together.
labels array[string]? A list of labels for the monotone maps.

Discussed in Section 19.2.4 (Sum of maps)

The sum of two or more monotone maps is a monotone map that combines the outputs of both maps.
If 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐶 → 𝐷, then

M_C_Sum(𝑓, 𝑔) ∶ P_C_Sum(𝐴, 𝐶) → P_C_Sum(𝐵, 𝐷) (20)
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26.3.31. M_C_SumSmash - Smash sum of monotone maps

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_C_SumSmash")

Property Symbol Type Description
maps 𝑚𝑖 array[MonotoneMap] A list of monotone maps that are composed together.
labels array[string]? A list of labels for the monotone maps.

Discussed in Section 19.2.4 (Sum of maps)

The smash sum of two or more monotone maps is a monotone map that combines the outputs of both maps.
If 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐶 → 𝐷, then

M_C_SumSmash(𝑓, 𝑔) ∶ P_C_SumSmash(𝐴, 𝐶) → P_C_SumSmash(𝐵, 𝐷) (21)

26.3.32. M_AddL - Addition in the L topology.

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_AddL")

Property Symbol Type Description
opspaces 𝑃𝑖 array[Poset] The sequence of posets in which to perform the operation.

This map takes a sequence of elements from posets and returns their sum in the L topology.
If the domain is a product of length 𝑛, there are 𝑛 − 1 in opspaces.
For example, if the domain is a product of 4 posets, the sum 𝑎 + 𝑏 + 𝑐 + 𝑑 is computed as follows:

𝑡1 = 𝑎+opspaces0𝑏
𝑡2 = 𝑡1+opspaces1𝑐
𝑡3 = 𝑡2+opspaces2𝑑

26.3.33. M_AddLConstant - Add a constant in the L topology.

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_AddLConstant")

Property Symbol Type Description
opspace 𝑃 Poset The poset in which we do the operation.
value 𝑐 Value The constant to add to the input.

The map 𝑥 ↦ 𝑥 + 𝑐.

26.3.34. M_AddU - Addition in the U topology.

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_AddU")

Property Symbol Type Description
opspaces 𝑃𝑖 array[Poset] The sequence of posets in which to perform the operation.

See M_AddL for the meaning of opspaces.
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26.3.35. M_AddUConstant - Addition of constant in the U topology.

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_AddUConstant")

Property Symbol Type Description
opspace 𝑃 Poset The poset in which we do the operation.
value 𝑐 Value The constant to add.

The map 𝑥 ↦ 𝑥 + 𝑐.

26.3.36. M_Ceil0 - Ceiling function relative

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_Ceil0")

Property Symbol Type Description
opspace 𝑃 Poset The poset in which we do the operation.

This is a relative of the ceiling function defined only on ℝ≥0 and defined as follows:

𝑥 ↦
⎧

⎨
⎩

0 if 𝑥 = 0
∞ if 𝑥 = ∞
floor(𝑥 + 1) otherwise

(22)

See M_RoundUp for implementing the regular ceiling function.

26.3.37. M_DivideLConstant - Division by a constant (L topology)

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_DivideLConstant")

Property Symbol Type Description
opspace 𝑃 Poset The poset in which we do the operation.
value 𝑐 Value The constant to divide by.

Discussed in Section 18.4.3 (Division)

The map 𝑥 ↦ 𝑥∕𝑐.

26.3.38. M_DivideUConstant - Division by a constant (U topology)

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_DivideUConstant")

Property Symbol Type Description
opspace 𝑃 Poset The poset in which we do the operation.
value 𝑐 Value The constant to divide by.

Discussed in Section 18.4.3 (Division)

The map 𝑥 ↦ 𝑥∕𝑐.
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26.3.39. M_Floor0 - Floor function relative

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_Floor0")

Property Symbol Type Description
opspace 𝑃 Poset The poset in which we do the operation.

This is a relative of the floor function defined only on ℝ≥0 and defined as follows:

𝑥 ↦
⎧

⎨
⎩

0 if 𝑥 = 0
∞ if 𝑥 = ∞
ceil(𝑥 − 1) otherwise

(23)

See M_RoundDown for implementing the regular floor function.

26.3.40. M_MultiplyL - Multiplication (L topology)

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_MultiplyL")

Property Symbol Type Description
opspaces 𝑃𝑖 array[Poset] The sequence of posets in which to perform the operation.

See M_AddL for the meaning of the optional parameters.

26.3.41. M_MultiplyLConstant - Multiplication by a constant (L topology)

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_MultiplyLConstant")

Property Symbol Type Description
opspace 𝑃 Poset The poset in which we do the operation.
value 𝑐 Value The constant to multiply by.

The map 𝑥 ↦ 𝑥 ⋅ 𝑐.

26.3.42. M_MultiplyU - Multiplication (U topology)

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_MultiplyU")

Property Symbol Type Description
opspaces 𝑃𝑖 array[Poset] The sequence of posets in which to perform the operation.

Discussed in Section 18.4.2 (Multiplication)

See M_AddL for the meaning of opspaces.

26.3.43. M_MultiplyUConstant - Multiplication by a constant (U topology)

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_MultiplyUConstant")

Property Symbol Type Description
opspace 𝑃 Poset The poset in which we do the operation.
value 𝑐 Value The constant to multiply by.

The map 𝑥 ↦ 𝑥 ⋅ 𝑐.
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26.3.44. M_PowerFracL - Lift to the power of a fraction (L topology)

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_PowerFracL")

Property Symbol Type Description
opspace 𝑃 Poset The poset in which we do the operation.
num 𝑁 string The numerator of the fraction.
den 𝐷 string The denominator of the fraction.

The map 𝑥 ↦ 𝑥𝑁∕𝐷 .

26.3.45. M_PowerFracU - Lift to the power of a fraction (U topology)

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_PowerFracU")

Property Symbol Type Description
opspace 𝑃 Poset The poset in which we do the operation.
num 𝑁 string The numerator of the fraction.
den 𝐷 string The denominator of the fraction.

The map 𝑥 ↦ 𝑥𝑁∕𝐷 .

26.3.46. M_RoundDown - Round down

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_RoundDown")

Property Symbol Type Description
opspace 𝑃 Poset The poset in which we do the operation.
offset 𝑜 any The offset to subtract before rounding down.
step 𝑠 string The step to round down to.

Discussed in Section 18.3.1 (Generalized rounding)

26.3.47. M_RoundUp - Round up

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_RoundUp")

Property Symbol Type Description
opspace 𝑃 Poset The poset in which we do the operation.
offset 𝑜 any The offset to subtract before rounding up.
step 𝑠 string The step to round up to.

Discussed in Section 18.3.1 (Generalized rounding)

26.3.48. M_ScaleL - Scaling in the L topology by a fraction.

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_ScaleL")

Property Symbol Type Description
opspace 𝑃 Poset The poset in which we do the operation.
num 𝑁 string The numerator of the fraction.
den 𝐷 string The denominator of the fraction.

The map 𝑥 ↦ 𝑥 ⋅ (𝑁∕𝐷).
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26.3.49. M_ScaleU - Scaling in the U topology by a fraction.

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_ScaleU")

Property Symbol Type Description
opspace 𝑃 Poset The poset in which we do the operation.
num 𝑁 string The numerator of the fraction.
den 𝐷 string The denominator of the fraction.

The map 𝑥 ↦ 𝑥 ⋅𝑃 (𝑁∕𝐷).

26.3.50. M_SubLConstant - Subtraction of a constant (L topology)

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_SubLConstant")

Property Symbol Type Description
opspace 𝑃 Poset The poset in which we do the operation.
value 𝑐 Value The constant to subtract.

The map 𝑥 ↦ 𝑥 − 𝑐.

26.3.51. M_SubUConstant - Subtraction by a constant (U topology)

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_SubUConstant")

Property Symbol Type Description
opspace 𝑃 Poset The poset in which we do the operation.
value 𝑐 Value The constant to subtract.

The map 𝑥 ↦ 𝑥 − 𝑐.

26.3.52. M_C_LiftToSubsets - Lift of a monotone map to subsets

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_C_LiftToSubsets")

Property Symbol Type Description
m MonotoneMap The monotone map that is lifted.

Discussed in Section 18.7 (Lifts to subsets)

26.3.53. M_LiftToLowerSets - Lifts a monotone map to lower sets

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_LiftToLowerSets")

Property Symbol Type Description
m MonotoneMap The monotone map that is lifted.

Discussed in Section 18.7 (Lifts to subsets)
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26.3.54. M_LiftToUpperSets - Lifts a monotone map to upper sets

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_LiftToUpperSets")

Property Symbol Type Description
m MonotoneMap The monotone map that is lifted.

Discussed in Section 18.7 (Lifts to subsets)

26.3.55. M_BottomIfNotTop - Maps top to top, and everything else to bottom.

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_BottomIfNotTop")

Discussed in Section 18.10 (Threshold maps)

𝑥 ↦ {⊤𝐶 if 𝑥 = ⊤𝐷

⊥𝐶 otherwise
(24)

26.3.56. M_IdentityBelowThreshold - A monotone map that outputs a constant value if the input is above a
threshold.

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_IdentityBelowThreshold")

Property Symbol Type Description
value 𝑉 Value Value returned by the map if the input is above the threshold. This

value must be greater than or equal to the threshold.
threshold 𝑇 Value Threshold value.

Discussed in Section 18.10 (Threshold maps)

𝑥 ↦ {𝑉 if 𝑇 ≤ 𝑥
𝑥 otherwise

(25)

where 𝑇 ≤ 𝑉.

26.3.57. M_Threshold1 - Threshold map (r-to-f for DP_FuncNotMoreThan)

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_Threshold1")

Property Symbol Type Description
value 𝑣 Value A constant value

Discussed in Section 18.10 (Threshold maps)

This map returns a constant value:

𝑥 ↦ {𝑥 if 𝑥 ≤ 𝑣
𝑣 otherwise

(26)

This map is the r-to-f map for DP_FuncNotMoreThan
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26.3.58. M_Threshold2 - Threshold map (f-to-r for DP_ResNotLessThan)

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_Threshold2")

Property Symbol Type Description
value 𝑣 Value A constant value

Discussed in Section 18.10 (Threshold maps)

This map returns a constant value:

𝑥 ↦ {𝑥 if 𝑣 ≤ 𝑥
𝑣 otherwise

(27)

This map arises as the f-to-r map of DP_ResNotLessThan.

26.3.59. M_TopIfNotBottom - Maps bottom to bottom, and everything else to top.

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_TopIfNotBottom")

Discussed in Section 18.10 (Threshold maps)

𝑥 ↦ {⊥𝐶 if 𝑥 = ⊥𝐷

⊤𝐶 otherwise
(28)

26.3.60. M_Lift - Lifts a value to a tuple with one element.

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_Lift")

Discussed in Section 18.8 (Plumbing)

The map is 𝑥 ↦ ⟨𝑥⟩
This is the inverse of M_Unlift.

26.3.61. M_TakeIndex - Projection of an element in a poset product.

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_TakeIndex")

Property Symbol Type Description
projection Projection Describes the projection

Discussed in Section 18.8.1 (Slicing)

The map 𝑥 ↦ 𝑥𝑖 where 𝑖 is the index of the projection.

Projection - Projection from a product.

D
at
a Property Symbol Type Description

type string Type marker
Must be equal to "Projection"

index integer The index of the element to project.
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D
at
a

ntot integer The total number of elements in the product.

26.3.62. M_TakeRange - Projection of a range of elements in a smash poset product.

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_TakeRange")

Property Symbol Type Description
range Range Describes the range of indices to take.

Discussed in Section 18.8.1 (Slicing)

The map 𝑥 ↦ 𝑥𝑖..𝑗 where 𝑖 and 𝑗 are the bounds of the range.

26.3.63. M_Unlift - Unlifts a one-element tuple to its single element.

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_Unlift")

Discussed in Section 18.8 (Plumbing)

The map is ⟨𝑥⟩ ↦ 𝑥
This is the inverse of M_Lift.

26.3.64. M_C_Leq_X - Tests constant ≤ 𝑥

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_C_Leq_X")

Property Symbol Type Description
opspace 𝑃 Poset Poset in which the comparison is performed.
value 𝑣 Value Comparison value.

Discussed in Section 18.11.1 (constant ⪯ 𝑥)

The map 𝑥 ↦ 𝑣 ≤𝑃 𝑥.

26.3.65. M_C_Lt_X - Tests constant < 𝑥

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_C_Lt_X")

Property Symbol Type Description
opspace 𝑃 Poset Poset in which the comparison is performed.
value 𝑣 Value Comparison value.

Discussed in Section 18.11.2 (constant ≺ 𝑥)

The map 𝑥 ↦ 𝑣 <𝑃 𝑥.
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26.3.66. M_X_Leq_C - Tests 𝑥 ≤ constant

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_X_Leq_C")

Property Symbol Type Description
opspace 𝑃 Poset Poset in which the comparison is performed.
value 𝑣 Value Comparison value.

Discussed in Section 18.11.3 (𝑥 ⪯ constant)

The map 𝑥 ↦ 𝑥 ≤𝑃 𝑣.

26.3.67. M_X_Lt_C - Tests 𝑥 < constant

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_X_Lt_C")

Property Symbol Type Description
opspace 𝑃 Poset Poset in which the comparison is performed.
value 𝑣 Value Comparison value.

Discussed in Section 18.11.4 (𝑥 ≺ constant)

The map 𝑥 ↦ 𝑥 <𝑃 𝑣.

26.3.68. M_Leq - Tests 𝑥1 ≤𝑃 𝑥2

D
at
a

Extends: MonotoneMap(dom, cod, type = "M_Leq")

Property Symbol Type Description
opspace 𝑃 Poset Poset in which the comparison is performed.

Discussed in Section 18.13 (Order as a function)

The map (𝑥1, 𝑥2) ↦ 𝑥1 ≤𝑃 𝑥2.
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26.4. L1Map - Map to lower sets of functionalities.

D
at
a

Extends: Root(version, description, hash, kind = "L1Map")

Property Symbol Type Description
kdom 𝗄𝖽𝗈𝗆 Poset Kleisli domain of the map
kcod 𝗄𝖼𝗈𝖽 Poset Kleisli co-domain of the map
type string Discriminator variable to distinguish subtypes.

Discussed in Section 11.2 (PosL and PosU)

Subtypes based on the value for type

"L1_Constant" Constant map
"L1_Entire" Returns the entire poset
"L1_Explicit" Map defined pointwise
"L1_Identity" Lift of the identity map
"L1_Unknown" Placeholder for an unknown map.
"L1_Catalog" Map induced by a catalog of options.
"L1_IntersectionOfPrinLower
Sets"

Intersection of principal lower sets.

"L1_RepresentPrincipalLower
Set"

Represent a principal lower set

"L1_UnionOfPrinLowerSets" Union of principal lower sets.
"L1_C_CodSum" Co-domain sum combination
"L1_C_CodSumSmash" Co-domain (smash) sum combination
"L1_C_DomUnion" Domain union
"L1_C_Parallel" Monoidal product
"L1_C_ProdIntersection" From product to intersection
"L1_C_Product" Product
"L1_C_Series" Series composition
"L1_C_Intersection" Intersection
"L1_C_Union" Union
"L1_C_RefineDomain" Refines the domain of a monotone map.
"L1_C_Trace" Trace
"L1_C_WrapUnits" Decorates a map with units.
"L1_InvMul_Opt" Finite-resolution optimistic approximation of the inverse of a multiplication map.
"L1_InvMul_Pes" Finite-resolution pessimistic approximation of the inverse of an addition map.
"L1_InvSum_Opt" Finite-resolution optimistic approximation of the inverse of a multiplication map.
"L1_InvSum_Pes" Finite-resolution pessimistic approximation of the inverse of an addition map.
"L1_FromFilter" Filters based on a monotone map.
"L1_L_Linv" Lower inverse of a monotone map
"L1_Lift" Lifts a monotone map
"L1_TopAlternating" Lower inverse for the meet map

26.4.1. L1_Constant - Constant map

D
at
a

Extends: L1Map(kdom, kcod, type = "L1_Constant")

Property Symbol Type Description
value 𝐿 LowerSet The constant value of the map, which is a lower set 𝐿 ⊆ 𝗄𝖼𝗈𝖽.

This is a constant map, which maps every element of the domain to the same value 𝐿.
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26.4.2. L1_Entire - Returns the entire poset

D
at
a

Extends: L1Map(kdom, kcod, type = "L1_Entire")

This is the map defined as
𝑥 ↦ 𝗄𝖼𝗈𝖽

which maps every element of the domain to the entire codomain poset 𝗄𝖼𝗈𝖽.
This is useful when the codomain doesn’t have a compact representation in terms of antichains.

26.4.3. L1_Explicit - Map defined pointwise

D
at
a

Extends: L1Map(kdom, kcod, type = "L1_Explicit")

Property Symbol Type Description
options array[L1_Explicit_Option] Pairs of input-output

This is a map defined pointwise, where each option specifies a point in the domain and its corresponding value in the codomain.

L1_Explicit_Option

D
at
a Property Symbol Type Description

x any A point in the domain of the map.
y LowerSet The lower set corresponding to the point x in the domain.

26.4.4. L1_Identity - Lift of the identity map

D
at
a

Extends: L1Map(kdom, kcod, type = "L1_Identity")

Discussed in Section 20.1 (Identity morphisms)

The identity map:
𝑥 ↦ {𝑥}

26.4.5. L1_Unknown - Placeholder for an unknown map.

D
at
a

Extends: L1Map(kdom, kcod, type = "L1_Unknown")

This is a placeholder for a map whose type is not known.
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26.4.6. L1_Catalog - Map induced by a catalog of options.

D
at
a

Extends: L1Map(kdom, kcod, type = "L1_Catalog")

Property Symbol Type Description
options ⟨𝑓⟩𝑘 , 𝑟∗𝑘⟩ array[L1_Catalog_Options] The options in the catalog

Discussed in Section 20.3 (Catalog maps)

This map is defined by a catalog of options J
⟨
𝑓𝑘 , 𝑟∗𝑘

⟩
K:

𝑥 ↦
⋃

𝑘
{↓ 𝑓𝑘 ∣ 𝑥 ≤ 𝑟∗𝑘} (29)

L1_Catalog_Options - An option in the catalog

D
at
a Property Symbol Type Description

f 𝑓 any A functionality
r 𝑟∗ any A resource

An option in the catalog, where 𝑓 is a point in the domain and 𝑟 is a resource.

26.4.7. L1_IntersectionOfPrinLowerSets - Intersection of principal lower sets.

D
at
a

Extends: L1Map(kdom, kcod, type = "L1_IntersectionOfPrinLowerSets")

Discussed in Section 20.4 (Union and intersection of principal lower sets)

The domain 𝗄𝖽𝗈𝗆must be a product poset.
This map is defined as follows:

⟨𝑥𝑖⟩𝑖 ↦
⋂

𝑖
↓ 𝑥𝑖 (30)

26.4.8. L1_RepresentPrincipalLowerSet - Represent a principal lower set

D
at
a

Extends: L1Map(kdom, kcod, type = "L1_RepresentPrincipalLowerSet")

Discussed in Section 20.5 (Representing principal lower and upper sets)

This map is defined when 𝗄𝖽𝗈𝗆 and 𝗄𝖼𝗈𝖽 are subsets of a common ambient poset 𝑃.

26.4.9. L1_UnionOfPrinLowerSets - Union of principal lower sets.

D
at
a

Extends: L1Map(kdom, kcod, type = "L1_UnionOfPrinLowerSets")

Discussed in Section 20.4 (Union and intersection of principal lower sets)

The domain 𝗄𝖽𝗈𝗆must be a product poset.
This map is defined as follows:

⟨𝑥𝑖⟩𝑖 ↦
⋃

𝑖
↓ 𝑥𝑖 (31)
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26.4.10. L1_C_CodSum - Co-domain sum combination

D
at
a

Extends: L1Map(kdom, kcod, type = "L1_C_CodSum")

Property Symbol Type Description
ms 𝓁𝑘 array[L1Map] Maps to be composed.
labels array[string]? A list of labels for the maps

Discussed in Section 20.10 (Codomain Sum)

Given two maps 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐴 → 𝐶, the codomain sum of these maps is a map that combines the codomains of both maps:

L1_C_CodSum(𝑓, 𝑔) ∶ 𝐴 → P_C_Sum(𝐵, 𝐶) (32)

It is defined as follows:
𝑥 ↦ {in1(𝑏) ∣ 𝑏 ∈ 𝑓(𝑥)} ∪ {in2(𝑐) ∣ 𝑐 ∈ 𝑔(𝑥)} (33)

26.4.11. L1_C_CodSumSmash - Co-domain (smash) sum combination

D
at
a

Extends: L1Map(kdom, kcod, type = "L1_C_CodSumSmash")

Property Symbol Type Description
ms 𝓁𝑘 array[L1Map] Maps to be composed.
labels array[string]? A list of labels for the maps

Given two maps 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐴 → 𝐶, the codomain sum of these maps is a map that combines the codomains of both maps:

L1_C_CodSumSmash(𝑓, 𝑔) ∶ 𝐴 → P_C_SumSmash(𝐵, 𝐶) (34)

It is defined as follows:
𝑥 ↦ {in1(𝑏) ∣ 𝑏 ∈ 𝑓(𝑥)} ∪ {in2(𝑐) ∣ 𝑐 ∈ 𝑔(𝑥)} (35)

26.4.12. L1_C_DomUnion - Domain union

D
at
a

Extends: L1Map(kdom, kcod, type = "L1_C_DomUnion")

Property Symbol Type Description
ms 𝓁𝑘 array[L1Map] Maps to be composed.
labels array[string]? A list of labels for the maps

This is the equivalent of M_C_DomUnion.
Given two maps 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐶 → 𝐵, the domain union of these maps is a map that combines the domains of both maps:

L1_C_DomUnion(𝑓, 𝑔) ∶ P_F_C_Union(𝐴, 𝐶) → 𝐵 (36)

The value is defined as follows:

L1_C_DomUnion(𝑓, 𝑔) ∶ 𝑥 ↦ {𝑓(𝑥) if 𝑥 ∈ 𝐴
𝑔(𝑥) if 𝑥 ∈ 𝐶

(37)

Note that the order of the maps does matter. We use the first map whose domain contains the input.
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26.4.13. L1_C_Parallel - Monoidal product

D
at
a

Extends: L1Map(kdom, kcod, type = "L1_C_Parallel")

Property Symbol Type Description
ms 𝓁𝑘 array[L1Map] Maps to be composed.
labels array[string]? A list of labels for the maps

Discussed in Section 20.8 (Parallel composition)

For a family of maps𝑚𝑖 ∶ 𝑋𝑖 → 𝑌𝑖 , the monoidal product is defined as:

L1_C_Parallel({𝑚𝑖}) ∶ P_C_Product({𝑋𝑖}) → P_C_Product({𝑌𝑖})

26.4.14. L1_C_ProdIntersection - From product to intersection

D
at
a

Extends: L1Map(kdom, kcod, type = "L1_C_ProdIntersection")

Property Symbol Type Description
ms 𝓁𝑘 array[L1Map] Maps to be composed.
labels array[string]? A list of labels for the maps

The domain 𝗄𝖽𝗈𝗆 should be a product.
The map is defined as follows:

⟨𝑥𝑖⟩𝑖 ↦
⋂

𝑖
𝑓𝑖(𝑥𝑖) (38)

26.4.15. L1_C_Product - Product

D
at
a

Extends: L1Map(kdom, kcod, type = "L1_C_Product")

Property Symbol Type Description
ms 𝓁𝑘 array[L1Map] Maps to be composed.
labels array[string]? A list of labels for the maps

Discussed in Section 20.11 (Product of maps)

For a family of maps𝑚𝑖 ∶ 𝑋 → 𝑌𝑖 , we define

L1_C_Product({𝑚𝑖}) ∶ 𝑋 → P_C_Product({𝑌𝑖})

26.4.16. L1_C_Series - Series composition

D
at
a

Extends: L1Map(kdom, kcod, type = "L1_C_Series")

Property Symbol Type Description
ms 𝓁𝑘 array[L1Map] Maps to be composed.
labels array[string]? A list of labels for the maps

Discussed in Section 20.12 (Series composition)
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26.4.17. L1_C_Intersection - Intersection

D
at
a

Extends: L1Map(kdom, kcod, type = "L1_C_Intersection")

Property Symbol Type Description
ms 𝓁𝑘 array[L1Map] Maps to be composed.
labels array[string]? A list of labels for the maps

Discussed in Section 20.13 (Union and Intersection of maps)

For a family of maps𝑚𝑖 ∶ 𝑋 → 𝑌, we define

L1_C_Intersection({𝑚𝑖}) ∶ 𝑋 → 𝑌

𝑥 ↦
⋂

𝑖
𝑚𝑖(𝑥)

26.4.18. L1_C_Union - Union

D
at
a

Extends: L1Map(kdom, kcod, type = "L1_C_Union")

Property Symbol Type Description
ms 𝓁𝑘 array[L1Map] Maps to be composed.
labels array[string]? A list of labels for the maps

Discussed in Section 20.13 (Union and Intersection of maps)

For a family of maps𝑚𝑖 ∶ 𝑋 → 𝑌, we define

L1_C_Union({𝑚𝑖}) ∶ 𝑋 → 𝑌

𝑥 ↦
⋃

𝑖
𝑚𝑖(𝑥)

26.4.19. L1_C_RefineDomain - Refines the domain of a monotone map.

D
at
a

Extends: L1Map(kdom, kcod, type = "L1_C_RefineDomain")

Property Symbol Type Description
m 𝑚 L1Map The map to be transformed.

26.4.20. L1_C_Trace - Trace

D
at
a

Extends: L1Map(kdom, kcod, type = "L1_C_Trace")

Property Symbol Type Description
m 𝑚 L1Map The map to be transformed.

Discussed in Section 20.14 (Trace)

This is the trace of the map.
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26.4.21. L1_C_WrapUnits - Decorates a map with units.

D
at
a

Extends: L1Map(kdom, kcod, type = "L1_C_WrapUnits")

Property Symbol Type Description
m 𝑚 L1Map The map to be transformed.
kdom_units Unit The units for the domain
kcod_units Unit The units for the codomain

26.4.22. L1_InvMul_Opt - Finite-resolution optimistic approximation of the inverse of a multiplication map.

D
at
a

Extends: L1Map(kdom, kcod, type = "L1_InvMul_Opt")

Property Symbol Type Description
n integer Resolution (number of points in the produced antichain)
opspace Poset The poset in which the operation is performed.

This map provides an approximation of the map
𝑥 ↦ {⟨𝑎, 𝑏⟩ ∣ 𝑎 ⋅ 𝑏 ≤ 𝑥} (39)

The approximation is optimistic.

26.4.23. L1_InvMul_Pes - Finite-resolution pessimistic approximation of the inverse of an addition map.

D
at
a

Extends: L1Map(kdom, kcod, type = "L1_InvMul_Pes")

Property Symbol Type Description
n integer Resolution (number of points in the produced antichain)
opspace Poset The poset in which the operation is performed.

This map provides an approximation of the map
𝑥 ↦ {⟨𝑎, 𝑏⟩ ∣ 𝑎 ⋅ 𝑏 ≤ 𝑥} (40)

The approximation is pessimistic.

26.4.24. L1_InvSum_Opt - Finite-resolution optimistic approximation of the inverse of a multiplication map.

D
at
a

Extends: L1Map(kdom, kcod, type = "L1_InvSum_Opt")

Property Symbol Type Description
n integer Resolution (number of points in the produced antichain)
opspace Poset The poset in which the operation is performed.

This map provides an approximation of the map
𝑥 ↦ {⟨𝑎, 𝑏⟩ ∣ 𝑎 + 𝑏 ≤ 𝑥} (41)

The approximation is optimistic.
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26.4.25. L1_InvSum_Pes - Finite-resolution pessimistic approximation of the inverse of an addition map.

D
at
a

Extends: L1Map(kdom, kcod, type = "L1_InvSum_Pes")

Property Symbol Type Description
n integer Resolution (number of points in the produced antichain)
opspace Poset The poset in which the operation is performed.

This map provides an approximation of the map
𝑥 ↦ {⟨𝑎, 𝑏⟩ ∣ 𝑎 + 𝑏 ≤ 𝑥} (42)

The approximation is pessimistic.

26.4.26. L1_FromFilter - Filters based on a monotone map.

D
at
a

Extends: L1Map(kdom, kcod, type = "L1_FromFilter")

Property Symbol Type Description
m 𝑚 MonotoneMap Amonotone map𝑚 ∶ 𝗄𝖽𝗈𝗆 →Pos Bool

Discussed in Section 20.7 (Filtering)

Defines the map:

𝑥 ↦ {{𝑥} if𝑚(𝑥)
∅ otherwise

(43)

26.4.27. L1_L_Linv - Lower inverse of a monotone map

D
at
a

Extends: L1Map(kdom, kcod, type = "L1_L_Linv")

Property Symbol Type Description
m 𝑚 MonotoneMap The original map.

Creates the lower inverse of a monotone map.

26.4.28. L1_Lift - Lifts a monotone map

D
at
a

Extends: L1Map(kdom, kcod, type = "L1_Lift")

Property Symbol Type Description
m 𝑚 MonotoneMap Amonotone map

Discussed in Section 20.2 (Lifting maps)

Lifts a monotone map to a L1Map in the obvious way:

L1_Lift(𝑚) ∶ 𝑥 ↦ {𝑚(𝑥)} (44)
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26.4.29. L1_TopAlternating - Lower inverse for the meet map

D
at
a

Extends: L1Map(kdom, kcod, type = "L1_TopAlternating")

Property Symbol Type Description

upper_bounds 𝑢𝑗𝑖 array[array[any]]
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26.5. U1Map - Map to upper sets of resources.

D
at
a

Extends: Root(version, description, hash, kind = "U1Map")

Property Symbol Type Description
kdom 𝗄𝖽𝗈𝗆 Poset Kleisli domain of the map
kcod 𝗄𝖼𝗈𝖽 Poset Kleisli co-domain of the map
type string Discriminator variable to distinguish subtypes.

Discussed in Section 11.2 (PosL and PosU)

Subtypes based on the value for type

"U1_Constant" Constant map
"U1_Entire" Returns the entire poset
"U1_Explicit" Map defined pointwise
"U1_Identity" Lift of the identity map
"U1_Unknown" Placeholder for an unknown map.
"U1_Catalog" Map induced by a catalog of options.
"U1_IntersectionOfPrinUpper
Sets"

Intersection of principal upper sets.

"U1_RepresentPrincipalUpper
Set"

Represent a principal upper set

"U1_UnionOfPrinUpperSets" Union of principal upper sets.
"U1_C_CodSum" Co-domain sum combination
"U1_C_CodSumSmash" Co-domain (smash) sum combination
"U1_C_DomUnion" Domain union
"U1_C_Parallel" Monoidal product
"U1_C_ProdIntersection" From product to intersection
"U1_C_Product" Product
"U1_C_Series" Series composition
"U1_C_Intersection" Intersection
"U1_C_Union" Union
"U1_C_RefineDomain" Refines the domain of a monotone map.
"U1_C_Trace" Trace
"U1_C_WrapUnits" Decorates a map with units.
"U1_InvMul_Opt" Finite-resolution optimistic approximation of the inverse of a multiplication map.
"U1_InvMul_Pes" Finite-resolution pessimistic approximation of the inverse of a multiplication map.
"U1_InvSum_Opt" Finite-resolution optimistic approximation of the inverse of an addition map.
"U1_InvSum_Pes" Finite-resolution pessimistic approximation of the inverse of an addition map.
"U1_FromFilter" Filters based on a monotone map.
"U1_L_Uinv" Computes the upper inverse of a monotone map.
"U1_Lift" Lifts a monotone map
"U1_Uinv_Join"
"U1_Uinv_JoinConstant"

26.5.1. U1_Constant - Constant map

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_Constant")

Property Symbol Type Description
value 𝑈 UpperSet The constant value of the map, which is an upper set 𝑈 ⊆ 𝗄𝖼𝗈𝖽.

This is a constant map, which maps every element of the domain to the same value 𝑈.
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26.5.2. U1_Entire - Returns the entire poset

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_Entire")

This is the map defined as
𝑥 ↦ 𝗄𝖼𝗈𝖽

which maps every element of the domain to the entire codomain poset 𝗄𝖼𝗈𝖽.
This is useful when the codomain doesn’t have a compact representation in terms of antichains.

26.5.3. U1_Explicit - Map defined pointwise

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_Explicit")

Property Symbol Type Description
options array[U1_Explicit_Option] Option definitions

This is a map defined pointwise, where each option specifies a point in the domain and its corresponding value in the codomain.

U1_Explicit_Option

D
at
a Property Symbol Type Description

x 𝑥 any A point in the domain of the map.
y 𝑦 UpperSet The upper set corresponding to the point 𝑥 in the domain.

26.5.4. U1_Identity - Lift of the identity map

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_Identity")

Discussed in Section 20.1 (Identity morphisms)

The identity map:

𝑥 ↦ ↑𝑥

26.5.5. U1_Unknown - Placeholder for an unknown map.

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_Unknown")

This is a placeholder for a map whose type is not known.
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26.5.6. U1_Catalog - Map induced by a catalog of options.

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_Catalog")

Property Symbol Type Description
options ⟨𝑓𝑘 , 𝑟∗𝑘⟩ array[U1_Catalog_Options] The options in the catalog

Discussed in Section 20.3 (Catalog maps)

This map is defined by a catalog of options J
⟨
𝑓𝑘 , 𝑟∗𝑘

⟩
K:

𝑓∗ ↦
⋃

𝑘
{↑ 𝑟𝑘 ∣ 𝑓𝑘 ≤ 𝑥} (45)

U1_Catalog_Options - An option in the catalog

D
at
a Property Symbol Type Description

f 𝑓 any A point in the domain.
r 𝑟∗ any A point in the codomain

An option in the catalog, where 𝑓 is a point in the domain and 𝑟 is the corresponding upper set in the codomain.

26.5.7. U1_IntersectionOfPrinUpperSets - Intersection of principal upper sets.

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_IntersectionOfPrinUpperSets")

Discussed in Section 20.4 (Union and intersection of principal lower sets)

The domain 𝗄𝖽𝗈𝗆must be a product poset.
This map is defined as follows:

⟨𝑥𝑖⟩𝑖 ↦
⋂

𝑖
↑ 𝑥𝑖 (46)
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26.5.8. U1_RepresentPrincipalUpperSet - Represent a principal upper set

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_RepresentPrincipalUpperSet")

Discussed in Section 20.5 (Representing principal lower and upper sets)

This map is defined when 𝗄𝖽𝗈𝗆 and 𝗄𝖼𝗈𝖽 are subsets of a common ambient poset 𝑃.
It is defined as:

𝑥 ↦ max{𝑆 ∈ P_C_UpperSets(𝗄𝖼𝗈𝖽) ∣ 𝑆 ⊆ ↑𝑃 𝑥} (47)

The idea is that we want to “represent” the principal upper set ↑𝑃 𝑥 in terms of the codomain 𝗄𝖼𝗈𝖽.
For example, consider the case
• 𝗄𝖽𝗈𝗆 = 2ℤ, the even integers
• 𝗄𝖼𝗈𝖽 = 3ℤ, the multiples of 3
They are both subposets of the ambient poset ℤ. The map would associate each even integer 𝑥 with the up closure of the smallest multiple
of 3 greater than or equal to 𝑥:

10 ↦ ↑12
8 ↦ ↑9
6 ↦ ↑6
4 ↦ ↑6
2 ↦ ↑3
0 ↦ ↑0

In general, the posets are not total orders, so the result is not necessarily a principal upper set.

26.5.9. U1_UnionOfPrinUpperSets - Union of principal upper sets.

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_UnionOfPrinUpperSets")

Discussed in Section 20.4 (Union and intersection of principal lower sets)

The domain 𝗄𝖽𝗈𝗆must be a product poset.
This map is defined as follows:

⟨𝑥𝑖⟩𝑖 ↦
⋃

𝑖
↑ 𝑥𝑖 (48)

26.5.10. U1_C_CodSum - Co-domain sum combination

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_C_CodSum")

Property Symbol Type Description
ms 𝑚𝑖 array[U1Map] Maps to be composed.
labels array[string]? A list of labels for the maps

Discussed in Section 20.10 (Codomain Sum)

Given two maps 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐴 → 𝐶, the codomain sum of these maps is a map that combines the codomains of both maps:

U1_C_CodSum(𝑓, 𝑔) ∶ 𝐴 → P_C_Sum(𝐵, 𝐶) (49)

It is defined as follows:
𝑥 ↦ {in1(𝑏) ∣ 𝑏 ∈ 𝑓(𝑥)} ∪ {in2(𝑐) ∣ 𝑐 ∈ 𝑔(𝑥)} (50)
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26.5.11. U1_C_CodSumSmash - Co-domain (smash) sum combination

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_C_CodSumSmash")

Property Symbol Type Description
ms 𝑚𝑖 array[U1Map] Maps to be composed.
labels array[string]? A list of labels for the maps

Given two maps 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐴 → 𝐶, the codomain sum of these maps is a map that combines the codomains of both maps:

U1_C_CodSumSmash(𝑓, 𝑔) ∶ 𝐴 → P_C_SumSmash(𝐵, 𝐶) (51)

It is defined as follows:
𝑥 ↦ {in1(𝑏) ∣ 𝑏 ∈ 𝑓(𝑥)} ∪ {in2(𝑐) ∣ 𝑐 ∈ 𝑔(𝑥)} (52)

26.5.12. U1_C_DomUnion - Domain union

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_C_DomUnion")

Property Symbol Type Description
ms 𝑚𝑖 array[U1Map] Maps to be composed.
labels array[string]? A list of labels for the maps

This is the equivalent of M_C_DomUnion.
Given two maps 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐶 → 𝐵, the domain union of these maps is a map that combines the domains of both maps:

U1_C_DomUnion(𝑓, 𝑔) ∶ P_F_C_Union(𝐴, 𝐶) → 𝐵 (53)

The value is defined as follows:

U1_C_DomUnion(𝑓, 𝑔) ∶ 𝑥 ↦ {𝑓(𝑥) if 𝑥 ∈ 𝐴
𝑔(𝑥) if 𝑥 ∈ 𝐶

(54)

Note that the order of the maps does matter. We use the first map whose domain contains the input.

26.5.13. U1_C_Parallel - Monoidal product

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_C_Parallel")

Property Symbol Type Description
ms 𝑚𝑖 array[U1Map] Maps to be composed.
labels array[string]? A list of labels for the maps

Discussed in Section 20.8 (Parallel composition)

For a family of maps𝑚𝑖 ∶ 𝑋𝑖 → 𝑌𝑖 , the monoidal product is defined as:

U1_C_Parallel({𝑚𝑖}) ∶ P_C_Product({𝑋𝑖}) → P_C_Product({𝑌𝑖})
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26.5.14. U1_C_ProdIntersection - From product to intersection

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_C_ProdIntersection")

Property Symbol Type Description
ms 𝑚𝑖 array[U1Map] Maps to be composed.
labels array[string]? A list of labels for the maps

The domain 𝗄𝖽𝗈𝗆 should be a product. The map is defined as follows:

⟨𝑥𝑖⟩𝑖 ↦
⋂

𝑖
𝑓𝑖(𝑥𝑖) (55)

26.5.15. U1_C_Product - Product

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_C_Product")

Property Symbol Type Description
ms 𝑚𝑖 array[U1Map] Maps to be composed.
labels array[string]? A list of labels for the maps

Discussed in Section 20.11 (Product of maps)

For a family of maps𝑚𝑖 ∶ 𝑋 → 𝑌𝑖 , we define

U1_C_Product({𝑚𝑖}) ∶ 𝑋 → P_C_Product({𝑌𝑖})

26.5.16. U1_C_Series - Series composition

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_C_Series")

Property Symbol Type Description
ms 𝑚𝑖 array[U1Map] Maps to be composed.
labels array[string]? A list of labels for the maps

Discussed in Section 20.12 (Series composition)

26.5.17. U1_C_Intersection - Intersection

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_C_Intersection")

Property Symbol Type Description
ms 𝑚𝑖 array[U1Map] Maps to be composed.
labels array[string]? A list of labels for the maps

Discussed in Section 20.13 (Union and Intersection of maps)

For a family of maps𝑚𝑖 ∶ 𝑋 → 𝑌, we define

U1_C_Intersection({𝑚𝑖}) ∶ 𝑋 → 𝑌

𝑥 ↦
⋂

𝑖
𝑚𝑖(𝑥)
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26.5.18. U1_C_Union - Union

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_C_Union")

Property Symbol Type Description
ms 𝑚𝑖 array[U1Map] Maps to be composed.
labels array[string]? A list of labels for the maps

Discussed in Section 20.13 (Union and Intersection of maps)

For a family of maps𝑚𝑖 ∶ 𝑋 → 𝑌, we define

U1_C_Union({𝑚𝑖}) ∶ 𝑋 → 𝑌

𝑥 ↦
⋃

𝑖
𝑚𝑖(𝑥)

26.5.19. U1_C_RefineDomain - Refines the domain of a monotone map.

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_C_RefineDomain")

Property Symbol Type Description
m 𝑚 U1Map Original map

26.5.20. U1_C_Trace - Trace

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_C_Trace")

Property Symbol Type Description
m 𝑚 U1Map Original map

Discussed in Section 20.14 (Trace)

This is the trace of the map.

26.5.21. U1_C_WrapUnits - Decorates a map with units.

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_C_WrapUnits")

Property Symbol Type Description
m 𝑚 U1Map Original map
kdom_units Unit Units for the domain
kcod_units Unit Units for the codomain
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26.5.22. U1_InvMul_Opt - Finite-resolution optimistic approximation of the inverse of a multiplication map.

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_InvMul_Opt")

Property Symbol Type Description
n integer Resolution (number of points in the produced antichain)
opspace Poset The poset in which the operation is performed.

This map provides an approximation of the map
𝑥 ↦ {⟨𝑎, 𝑏⟩ ∣ 𝑎 ⋅ 𝑏 ≥ 𝑥} (56)

The approximation is optimistic.

26.5.23. U1_InvMul_Pes - Finite-resolution pessimistic approximation of the inverse of a multiplication map.

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_InvMul_Pes")

Property Symbol Type Description
n integer Resolution (number of points in the produced antichain)
opspace Poset The poset in which the operation is performed.

This map provides an approximation of the map
𝑥 ↦ {⟨𝑎, 𝑏⟩ ∣ 𝑎 ⋅ 𝑏 ≥ 𝑥} (57)

The approximation is pessimistic.

26.5.24. U1_InvSum_Opt - Finite-resolution optimistic approximation of the inverse of an addition map.

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_InvSum_Opt")

Property Symbol Type Description
n integer Resolution (number of points in the produced antichain)
opspace Poset The poset in which the operation is performed.

Discussed in Section 20.6 (Generic inverses for mathematical operations)

This map provides an approximation of the map
𝑥 ↦ {⟨𝑎, 𝑏⟩ ∣ 𝑎 + 𝑏 ≥ 𝑥} (58)

The approximation is optimistic.

26.5.25. U1_InvSum_Pes - Finite-resolution pessimistic approximation of the inverse of an addition map.

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_InvSum_Pes")

Property Symbol Type Description
n integer Resolution (number of points in the produced antichain)
opspace Poset The poset in which the operation is performed.

Discussed in Section 20.6 (Generic inverses for mathematical operations)

This map provides an approximation of the map
𝑥 ↦ {⟨𝑎, 𝑏⟩ ∣ 𝑎 + 𝑏 ≥ 𝑥} (59)

The approximation is pessimistic.
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26.5.26. U1_FromFilter - Filters based on a monotone map.

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_FromFilter")

Property Symbol Type Description
m 𝑚 MonotoneMap Amonotone map𝑚 ∶ 𝗄𝖽𝗈𝗆 → Bool

Discussed in Section 20.7 (Filtering)

Defines the map:

𝑥 ↦ {{𝑥} if𝑚(𝑥)
∅ otherwise

(60)

26.5.27. U1_L_Uinv - Computes the upper inverse of a monotone map.

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_L_Uinv")

Property Symbol Type Description
m 𝑚 MonotoneMap Amonotone map𝑚 ∶ 𝗄𝖽𝗈𝗆 → 𝗄𝖼𝗈𝖽

Computes the upper inverse Uinv(𝑚) of the monotone map𝑚.
For a monotone map𝑚 ∶ 𝐏 → 𝐐, the upper inverse is defined as:

(Uinv𝑓) ∶ 𝐐
op
→Pos P_C_UpperSets(𝐏) (61)

𝑞 ↦ {𝑝 ∈ 𝐏 ∣ 𝑞 ≤ 𝑓(𝑝)} (62)

26.5.28. U1_Lift - Lifts a monotone map

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_Lift")

Property Symbol Type Description
m 𝑚 MonotoneMap Amonotone map

Discussed in Section 20.2 (Lifting maps)

Lifts a monotone map to a U1Map in the obvious way:

U1_Lift(𝑚) ∶ 𝑥 ↦ ↑𝑚(𝑥) (63)

26.5.29. U1_Uinv_Join

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_Uinv_Join")

Property Symbol Type Description
lower_bounds array[array[any]]

203



26.5.30. U1_Uinv_JoinConstant

D
at
a

Extends: U1Map(kdom, kcod, type = "U1_Uinv_JoinConstant")

Property Symbol Type Description
join1_dom Poset
value Value
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26.6. LMap - Map to lower sets of functionalities and implementations.

D
at
a

Extends: Root(version, description, hash, kind = "LMap")

Property Symbol Type Description
kdom 𝗄𝖽𝗈𝗆 Poset The Kleisli domain of the map.
kcod 𝗄𝖼𝗈𝖽 Poset The Kleisli codomain of the map.
kimp 𝗄𝗂𝗆𝗉 Poset The implementation poset of the map.
type string Discriminator variable to distinguish subtypes.

Discussed in Section 14.3 (Categories PosUI and PosLI)

Subtypes based on the value for type

"L_Constant" Constant map
"L_Identity" Identity morphism
"L_Unknown" Placeholder for an unknown map
"L_Catalog" LMap for a catalog
"L_C_Parallel" Monoidal product
"L_C_Series" Series composition
"L_C_Intersection" Intersection of maps
"L_C_Union" Union of maps
"L_C_ITransform" Transforms the implementation of another map.
"L_C_RefineDomain" Refines the domain of a monotone map
"L_C_Trace" Trace
"L_C_WrapUnits" Decorates a map with units.
"L_L_Lift1_Constant" Lifts a L1Map morphisms with a constant value for the implementation.
"L_L_Lift1_Transform" Lifts a L1Map morphism with a function to compute the implementation.

26.6.1. L_Constant - Constant map

D
at
a

Extends: LMap(kdom, kcod, kimp, type = "L_Constant")

Property Symbol Type Description
value LowerSet The lower set that is the value of the constant map.

Discussed in Section 21.2 (Constant maps)

26.6.2. L_Identity - Identity morphism

D
at
a

Extends: LMap(kdom, kcod, kimp, type = "L_Identity")

Discussed in Section 21.1 (Identity)

26.6.3. L_Unknown - Placeholder for an unknown map

D
at
a

Extends: LMap(kdom, kcod, kimp, type = "L_Unknown")
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26.6.4. L_Catalog - LMap for a catalog

D
at
a

Extends: LMap(kdom, kcod, kimp, type = "L_Catalog")

Property Symbol Type Description
options array[L_Catalog_Options]

Discussed in Section 21.3 (Catalog maps)

This is the LMap that arises from a DP_Catalog.

L_Catalog_Options - Options for L_Catalog

D
at
a Property Symbol Type Description

f 𝑓 any
r 𝑟∗ any
i 𝑖 any

26.6.5. L_C_Parallel - Monoidal product

D
at
a

Extends: LMap(kdom, kcod, kimp, type = "L_C_Parallel")

Property Symbol Type Description
ms array[LMap] Maps to be composed.
labels array[string]? Labels for the maps.

Discussed in Section 21.6 (Parallel composition)

26.6.6. L_C_Series - Series composition

D
at
a

Extends: LMap(kdom, kcod, kimp, type = "L_C_Series")

Property Symbol Type Description
ms array[LMap] Maps to be composed.
labels array[string]? Labels for the maps.

Discussed in Section 21.5 (Series composition)

26.6.7. L_C_Intersection - Intersection of maps

D
at
a

Extends: LMap(kdom, kcod, kimp, type = "L_C_Intersection")

Property Symbol Type Description
ms array[LMap] Maps to be composed.
labels array[string]? Labels for the maps.

Discussed in Section 21.7 (Intersection of maps)
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26.6.8. L_C_Union - Union of maps

D
at
a

Extends: LMap(kdom, kcod, kimp, type = "L_C_Union")

Property Symbol Type Description
ms array[LMap] Maps to be composed.
labels array[string]? Labels for the maps.

Discussed in Section 21.8 (Union of maps)

26.6.9. L_C_ITransform - Transforms the implementation of another map.

D
at
a

Extends: LMap(kdom, kcod, kimp, type = "L_C_ITransform")

Property Symbol Type Description
m 𝑚 LMap The map to be transformed
transform 𝑇 MonotoneMap The transformation to apply to the implementation of the map.

Discussed in Section 21.9 (Transforming maps)

26.6.10. L_C_RefineDomain - Refines the domain of a monotone map

D
at
a

Extends: LMap(kdom, kcod, kimp, type = "L_C_RefineDomain")

Property Symbol Type Description
m 𝑚 LMap The map to be transformed

26.6.11. L_C_Trace - Trace

D
at
a

Extends: LMap(kdom, kcod, kimp, type = "L_C_Trace")

Property Symbol Type Description
m 𝑚 LMap The map to be transformed
m_proj 𝑚′ L1Map The projection of the LMap𝑚 to a L1Map.

Discussed in Section 21.10 (Trace)

This is the trace of a LMap𝑚.
Because of computation convenience, we also require the projection𝑚′ of the LMap𝑚 to a L1Map.

26.6.12. L_C_WrapUnits - Decorates a map with units.

D
at
a

Extends: LMap(kdom, kcod, kimp, type = "L_C_WrapUnits")

Property Symbol Type Description
m 𝑚 LMap The map to be transformed
kdom_units Unit The units for decorating 𝗄𝖽𝗈𝗆
kcod_units Unit The units for decorating 𝗄𝖼𝗈𝖽
kimp_units Unit The units for decorating 𝗄𝗂𝗆𝗉
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26.6.13. L_L_Lift1_Constant - Lifts a L1Map morphisms with a constant value for the implementation.

D
at
a

Extends: LMap(kdom, kcod, kimp, type = "L_L_Lift1_Constant")

Property Symbol Type Description
m 𝑚 L1Map A L1Map morphism.
value 𝑣 any A constant value for the implementation of the L1Map morphism.

Discussed in Section 21.4 (Lifting maps)

26.6.14. L_L_Lift1_Transform - Lifts a L1Map morphism with a function to compute the implementation.

D
at
a

Extends: LMap(kdom, kcod, kimp, type = "L_L_Lift1_Transform")

Property Symbol Type Description
m 𝓁 L1Map A L1Map morphism.
transform 𝑡 MonotoneMap A function to compute the implementation of the L1Map

morphism.

Discussed in Section 21.4 (Lifting maps)
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26.7. UMap - Map to upper sets of resources and implementations.

D
at
a

Extends: Root(version, description, hash, kind = "UMap")

Property Symbol Type Description
kdom 𝗄𝖽𝗈𝗆 Poset The Kleisli domain of the map.
kcod 𝗄𝖼𝗈𝖽 Poset The Kleisli codomain of the map.
kimp 𝗄𝗂𝗆𝗉 Poset The implementation poset of the map.
type string Discriminator variable to distinguish subtypes.

Discussed in Section 14.3 (Categories PosUI and PosLI)

Subtypes based on the value for type

"U_Constant" Constant map
"U_Identity" Identity
"U_Unknown" Placeholder for an unknown map
"U_Catalog" UMap for a catalog
"U_C_Parallel" Monoidal product
"U_C_Series" Series composition
"U_C_Intersection" Intersection of maps
"U_C_Union" Union of maps
"U_C_ITransform" Transforms the implementation of another map.
"U_C_RefineDomain" Refines the domain of a monotone map
"U_C_Trace" Trace
"U_C_WrapUnits" Decorates a map with units.
"U_L_Lift1_Constant" Lifts a U1Map morphism with a constant value for the implementation.
"U_L_Lift1_Transform" Lifts a U1Map morphism with a function to compute the implementation.

26.7.1. U_Constant - Constant map

D
at
a

Extends: UMap(kdom, kcod, kimp, type = "U_Constant")

Property Symbol Type Description
value UpperSet The upper set that is the value of the constant map.

Discussed in Section 21.2 (Constant maps)

26.7.2. U_Identity - Identity

D
at
a

Extends: UMap(kdom, kcod, kimp, type = "U_Identity")

Discussed in Section 21.1 (Identity)

26.7.3. U_Unknown - Placeholder for an unknown map

D
at
a

Extends: UMap(kdom, kcod, kimp, type = "U_Unknown")
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26.7.4. U_Catalog - UMap for a catalog

D
at
a

Extends: UMap(kdom, kcod, kimp, type = "U_Catalog")

Property Symbol Type Description
options array[U_Catalog_Options] The options in the catalog.

Discussed in Section 21.3 (Catalog maps)

This is the UMap that arises from a DP_Catalog.

U_Catalog_Options - An option in the catalog

D
at
a Property Symbol Type Description

f 𝑓 any
r 𝑟∗ any
i 𝑖 any

An option in the catalog.

26.7.5. U_C_Parallel - Monoidal product

D
at
a

Extends: UMap(kdom, kcod, kimp, type = "U_C_Parallel")

Property Symbol Type Description
ms array[UMap] Maps to be composed.
labels array[string]? Labels for the maps.

Discussed in Section 21.6 (Parallel composition)

26.7.6. U_C_Series - Series composition

D
at
a

Extends: UMap(kdom, kcod, kimp, type = "U_C_Series")

Property Symbol Type Description
ms array[UMap] Maps to be composed.
labels array[string]? Labels for the maps.

Discussed in Section 21.5 (Series composition)

26.7.7. U_C_Intersection - Intersection of maps

D
at
a

Extends: UMap(kdom, kcod, kimp, type = "U_C_Intersection")

Property Symbol Type Description
ms array[UMap] Maps to be composed.
labels array[string]? Labels for the maps.

Discussed in Section 21.7 (Intersection of maps)
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26.7.8. U_C_Union - Union of maps

D
at
a

Extends: UMap(kdom, kcod, kimp, type = "U_C_Union")

Property Symbol Type Description
ms array[UMap] Maps to be composed.
labels array[string]? Labels for the maps.

Discussed in Section 21.8 (Union of maps)

26.7.9. U_C_ITransform - Transforms the implementation of another map.

D
at
a

Extends: UMap(kdom, kcod, kimp, type = "U_C_ITransform")

Property Symbol Type Description
m 𝓊 UMap The original map
transform MonotoneMap

Discussed in Section 21.9 (Transforming maps)

26.7.10. U_C_RefineDomain - Refines the domain of a monotone map

D
at
a

Extends: UMap(kdom, kcod, kimp, type = "U_C_RefineDomain")

Property Symbol Type Description
m 𝓊 UMap The original map

26.7.11. U_C_Trace - Trace

D
at
a

Extends: UMap(kdom, kcod, kimp, type = "U_C_Trace")

Property Symbol Type Description
m 𝓊 UMap The original map
m_proj 𝑚′ U1Map The projection of the UMap𝑚.

Discussed in Section 21.10 (Trace)

This is the trace of a UMap𝑚.
Because of computation convenience, we also require the projection𝑚′ of the UMap𝑚 to a U1Map.

26.7.12. U_C_WrapUnits - Decorates a map with units.

D
at
a

Extends: UMap(kdom, kcod, kimp, type = "U_C_WrapUnits")

Property Symbol Type Description
m 𝓊 UMap The original map
kdom_units Unit The units for decorating 𝗄𝖽𝗈𝗆
kcod_units Unit The units for decorating 𝗄𝖼𝗈𝖽
kimp_units Unit The units for decorating 𝗄𝗂𝗆𝗉
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26.7.13. U_L_Lift1_Constant - Lifts a U1Map morphism with a constant value for the implementation.

D
at
a

Extends: UMap(kdom, kcod, kimp, type = "U_L_Lift1_Constant")

Property Symbol Type Description
m 𝓊 U1Map A U1Map morphism.
value 𝑣 any A constant value for the implementation of the U1Map morphism.

Discussed in Section 21.4 (Lifting maps)

26.7.14. U_L_Lift1_Transform - Lifts a U1Map morphism with a function to compute the implementation.

D
at
a

Extends: UMap(kdom, kcod, kimp, type = "U_L_Lift1_Transform")

Property Symbol Type Description
m 𝑚 U1Map A U1Map morphism.
transform 𝑓 MonotoneMap A function that computes the implementation of the U1Map

morphism.

Discussed in Section 21.4 (Lifting maps)

212



26.8. SL1Map - Scalable map to lower sets of functionalities.

D
at
a

Extends: Root(version, description, hash, kind = "SL1Map")

Property Symbol Type Description
kdom 𝗄𝖽𝗈𝗆 Poset The Kleisli domain of the map.
kcod 𝗄𝖼𝗈𝖽 Poset The Kleisli codomain of the map.
pes 𝖲⌢ Poset The resolution poset for pessimistic estimate.
opt 𝖲⌣ Poset The resolution poset for optimistic estimate.
type string Discriminator variable to distinguish subtypes.

Subtypes based on the value for type

"SL1_C_Parallel" Monoidal product
"SL1_C_Series" Series composition
"SL1_Identity" Identity
"SL1_Unknown" Placeholder for an unknown SL1Map
"SL1_C_CodSum" Sum of maps
"SL1_C_CodSumSmash" Smash sum
"SL1_C_ProdIntersection" Product of domains, intersection of codomains
"SL1_C_Product" Product of SL1 maps
"SL1_C_Intersection" Intersection of SL1 maps
"SL1_C_Union" Union of SL1 maps
"SL1_C_RefineDomain" Refinement of the domain
"SL1_C_Trace" Trace
"SL1_C_WrapUnits" Decorates a map with units for the domain and codomain.
"SL1_Exact" Lifts a L1Map to a SL1Map.
"SL1_InvMultiply" The lower inverse of multiplication.
"SL1_InvSum" The lower inverse of addition.
"SL1_C_ExplicitApprox" Constructs a SL1Map from explicit approximations of L1Map maps.

26.8.1. SL1_C_Parallel - Monoidal product

D
at
a

Extends: SL1Map(kdom, kcod, pes, opt, type = "SL1_C_Parallel")

Property Symbol Type Description
ms 𝓁𝑘 array[SL1Map] Maps to be composed.
labels array[string]? A list of labels for the maps.

Discussed in Section 22.3 (Parallel composition)

This is the generalization of L1_C_Parallel.

26.8.2. SL1_C_Series - Series composition

D
at
a

Extends: SL1Map(kdom, kcod, pes, opt, type = "SL1_C_Series")

Property Symbol Type Description
ms 𝓁𝑘 array[SL1Map] Maps to be composed.
labels array[string]? A list of labels for the maps.

Discussed in Section 22.4 (Series composition)

This is the generalization of L1_C_Series.
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26.8.3. SL1_Identity - Identity

D
at
a

Extends: SL1Map(kdom, kcod, pes, opt, type = "SL1_Identity")

Discussed in Section 22.1 (Identities)

26.8.4. SL1_Unknown - Placeholder for an unknown SL1Map

D
at
a

Extends: SL1Map(kdom, kcod, pes, opt, type = "SL1_Unknown")

26.8.5. SL1_C_CodSum - Sum of maps

D
at
a

Extends: SL1Map(kdom, kcod, pes, opt, type = "SL1_C_CodSum")

Property Symbol Type Description
ms 𝓁𝑘 array[SL1Map] Maps to be composed.
labels array[string]? A list of labels for the maps.

Discussed in Section 22.9 (Sum)

This is the generalization of L1_C_CodSum.

26.8.6. SL1_C_CodSumSmash - Smash sum

D
at
a

Extends: SL1Map(kdom, kcod, pes, opt, type = "SL1_C_CodSumSmash")

Property Symbol Type Description
ms 𝓁𝑘 array[SL1Map] Maps to be composed.
labels array[string]? A list of labels for the maps.

Discussed in Section 22.9 (Sum)

This is the generalization of L1_C_CodSumSmash.

26.8.7. SL1_C_ProdIntersection - Product of domains, intersection of codomains

D
at
a

Extends: SL1Map(kdom, kcod, pes, opt, type = "SL1_C_ProdIntersection")

Property Symbol Type Description
ms 𝓁𝑘 array[SL1Map] Maps to be composed.
labels array[string]? A list of labels for the maps.

Discussed in Section 22.10 (Product intersection)

This is the generalization of L1_C_ProdIntersection.
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26.8.8. SL1_C_Product - Product of SL1 maps

D
at
a

Extends: SL1Map(kdom, kcod, pes, opt, type = "SL1_C_Product")

Property Symbol Type Description
ms 𝓁𝑘 array[SL1Map] Maps to be composed.
labels array[string]? A list of labels for the maps.

Discussed in Section 22.8 (Product)

This is the generalization of L1_C_Product.

26.8.9. SL1_C_Intersection - Intersection of SL1 maps

D
at
a

Extends: SL1Map(kdom, kcod, pes, opt, type = "SL1_C_Intersection")

Property Symbol Type Description
ms 𝓁𝑘 array[SL1Map] Maps to be composed.
labels array[string]? A list of labels for the maps.

Discussed in Section 22.6 (Intersection)

This is the generalization of L1_C_Intersection.

26.8.10. SL1_C_Union - Union of SL1 maps

D
at
a

Extends: SL1Map(kdom, kcod, pes, opt, type = "SL1_C_Union")

Property Symbol Type Description
ms 𝓁𝑘 array[SL1Map] Maps to be composed.
labels array[string]? A list of labels for the maps.

Discussed in Section 22.5 (Union)

This is the generalization of L1_C_Union.

26.8.11. SL1_C_RefineDomain - Refinement of the domain

D
at
a

Extends: SL1Map(kdom, kcod, pes, opt, type = "SL1_C_RefineDomain")

Property Symbol Type Description
m 𝑚 SL1Map The map to be transformed

This is the generalization of L1_C_RefineDomain.
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26.8.12. SL1_C_Trace - Trace

D
at
a

Extends: SL1Map(kdom, kcod, pes, opt, type = "SL1_C_Trace")

Property Symbol Type Description
m 𝑚 SL1Map The map to be transformed

Discussed in Section 22.7 (Trace)

This is the generalization of L1_C_Trace.

26.8.13. SL1_C_WrapUnits - Decorates a map with units for the domain and codomain.

D
at
a

Extends: SL1Map(kdom, kcod, pes, opt, type = "SL1_C_WrapUnits")

Property Symbol Type Description
m 𝑚 SL1Map The map to be transformed
kdom_units Unit The units for the domain.
kcod_units Unit The units for the codomain.

This is the generalization of L1_C_WrapUnits.

26.8.14. SL1_Exact - Lifts a L1Map to a SL1Map.

D
at
a

Extends: SL1Map(kdom, kcod, pes, opt, type = "SL1_Exact")

Property Symbol Type Description
m 𝓁 L1Map The L1Map to lift.

Discussed in Section 22.2 (Lifting)

26.8.15. SL1_InvMultiply - The lower inverse of multiplication.

D
at
a

Extends: SL1Map(kdom, kcod, pes, opt, type = "SL1_InvMultiply")

Property Symbol Type Description
opspace 𝑃 Poset The poset where the operation takes place

Discussed in Section 22.11 (Scalable inverse of sum and multiplication operations)

26.8.16. SL1_InvSum - The lower inverse of addition.

D
at
a

Extends: SL1Map(kdom, kcod, pes, opt, type = "SL1_InvSum")

Property Symbol Type Description
opspace 𝑃 Poset The poset where the operation takes place

Discussed in Section 22.11 (Scalable inverse of sum and multiplication operations)
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26.8.17. SL1_C_ExplicitApprox - Constructs a SL1Map from explicit approximations of L1Map maps.

D
at
a

Extends: SL1Map(kdom, kcod, pes, opt, type = "SL1_C_ExplicitApprox")

Property Symbol Type Description
optimistic array[L1Map] The optimistic approximations of the L1Map.
optimistic_labels array[string]? Labels for the optimistic approximations.
pessimistic array[L1Map] The pessimistic approximations of the L1Map.
pessimistic_labels array[string]? Labels for the pessimistic approximations.

Discussed in Section 22.12 (Explicit approximation)
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26.9. SU1Map - Scalable map to upper sets of resources.

D
at
a

Extends: Root(version, description, hash, kind = "SU1Map")

Property Symbol Type Description
kdom 𝗄𝖽𝗈𝗆 Poset The Kleisli domain of the map.
kcod 𝗄𝖼𝗈𝖽 Poset The Kleisli codomain of the map.
pes 𝖲⌢ Poset The resolution poset for pessimistic estimate.
opt 𝖲⌣ Poset The resolution poset for optimistic estimate.
type string Discriminator variable to distinguish subtypes.

Subtypes based on the value for type

"SU1_C_Parallel" Monoidal product
"SU1_C_Series" Series composition
"SU1_Identity" Identity
"SU1_Unknown" Placeholder for an unknown SU1Map
"SU1_C_CodSum" Sum of maps
"SU1_C_CodSumSmash" Smash sum
"SU1_C_ProdIntersection" Product of domains, intersection of codomains
"SU1_C_Product" Product of SU1 maps
"SU1_C_Intersection" Intersection of SU1 maps
"SU1_C_Union" Union of SU1 maps
"SU1_C_RefineDomain" Refinement of the domain
"SU1_C_Trace" Trace
"SU1_C_WrapUnits" Wraps a map with units.
"SU1_Exact" Lifts a U1Map to a SU1Map.
"SU1_InvMultiply" The upper inverse of multiplication.
"SU1_InvSum" The inverse of addition.
"SU1_C_ExplicitApprox" Constructs a SU1Map from explicit approximations of U1Map maps.

26.9.1. SU1_C_Parallel - Monoidal product

D
at
a

Extends: SU1Map(kdom, kcod, pes, opt, type = "SU1_C_Parallel")

Property Symbol Type Description
ms 𝓊𝑘 array[SU1Map] Maps to be composed.
labels array[string]? A list of labels for the maps.

Discussed in Section 22.3 (Parallel composition)

This is the generalization of U1_C_Parallel.

26.9.2. SU1_C_Series - Series composition

D
at
a

Extends: SU1Map(kdom, kcod, pes, opt, type = "SU1_C_Series")

Property Symbol Type Description
ms 𝓊𝑘 array[SU1Map] Maps to be composed.
labels array[string]? A list of labels for the maps.

Discussed in Section 22.4 (Series composition)

This is the generalization of U1_C_Series.
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26.9.3. SU1_Identity - Identity

D
at
a

Extends: SU1Map(kdom, kcod, pes, opt, type = "SU1_Identity")

Discussed in Section 22.1 (Identities)

26.9.4. SU1_Unknown - Placeholder for an unknown SU1Map

D
at
a

Extends: SU1Map(kdom, kcod, pes, opt, type = "SU1_Unknown")

26.9.5. SU1_C_CodSum - Sum of maps

D
at
a

Extends: SU1Map(kdom, kcod, pes, opt, type = "SU1_C_CodSum")

Property Symbol Type Description
ms 𝓊𝑘 array[SU1Map] Maps to be composed.
labels array[string]? A list of labels for the maps.

Discussed in Section 22.9 (Sum)

This is the generalization of U1_C_CodSum.

26.9.6. SU1_C_CodSumSmash - Smash sum

D
at
a

Extends: SU1Map(kdom, kcod, pes, opt, type = "SU1_C_CodSumSmash")

Property Symbol Type Description
ms 𝓊𝑘 array[SU1Map] Maps to be composed.
labels array[string]? A list of labels for the maps.

Discussed in Section 22.9 (Sum)

This is the generalization of U1_C_CodSumSmash.

26.9.7. SU1_C_ProdIntersection - Product of domains, intersection of codomains

D
at
a

Extends: SU1Map(kdom, kcod, pes, opt, type = "SU1_C_ProdIntersection")

Property Symbol Type Description
ms 𝓊𝑘 array[SU1Map] Maps to be composed.
labels array[string]? A list of labels for the maps.

Discussed in Section 22.10 (Product intersection)

This is the generalization of U1_C_ProdIntersection.
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26.9.8. SU1_C_Product - Product of SU1 maps

D
at
a

Extends: SU1Map(kdom, kcod, pes, opt, type = "SU1_C_Product")

Property Symbol Type Description
ms 𝓊𝑘 array[SU1Map] Maps to be composed.
labels array[string]? A list of labels for the maps.

Discussed in Section 22.8 (Product)

This is the generalization of U1_C_Product.

26.9.9. SU1_C_Intersection - Intersection of SU1 maps

D
at
a

Extends: SU1Map(kdom, kcod, pes, opt, type = "SU1_C_Intersection")

Property Symbol Type Description
ms 𝓊𝑘 array[SU1Map] Maps to be composed.
labels array[string]? A list of labels for the maps.

Discussed in Section 22.6 (Intersection)

This is the generalization of U1_C_Intersection.

26.9.10. SU1_C_Union - Union of SU1 maps

D
at
a

Extends: SU1Map(kdom, kcod, pes, opt, type = "SU1_C_Union")

Property Symbol Type Description
ms 𝓊𝑘 array[SU1Map] Maps to be composed.
labels array[string]? A list of labels for the maps.

Discussed in Section 22.5 (Union)

This is the generalization of U1_C_Union.

26.9.11. SU1_C_RefineDomain - Refinement of the domain

D
at
a

Extends: SU1Map(kdom, kcod, pes, opt, type = "SU1_C_RefineDomain")

Property Symbol Type Description
m 𝓊 SU1Map The map to be transformed

This is the generalization of U1_C_RefineDomain.
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26.9.12. SU1_C_Trace - Trace

D
at
a

Extends: SU1Map(kdom, kcod, pes, opt, type = "SU1_C_Trace")

Property Symbol Type Description
m 𝓊 SU1Map The map to be transformed

Discussed in Section 22.7 (Trace)

This is the generalization of U1_C_Trace.

26.9.13. SU1_C_WrapUnits - Wraps a map with units.

D
at
a

Extends: SU1Map(kdom, kcod, pes, opt, type = "SU1_C_WrapUnits")

Property Symbol Type Description
m 𝓊 SU1Map The map to be transformed
kdom_units Unit Units for the domain
kcod_units Unit Units for the codomain

This is the generalization of U1_C_WrapUnits.

26.9.14. SU1_Exact - Lifts a U1Map to a SU1Map.

D
at
a

Extends: SU1Map(kdom, kcod, pes, opt, type = "SU1_Exact")

Property Symbol Type Description
m 𝓊 U1Map The U1Map to be lifted to a SU1Map.

Discussed in Section 22.2 (Lifting)

26.9.15. SU1_InvMultiply - The upper inverse of multiplication.

D
at
a

Extends: SU1Map(kdom, kcod, pes, opt, type = "SU1_InvMultiply")

Property Symbol Type Description
opspace Poset The poset where the operation is defined.

Discussed in Section 22.11 (Scalable inverse of sum and multiplication operations)

26.9.16. SU1_InvSum - The inverse of addition.

D
at
a

Extends: SU1Map(kdom, kcod, pes, opt, type = "SU1_InvSum")

Property Symbol Type Description
opspace Poset The poset where the operation is defined.

Discussed in Section 22.11 (Scalable inverse of sum and multiplication operations)
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26.9.17. SU1_C_ExplicitApprox - Constructs a SU1Map from explicit approximations of U1Map maps.

D
at
a

Extends: SU1Map(kdom, kcod, pes, opt, type = "SU1_C_ExplicitApprox")

Property Symbol Type Description
optimistic array[U1Map] The optimistic approximations of the map
optimistic_labels array[string]? Labels for the optimistic approximations.
pessimistic array[U1Map] The pessimistic approximations of the map
pessimistic_labels array[string]? Labels for the pessimistic approximations.

Discussed in Section 22.12 (Explicit approximation)
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26.10. SLMap - Scalable map to lower sets of functionalities and implementations.

D
at
a

Extends: Root(version, description, hash, kind = "SLMap")

Property Symbol Type Description
kdom 𝗄𝖽𝗈𝗆 Poset Kleisli domain of the map.
kcod 𝗄𝖼𝗈𝖽 Poset Kleisli co-domain of the map.
kimp 𝗄𝗂𝗆𝗉 Poset Poset of implementations.
pes 𝖲⌢ Poset Poset of resolutions (pessimistic)
opt 𝖲⌣ Poset Poset of resolutions (optimistic)
type string Discriminator variable to distinguish subtypes.

Subtypes based on the value for type

"SL_Identity" Identity
"SL_Unknown" Placeholder for unknown SLMap
"SL_C_Intersection" Intersection of the results of a set of maps.
"SL_C_Parallel" Monoidal product
"SL_C_Series" Series composition
"SL_C_Union" Composition of SLMaps using the union of the results.
"SL_C_ITransform" Transforms the implementations of a SLMap.
"SL_C_RefineDomain" Refines the domain of another SLMap
"SL_C_Trace" Trace of a SLMap.
"SL_C_WrapUnits" Decorates with units another SLMap.
"SL_L_Exact" Lifts a LMap to a SLMap.
"SL_L_Explicit_Approx" Construct a SLMap from explicit optimistic and pessimistic approximations.
"SL_L_Lift1_Constant" Lifts a SL1Map to SLMap with a constant implementation.
"SL_L_Lift1_Transform" Lifts a SL1Map to SLMap by generating the implementations.

26.10.1. SL_Identity - Identity

D
at
a

Extends: SLMap(kdom, kcod, kimp, pes, opt, type = "SL_Identity")

26.10.2. SL_Unknown - Placeholder for unknown SLMap

D
at
a

Extends: SLMap(kdom, kcod, kimp, pes, opt, type = "SL_Unknown")

26.10.3. SL_C_Intersection - Intersection of the results of a set of maps.

D
at
a

Extends: SLMap(kdom, kcod, kimp, pes, opt, type = "SL_C_Intersection")

Property Symbol Type Description
ms array[SLMap] Maps to be composed.
labels array[string]? A list of labels for the maps.

Discussed in Section 23.5 (Intersection)

This is the generalization of L_C_Intersection.
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26.10.4. SL_C_Parallel - Monoidal product

D
at
a

Extends: SLMap(kdom, kcod, kimp, pes, opt, type = "SL_C_Parallel")

Property Symbol Type Description
ms array[SLMap] Maps to be composed.
labels array[string]? A list of labels for the maps.

Discussed in Section 23.3 (Parallel composition)

This is the generalization of L_C_Parallel.

26.10.5. SL_C_Series - Series composition

D
at
a

Extends: SLMap(kdom, kcod, kimp, pes, opt, type = "SL_C_Series")

Property Symbol Type Description
ms array[SLMap] Maps to be composed.
labels array[string]? A list of labels for the maps.

Discussed in Section 23.4 (Series composition)

This is the generalization of L_C_Series.

26.10.6. SL_C_Union - Composition of SLMaps using the union of the results.

D
at
a

Extends: SLMap(kdom, kcod, kimp, pes, opt, type = "SL_C_Union")

Property Symbol Type Description
ms array[SLMap] Maps to be composed.
labels array[string]? A list of labels for the maps.

Discussed in Section 23.6 (Union)

This is the generalization of L_C_Union.

26.10.7. SL_C_ITransform - Transforms the implementations of a SLMap.

D
at
a

Extends: SLMap(kdom, kcod, kimp, pes, opt, type = "SL_C_ITransform")

Property Symbol Type Description
m 𝑚 SLMap The SLMap to be transformed.
transform 𝑓 MonotoneMap The monotone map that transforms the implementations of the

SLMap.

This is the generalization of L_C_ITransform.
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26.10.8. SL_C_RefineDomain - Refines the domain of another SLMap

D
at
a

Extends: SLMap(kdom, kcod, kimp, pes, opt, type = "SL_C_RefineDomain")

Property Symbol Type Description
m 𝑚 SLMap The SLMap to be transformed.

This is the generalization of L_C_RefineDomain.

26.10.9. SL_C_Trace - Trace of a SLMap.

D
at
a

Extends: SLMap(kdom, kcod, kimp, pes, opt, type = "SL_C_Trace")

Property Symbol Type Description
m 𝑚 SLMap The SLMap to be transformed.
m_proj 𝑚′ SL1Map The SL1Map projection of the SLMap𝑚.

Discussed in Section 23.7 (Trace)

This is the generalization of L_C_Trace. For computational convenience, we also require to have𝑚′, the SL1Map projection of the SLMap
𝑚.

26.10.10. SL_C_WrapUnits - Decorates with units another SLMap.

D
at
a

Extends: SLMap(kdom, kcod, kimp, pes, opt, type = "SL_C_WrapUnits")

Property Symbol Type Description
m 𝑚 SLMap The SLMap to be transformed.
kdom_units Unit Units for the domain of the SLMap.
kcod_units Unit Units for the codomain of the SLMap.
kimp_units Unit Units for the implementations of the SLMap.

This is the generalization of L_C_WrapUnits.

26.10.11. SL_L_Exact - Lifts a LMap to a SLMap.

D
at
a

Extends: SLMap(kdom, kcod, kimp, pes, opt, type = "SL_L_Exact")

Property Symbol Type Description
m LMap The LMap to be lifted to a SLMap.

Discussed in Section 23.1 (Lifts)

26.10.12. SL_L_Explicit_Approx - Construct a SLMap from explicit optimistic and pessimistic approximations.

D
at
a

Extends: SLMap(kdom, kcod, kimp, pes, opt, type = "SL_L_Explicit_Approx")

Property Symbol Type Description
optimistic array[LMap] The optimistic approximations of the SLMap.
optimistic_labels array[string]? Labels for the optimistic approximations.
pessimistic array[LMap] The pessimistic approximations of the SLMap.
pessimistic_labels array[string]? Labels for the pessimistic approximations.

Discussed in Section 23.2 (Explicit approximations)
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26.10.13. SL_L_Lift1_Constant - Lifts a SL1Map to SLMap with a constant implementation.

D
at
a

Extends: SLMap(kdom, kcod, kimp, pes, opt, type = "SL_L_Lift1_Constant")

Property Symbol Type Description
m SL1Map The SL1Map to be lifted to a SLMap.
value any The constant value to be used for the implementations

This is the generalization of L_L_Lift1_Constant.
This is the particular case of SL_L_Lift1_Transform where the transform map is constant.

26.10.14. SL_L_Lift1_Transform - Lifts a SL1Map to SLMap by generating the implementations.

D
at
a

Extends: SLMap(kdom, kcod, kimp, pes, opt, type = "SL_L_Lift1_Transform")

Property Symbol Type Description
m 𝑚 SL1Map The SL1Map to be lifted to a SLMap.
transform 𝑓 MonotoneMap The monotone map that transforms the implementations of the

SLMap.

This is the generalization of L_L_Lift1_Transform.
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26.11. SUMap - Scalable map to upper sets of resources and implementations.

D
at
a

Extends: Root(version, description, hash, kind = "SUMap")

Property Symbol Type Description
kdom 𝗄𝖽𝗈𝗆 Poset The Kleisli domain of the map.
kcod 𝗄𝖼𝗈𝖽 Poset The Kleisli codomain of the map.
kimp 𝗄𝗂𝗆𝗉 Poset The implementation poset of the map.
pes 𝖲⌢ Poset The resolution poset for pessimistic estimate.
opt 𝖲⌣ Poset The resolution poset for optimistic estimate.
type string Discriminator variable to distinguish subtypes.

Subtypes based on the value for type

"SU_Identity" Identity
"SU_Unknown" Placeholder for unknown SUMap
"SU_C_Intersection" Intersection of the results of a set of maps.
"SU_C_Parallel" Monoidal product
"SU_C_Series" Series composition
"SU_C_Union" Composition of SUMaps using the union of the results.
"SU_C_ITransform" Transforms the implementations of a SUMap.
"SU_C_RefineDomain" Refines the domain of another SUMap
"SU_C_Trace" Trace of a SUMap.
"SU_C_WrapUnits" Decorates with units another SUMap.
"SU_L_Exact" Lifts a UMap to a SUMap.
"SU_L_Explicit_Approx" Construct a SUMap from explicit optimistic and pessimistic approximations.
"SU_L_Lift1_Constant" Lifts a SU1Map to SUMap with a constant implementation.
"SU_L_Lift1_Transform" Lifts a SU1Map to SUMap by generating the implementations.

26.11.1. SU_Identity - Identity

D
at
a

Extends: SUMap(kdom, kcod, kimp, pes, opt, type = "SU_Identity")

26.11.2. SU_Unknown - Placeholder for unknown SUMap

D
at
a

Extends: SUMap(kdom, kcod, kimp, pes, opt, type = "SU_Unknown")

26.11.3. SU_C_Intersection - Intersection of the results of a set of maps.

D
at
a

Extends: SUMap(kdom, kcod, kimp, pes, opt, type = "SU_C_Intersection")

Property Symbol Type Description
ms 𝑚𝑖 array[SUMap] Maps to be composed
labels array[string]? Labels for the maps

Discussed in Section 23.5 (Intersection)

This is the generalization of U_C_Intersection.
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26.11.4. SU_C_Parallel - Monoidal product

D
at
a

Extends: SUMap(kdom, kcod, kimp, pes, opt, type = "SU_C_Parallel")

Property Symbol Type Description
ms 𝑚𝑖 array[SUMap] Maps to be composed
labels array[string]? Labels for the maps

Discussed in Section 23.3 (Parallel composition)

This is the generalization of U_C_Parallel.

26.11.5. SU_C_Series - Series composition

D
at
a

Extends: SUMap(kdom, kcod, kimp, pes, opt, type = "SU_C_Series")

Property Symbol Type Description
ms 𝑚𝑖 array[SUMap] Maps to be composed
labels array[string]? Labels for the maps

Discussed in Section 23.4 (Series composition)

This is the generalization of U_C_Series.

26.11.6. SU_C_Union - Composition of SUMaps using the union of the results.

D
at
a

Extends: SUMap(kdom, kcod, kimp, pes, opt, type = "SU_C_Union")

Property Symbol Type Description
ms 𝑚𝑖 array[SUMap] Maps to be composed
labels array[string]? Labels for the maps

Discussed in Section 23.6 (Union)

This is the generalization of U_C_Union.

26.11.7. SU_C_ITransform - Transforms the implementations of a SUMap.

D
at
a

Extends: SUMap(kdom, kcod, kimp, pes, opt, type = "SU_C_ITransform")

Property Symbol Type Description
m 𝑚 SUMap Map to be transformed
transform 𝑓 MonotoneMap The monotone map that transforms the implementations of the

SUMap.

This is the generalization of U_C_ITransform.
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26.11.8. SU_C_RefineDomain - Refines the domain of another SUMap

D
at
a

Extends: SUMap(kdom, kcod, kimp, pes, opt, type = "SU_C_RefineDomain")

Property Symbol Type Description
m 𝑚 SUMap Map to be transformed

This is the generalization of U_C_RefineDomain. The map is refined by restricting the domain to a subset of the original domain.

26.11.9. SU_C_Trace - Trace of a SUMap.

D
at
a

Extends: SUMap(kdom, kcod, kimp, pes, opt, type = "SU_C_Trace")

Property Symbol Type Description
m 𝑚 SUMap Map to be transformed
m_proj 𝑚′ SU1Map The SU1Map projection of the SUMap𝑚.

Discussed in Section 23.7 (Trace)

This is the generalization of U_C_Trace.
For computational convenience, we also require to have𝑚′, the SU1Map projection of the SUMap𝑚.

26.11.10. SU_C_WrapUnits - Decorates with units another SUMap.

D
at
a

Extends: SUMap(kdom, kcod, kimp, pes, opt, type = "SU_C_WrapUnits")

Property Symbol Type Description
m 𝑚 SUMap Map to be transformed
kdom_units Unit Units for the domain of the SUMap.
kcod_units Unit Units for the codomain of the SUMap.
kimp_units Unit Units for the implementations of the SUMap.

This is the generalization of U_C_WrapUnits.

26.11.11. SU_L_Exact - Lifts a UMap to a SUMap.

D
at
a

Extends: SUMap(kdom, kcod, kimp, pes, opt, type = "SU_L_Exact")

Property Symbol Type Description
m UMap The UMap to be lifted to a SUMap.

Discussed in Section 23.1 (Lifts)
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26.11.12. SU_L_Explicit_Approx - Construct a SUMap from explicit optimistic and pessimistic approximations.

D
at
a

Extends: SUMap(kdom, kcod, kimp, pes, opt, type = "SU_L_Explicit_Approx")

Property Symbol Type Description
optimistic array[UMap] The optimistic approximations of the SUMap.
optimistic_labels array[string]? Labels for the optimistic approximations.
pessimistic array[UMap] The pessimistic approximations of the SUMap.
pessimistic_labels array[string]? Labels for the pessimistic approximations.

Discussed in Section 23.2 (Explicit approximations)

26.11.13. SU_L_Lift1_Constant - Lifts a SU1Map to SUMap with a constant implementation.

D
at
a

Extends: SUMap(kdom, kcod, kimp, pes, opt, type = "SU_L_Lift1_Constant")

Property Symbol Type Description
m 𝑚 SU1Map The SU1Map to be lifted to a SUMap.
value any The constant value to be used for the implementations

This is the generalization of U_L_Lift1_Constant.
This is the particular case of SU_L_Lift1_Transform where the transform map is constant.

26.11.14. SU_L_Lift1_Transform - Lifts a SU1Map to SUMap by generating the implementations.

D
at
a

Extends: SUMap(kdom, kcod, kimp, pes, opt, type = "SU_L_Lift1_Transform")

Property Symbol Type Description
m 𝑚 SU1Map The SU1Map to be lifted to a SUMap.
transform 𝑓 MonotoneMap The monotone map that transforms the implementations of the

SUMap.

This is the generalization of U_L_Lift1_Transform.
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26.12. DP - Design problem with implementations (DPI)

D
at
a

Extends: Root(version, description, hash, kind = "DP")

Property Symbol Type Description
F 𝐅 Poset Poset of functionalities
R 𝐑 Poset Poset of requirements
B ℬ Poset? Poset of blueprints. If not present, it is the smash unit.
I 𝐈 Poset? Poset of implementations. If not present, it is the smash unit.
address Address? Pointer to the entity that generated this object.
type string Discriminator variable to distinguish subtypes.

Discussed in Section 14.1 (DPIs)

Subtypes based on the value for type

"DP_GenericConstant" A DP with exactly one implementation.
"DP_Identity" The identity design problem.
"DP_True" The DP that is always true.
"DP_False" The DP that is always false.
"DP_AmbientConversion" Compares functionality and resources in an ambient poset.
"DP_Catalog" A DP defined explicitly by a set of options.
"DP_Iso" Enforces isomorphism between functionalities and requirements.
"DP_LiftL" A DP generated from a monotone map from requirements to functionalities.
"DP_LiftU" A DP generated from a monotone map from functionality to requirements.
"DP_C_Parallel" Monoidal product of design problems.
"DP_C_Series" Series composition of DPs.
"DP_C_Intersection" Intersection of design problems
"DP_C_Union" Union of design problems (DPs).
"DP_C_Trace" Trace of a design problem.
"DP_FuncNotMoreThan" Identity with limit to the functionality.
"DP_ResNotLessThan" Identity with limit to the resource.
"DP_All_Fi_Leq_R" Compares a vector of functions to a resource (conjunction).
"DP_Any_Fi_Leq_R" Compares a vector of functions to a resource (disjunction).
"DP_F_Leq_All_Ri" Compares a vector of resources to a function (conjunction).
"DP_F_Leq_Any_Ri" Compares a vector of resources to a function (disjunction).
"DP_All_Constants_Leq_R" Compare a resource to a set of constants
"DP_F_Leq_All_Constants" Compare a functionality to a set of constants
"DP_All_Constants_And_F_Leq_R" Compares resources to a function and a set of constants (conjunction).
"DP_Any_Constants_Or_F_Leq_R" Compares resources to a function and a set of constants (disjunction).
"DP_F_Leq_All_R_And_Constants" Compares a functionality to a resource and a set of constants (conjunction).
"DP_F_Leq_Any_R_And_Constants" Compares a functionality to a resource and a set of constants (disjunction).
"DP_C_ExplicitApprox" Multi-resolution DP
"DP_Compiled" An "opaque" DP defined explicitly by its interface.
"DP_Unknown" Placeholder for an unknown design problem.

26.12.1. DP_GenericConstant - A DP with exactly one implementation.

D
at
a

Extends: DP(F, R, B, I, address, type = "DP_GenericConstant")

Property Symbol Type Description
b_value 𝑏 any The value of blueprint.
lower_set 𝐿 LowerSet The lower set of functionalities that are compatible.
upper_set 𝑈 UpperSet The upper set of resources that are compatible.

Discussed in Section 25.2 (Catalogs)

The relation is given by:
(𝑓 ∈ 𝐿) ∧ (𝑟 ∈ 𝑈) (64)
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26.12.2. DP_Identity - The identity design problem.

D
at
a

Extends: DP(F, R, B, I, address, type = "DP_Identity")

Discussed in Section 24.1 (Identity)

26.12.3. DP_True - The DP that is always true.

D
at
a

Extends: DP(F, R, B, I, address, type = "DP_True")

Property Symbol Type Description
value Value The implementation value.

Discussed in Section 25.1.1 (True)

The relation is always true.

Ex
am

pl
es

kind: DP
type: DP_True
F: {kind: Poset, type: P_C_Product, subs: []}
R: {kind: Poset, type: P_C_Product, subs: []}
I: {kind: Poset, type: P_C_ProductSmash, subs: []}
B:
kind: Poset
type: P_C_ProductSmash
subs: [{kind: Poset, type: P_Decimal}]
naked: true
ranges: ...

value:
kind: Value
type: VU
poset:
kind: Poset
type: P_C_ProductSmash
subs: [{kind: Poset, type: P_Decimal}]
naked: true
ranges: ...

value: [15]

This is a DP which is always true, whose blueprint value is
⟨15⟩.

26.12.4. DP_False - The DP that is always false.

D
at
a

Extends: DP(F, R, B, I, address, type = "DP_False")

Discussed in Section 25.1.2 (False)

The relation is always false.
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26.12.5. DP_AmbientConversion - Compares functionality and resources in an ambient poset.

D
at
a

Extends: DP(F, R, B, I, address, type = "DP_AmbientConversion")

Property Symbol Type Description
common 𝐑 Poset The ambient poset.

Discussed in Section 24.2 (Ambient conversion)

Let 𝐑 be an ambient poset for both 𝐅 and 𝐑:

𝐅 ⊆ 𝐑
𝐑⊆ 𝐑

Then this DP corresponds to the feasibility relation

𝑓 ≤𝐑 𝑟

26.12.6. DP_Catalog - A DP defined explicitly by a set of options.

D
at
a

Extends: DP(F, R, B, I, address, type = "DP_Catalog")

Property Symbol Type Description
options array[DP_Catalog_Options] A list of options that define the design problem. Each option is a

tuple of functionality, requirement, blueprint, and
implementation.

Discussed in Section 25.2 (Catalogs)

This DP is defined explicitly by a set of options. Each option is a tuple of functionality, requirement, blueprint, and implementation.
The relation is given by: ⋁

(𝑓𝑗 ,𝑟𝑗 ,𝑏𝑗 ,𝑖𝑗 )∈options
(𝑓 ≤ 𝑓𝑗) ∧ (𝑟𝑗 ≤ 𝑟)

DP_Catalog_Options - One option for the catalog

D
at
a

Property Symbol Type Description
f any Functionality
r any Requirement
b any Blueprint
i any Implementation
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26.12.7. DP_Iso - Enforces isomorphism between functionalities and requirements.

D
at
a

Extends: DP(F, R, B, I, address, type = "DP_Iso")

Property Symbol Type Description
fwd 𝛼 MonotoneMap Amonotone map from the poset of functionalities to the poset of

requirements.
bwd 𝛽 MonotoneMap Amonotone map from the poset of requirements to the poset of

functionalities.

Discussed in Section 24.3 (Isomorphism)

The isomorphism is defined by the two monotone maps 𝛼 ∶ 𝐅→ 𝐑and 𝛽 ∶ 𝐑→ 𝐅 such that 𝛼◦𝛽 = id and 𝛽◦𝛼 = id.

26.12.8. DP_LiftL - A DP generated from a monotone map from requirements to functionalities.

D
at
a

Extends: DP(F, R, B, I, address, type = "DP_LiftL")

Property Symbol Type Description
m 𝑚 MonotoneMap Amonotone map from the poset of requirements to the poset of

functionalities.

The relation is
𝑓 ≤ 𝑚(𝑟) (65)

26.12.9. DP_LiftU - A DP generated from a monotone map from functionality to requirements.

D
at
a

Extends: DP(F, R, B, I, address, type = "DP_LiftU")

Property Symbol Type Description
m 𝑚 MonotoneMap Amonotone map from the poset of functionalities to the poset of

requirements. This is used to lift a DP from the requirements to
the functionalities.

Discussed in Section 24.5 (Upper lift of a map)

The relation is
𝑚(𝑓) ≤ 𝑟 (66)

26.12.10. DP_C_Parallel - Monoidal product of design problems.

D
at
a

Extends: DP(F, R, B, I, address, type = "DP_C_Parallel")

Property Symbol Type Description
dps array[DP] A list of design problems (DPs) to be composed.
labels array[string]? A list of labels.

Discussed in Section 25.3 (Parallel composition)
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26.12.11. DP_C_Series - Series composition of DPs.

D
at
a

Extends: DP(F, R, B, I, address, type = "DP_C_Series")

Property Symbol Type Description
dps array[DP] A list of design problems (DPs) to be composed.
labels array[string]? A list of labels.

Discussed in Section 25.4 (Series)

Series composition of DPs.

26.12.12. DP_C_Intersection - Intersection of design problems

D
at
a

Extends: DP(F, R, B, I, address, type = "DP_C_Intersection")

Property Symbol Type Description
dps array[DP] A list of design problems (DPs) to be composed.
labels array[string]? A list of labels.

Discussed in Section 25.5 (Intersection)

26.12.13. DP_C_Union - Union of design problems (DPs).

D
at
a

Extends: DP(F, R, B, I, address, type = "DP_C_Union")

Property Symbol Type Description
dps array[DP] A list of design problems (DPs) to be composed.
labels array[string]? A list of labels.

Discussed in Section 25.6 (Union)

26.12.14. DP_C_Trace - Trace of a design problem.

D
at
a

Extends: DP(F, R, B, I, address, type = "DP_C_Trace")

Property Symbol Type Description
dp DP The design problem that is being traced.

Discussed in Section 25.7 (Trace)
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26.12.15. DP_FuncNotMoreThan - Identity with limit to the functionality.

D
at
a

Extends: DP(F, R, B, I, address, type = "DP_FuncNotMoreThan")

Property Symbol Type Description
limit 𝐿 any The limit for the functionality.

Discussed in Section 24.6.1 (Functionality not more than the requirement and constant)

The relation is given by:
(𝑓 ≤ 𝐿) ∧ (𝑓 ≤ 𝑟)

26.12.16. DP_ResNotLessThan - Identity with limit to the resource.

D
at
a

Extends: DP(F, R, B, I, address, type = "DP_ResNotLessThan")

Property Symbol Type Description
limit 𝐿 any The limit for the resource.

Discussed in Section 24.6.2 (Requirement not less than the functionality and constant)

The relation is given by:
(𝑓 ≤ 𝑟) ∧ (𝐿 ≤ 𝑟)

26.12.17. DP_All_Fi_Leq_R - Compares a vector of functions to a resource (conjunction).

D
at
a

Extends: DP(F, R, B, I, address, type = "DP_All_Fi_Leq_R")

Discussed in Section 24.6.3 (All functionalities less than the requirement)

The relation is given by:
(𝑓1 ≤ 𝑟) ∧ ⋯ ∧ (𝑓𝑛 ≤ 𝑟)

26.12.18. DP_Any_Fi_Leq_R - Compares a vector of functions to a resource (disjunction).

D
at
a

Extends: DP(F, R, B, I, address, type = "DP_Any_Fi_Leq_R")

Discussed in Section 24.6.4 (Any functionality less than the requirement)

The relation is given by:
(𝑓1 ≤ 𝑟) ∨ ⋯ ∨ (𝑓𝑛 ≤ 𝑟)
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26.12.19. DP_F_Leq_All_Ri - Compares a vector of resources to a function (conjunction).

D
at
a

Extends: DP(F, R, B, I, address, type = "DP_F_Leq_All_Ri")

Discussed in Section 24.6.5 (All requirements more than the functionality)

The relation is given by:
(𝑓 ≤ 𝑟1) ∧ ⋯ ∧ (𝑓 ≤ 𝑟𝑛)

Compare with DP_F_Leq_Any_Ri which uses disjunctions instead of conjunctions.

26.12.20. DP_F_Leq_Any_Ri - Compares a vector of resources to a function (disjunction).

D
at
a

Extends: DP(F, R, B, I, address, type = "DP_F_Leq_Any_Ri")

Discussed in Section 24.6.6 (Any requirement more than the functionality)

The relation is given by:
(𝑓 ≤ 𝑟1) ∨ ⋯ ∨ (𝑓 ≤ 𝑟𝑛)

Compare with DP_F_Leq_All_Ri which uses conjunctions instead of disjunctions.

26.12.21. DP_All_Constants_Leq_R - Compare a resource to a set of constants

D
at
a

Extends: DP(F, R, B, I, address, type = "DP_All_Constants_Leq_R")

Property Symbol Type Description
constants 𝑐𝑖 array[any] A list of constants 𝑐1, … , 𝑐𝑛 .

Discussed in Section 24.6.7 (All constants less than the requirement)

The relation is given by:
(𝑐1 ≤ 𝑟) ∧ ⋯ ∧ (𝑐𝑛 ≤ 𝑟)

Note: This extended form is needed when the constants are not a lattice. In the case of a lattice, the relation would be given by:
⋁

𝑖
𝑐𝑖 ≤ 𝑟

and could be realized using DP_GenericConstant.
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26.12.22. DP_F_Leq_All_Constants - Compare a functionality to a set of constants

D
at
a

Extends: DP(F, R, B, I, address, type = "DP_F_Leq_All_Constants")

Property Symbol Type Description
constants 𝑐𝑖 array[any] A list of constants 𝑐1, … , 𝑐𝑛 .

Discussed in Section 24.6.8 (Functionality less than all constants)

The relation is given by:
(𝑓 ≤ 𝑐1) ∧ ⋯ ∧ (𝑓 ≤ 𝑐𝑛)

Note: This extended form is needed when the constants are not a lattice. In the case of a lattice, the relation would be given by:

𝑓 ≤
⋀

𝑖
𝑐𝑖

and could be realized using DP_GenericConstant.

26.12.23. DP_All_Constants_And_F_Leq_R - Compares resources to a function and a set of constants
(conjunction).

D
at
a

Extends: DP(F, R, B, I, address, type = "DP_All_Constants_And_F_Leq_R")

Property Symbol Type Description
constants 𝑐𝑖 array[any] A list of constants 𝑐1, … , 𝑐𝑛 .

Discussed in Section 24.6.9 (Functionality and all constants less than the requirement)

The relation is given by:
(𝑐1 ≤ 𝑟) ∧ ⋯ ∧ (𝑐𝑛 ≤ 𝑟) ∧ (𝑓 ≤ 𝑟)

26.12.24. DP_Any_Constants_Or_F_Leq_R - Compares resources to a function and a set of constants
(disjunction).

D
at
a

Extends: DP(F, R, B, I, address, type = "DP_Any_Constants_Or_F_Leq_R")

Property Symbol Type Description
constants 𝑐𝑖 array[any] A list of constants 𝑐1, … , 𝑐𝑛 .

Discussed in Section 24.6.10 (Functionality or any constant less than the requirement)

The relation is given by:
(𝑐1 ≤ 𝑟) ∨ ⋯ ∨ (𝑐𝑛 ≤ 𝑟) ∨ (𝑓 ≤ 𝑟)
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26.12.25. DP_F_Leq_All_R_And_Constants - Compares a functionality to a resource and a set of constants
(conjunction).

D
at
a

Extends: DP(F, R, B, I, address, type = "DP_F_Leq_All_R_And_Constants")

Property Symbol Type Description
constants 𝑐𝑖 array[any] A list of constants 𝑐1, … , 𝑐𝑛 .

Discussed in Section 24.6.11 (Functionality less than the requirement and all constants)

The relation is given by:
(𝑓 ≤ 𝑐1) ∧ ⋯ ∧ (𝑓 ≤ 𝑐𝑛) ∧ (𝑓 ≤ 𝑟)

26.12.26. DP_F_Leq_Any_R_And_Constants - Compares a functionality to a resource and a set of constants
(disjunction).

D
at
a

Extends: DP(F, R, B, I, address, type = "DP_F_Leq_Any_R_And_Constants")

Property Symbol Type Description
constants 𝑐𝑖 array[any] A list of constants 𝑐1, … , 𝑐𝑛 .

Discussed in Section 24.6.12 (Functionality less than the requirement or any constant)

The relation is given by:
(𝑓 ≤ 𝑐1) ∨ ⋯ ∨ (𝑓 ≤ 𝑐𝑛) ∨ (𝑓 ≤ 𝑟)
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26.12.27. DP_C_ExplicitApprox - Multi-resolution DP

D
at
a

Extends: DP(F, R, B, I, address, type = "DP_C_ExplicitApprox")

Property Symbol Type Description
optimistic array[DP] List of optimistic DPs.
optimistic_labels array[string]? Labels for the optimistic DPs.
pessimistic array[DP] List of pessimistic DPs.
pessimistic_labels array[string]? Labels for the pessimistic DPs.

This DP assembles a "multi resolution" DP from a list of optimistic and pessimistic DPs.

Ex
am

pl
es

kind: DP
type: DP_C_ExplicitApprox
F: {kind: Poset, type: P_Decimal}
R: {kind: Poset, type: P_Decimal}
optimistic:
- kind: DP
type: DP_True
F: {kind: Poset, type: P_Decimal}
R: {kind: Poset, type: P_Decimal}
value:
kind: Value
type: VU
value: []
poset:
kind: Poset
type: P_C_ProductSmash
subs: []
naked: []
ranges: []

pessimistic:
- kind: DP
type: DP_False
F: {kind: Poset, type: P_Decimal}
R: {kind: Poset, type: P_Decimal}

26.12.28. DP_Compiled - An "opaque" DP defined explicitly by its interface.

D
at
a

Extends: DP(F, R, B, I, address, type = "DP_Compiled")

Property Symbol Type Description
f_r SU1Map The function that returns minimal resources needed to satisfy the

requirements.
f_b_r SUMap The function that returns the maximum functionality given the

budget of resources as well as the blueprint.
f_i_r SUMap The function that returns the maximum functionality given the

budget of resources as well as the implementation.
r_f SL1Map The function that returns the maximum functionality given the

budget of requirements.
r_b_f SLMap The function that returns the maximum functionality given the

budget of resources as well as the blueprint.
r_i_f SLMap The function that returns the maximum functionality given the

budget of resources as well as the implementation.
i_b MonotoneMap The function that maps implementations to blueprints.
i_codfeas MonotoneMap The function that maps implementations to their internal

feasibility.
i_availability MonotoneMap The function that maps implementations to their availability.
prov MonotoneMap The "provides" map from implementations to functionalities.
req MonotoneMap The "requires" map from implementations to requirements.

26.12.29. DP_Unknown - Placeholder for an unknown design problem.

D
at
a

Extends: DP(F, R, B, I, address, type = "DP_Unknown")
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26.13. NDP - Named DPs represent a graph of DPs with named nodes and node ports.

D
at
a

Extends: Root(version, description, hash, kind = "NDP")

Property Symbol Type Description
F dict[string,Poset] Dictionary of functionalities.
R dict[string,Poset] Dictionary of resources.
address Address? Pointer to the entity that generated this object.
type string Discriminator variable to distinguish subtypes.

Subtypes based on the value for type

"NDP_Composite" Graph of NDPs with connections between them.
"NDP_Simple" An NDP that contains a single DP.
"NDP_Sum" sum of NDPs
"NDP_TemplateHole" A special NDP to indicate a template hole in the NDP.

26.13.1. NDP_Composite - Graph of NDPs with connections between them.

D
at
a

Extends: NDP(F, R, address, type = "NDP_Composite")

Property Symbol Type Description
nodes dict[string,NDP] A map of node identifiers to their corresponding NDPs in the

graph. Each key is a unique identifier for a node, and the value is
the NDP associated with that node.

connections array[Connection] Connections between the nodes in the NDP graph.

Connection - Represents a connection between two nodes in the NDP graph

D
at
a

Property Symbol Type Description
type string Type marker.

Must be equal to "Connection"
source ConnectionSource The source of the connection.
target ConnectionTarget The target of the connection.

ConnectionTarget - The target of a connection.

D
at
a Property Symbol Type Description

type string Discriminator variable to distinguish subtypes.

Subtypes based on the value for type

"ModelRequirement" The target is the requirement of the ambient model.
"NodeFunctionality" The target is the functionality of another subproblem.

ModelRequirement - The target is the requirement of the ambient model.

D
at
a

Extends: ConnectionTarget(type = "ModelRequirement")

Property Symbol Type Description
requirement string The name of a requirement of the ambient model.
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NodeFunctionality - The target is the functionality of another subproblem.

D
at
a

Extends: ConnectionTarget(type = "NodeFunctionality")

Property Symbol Type Description
node string The name of the node that provides the functionality.
node_functionality string The name of the functionality that is provided by the node.

ConnectionSource - The source of a connection.

D
at
a Property Symbol Type Description

type string Discriminator variable to distinguish subtypes.

Subtypes based on the value for type

"ModelFunctionality" The source of a connection is a functionality of the composite graph.
"NodeRequirement" The source of a connection is a requirement of another node.

ModelFunctionality - The source of a connection is a functionality of the composite graph.

D
at
a

Extends: ConnectionSource(type = "ModelFunctionality")

Property Symbol Type Description
functionality string The name of the functionality that is provided by the composite

graph.

NodeRequirement - The source of a connection is a requirement of another node.

D
at
a

Extends: ConnectionSource(type = "NodeRequirement")

Property Symbol Type Description
node string The name of the node that provides the requirement.
node_requirement string The name of the requirement that is provided by the node.

26.13.2. NDP_Simple - An NDP that contains a single DP.

D
at
a

Extends: NDP(F, R, address, type = "NDP_Simple")

Property Symbol Type Description
dp DP The DP that this NDP contains. Must have poset products as

resources and functionalities.

26.13.3. NDP_Sum - sum of NDPs

D
at
a

Extends: NDP(F, R, address, type = "NDP_Sum")

Property Symbol Type Description
dps dict[string,NDP] The NDPs to sum.
labels array[string]? Labels for the NDPs.
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26.13.4. NDP_TemplateHole - A special NDP to indicate a template hole in the NDP.

D
at
a

Extends: NDP(F, R, address, type = "NDP_TemplateHole")

Property Symbol Type Description
parameter_name string The name of the parameter that is to be filled in.
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26.14. NDPInterface - The interface of a named DP.

D
at
a

Extends: Root(version, description, hash, kind = "NDPInterface")

Property Symbol Type Description
address Address? Pointer to the entity that generated this object.
type string Discriminator variable to distinguish subtypes.

Subtypes based on the value for type

"NDPInterface_Explicit" The interface of a named DP, given by two dictionaries for functionalities and resources.

26.14.1. NDPInterface_Explicit - The interface of a named DP, given by two dictionaries for functionalities and
resources.

D
at
a

Extends: NDPInterface(address, type = "NDPInterface_Explicit")

Property Symbol Type Description
fs dict[string,Poset] Dictionary from functionality name to poset.
rs dict[string,Poset] Dictionary from requirement name to poset.
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26.15. NDPTemplate - A template for an NDP.

D
at
a

Extends: Root(version, description, hash, kind = "NDPTemplate")

Property Symbol Type Description
address Address? Pointer to the entity that generated this object.
type string Discriminator variable to distinguish subtypes.

Subtypes based on the value for type

"NDPTemplate_Simple" A template described by a graph with holes.

26.15.1. NDPTemplate_Simple - A template described by a graph with holes.

D
at
a

Extends: NDPTemplate(address, type = "NDPTemplate_Simple")

Property Symbol Type Description
ndp 𝑁 NDP The NDP that this template can instantiate. Inside, there are

special “holes”.
parameters dict[string,NDPInterface] The interface of the holes.
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26.16. Query - Queries

D
at
a

Extends: Root(version, description, hash, kind = "Query")

Property Symbol Type Description
address Address? Pointer to the entity that generated this object.
type string Discriminator variable to distinguish subtypes.

Queries represent the questions that can be asked about a model.

Subtypes based on the value for type

"Query_Single" Single query

26.16.1. Query_Single - Single query

D
at
a

Extends: Query(address, type = "Query_Single")

Property Symbol Type Description
model NDP The model to which the query applies.
query_data QueryData The data that is used to answer the query.

QueryData - Query data

D
at
a Property Symbol Type Description

type string Discriminator variable to distinguish subtypes.

Subtypes based on the value for type

"QueryFixFunMinReqData" Data for the query FixFunMinReq
"QueryFixReqMaxFunData" Data for the query FixReqMaxFun

QueryFixFunMinReqData - Data for the query FixFunMinReq

D
at
a

Extends: QueryData(type = "QueryFixFunMinReqData")

Property Symbol Type Description
f dict[string,Value] Lower bounds for the functionalities.
r dict[string,Value] Upper bounds for the requirements.
optimize_for array[string] The names of the functionalities that are optimized for. This is a

list of the keys of the ‘f‘ object.

QueryFixReqMaxFunData - Data for the query FixReqMaxFun

D
at
a

Extends: QueryData(type = "QueryFixReqMaxFunData")

Property Symbol Type Description
f dict[string,Value] Lower bounds for the functionalities.
r dict[string,Value] Upper bounds for the requirements.
optimize_for array[string] The functionalities that are optimized for. This is a list of the keys

of the ‘f‘ object.

246



26.17. Value - A typed value

D
at
a

Extends: Root(version, description, hash, kind = "Value")

Property Symbol Type Description
address Address? Pointer to the entity that generated this object.
type string Discriminator variable to distinguish subtypes.

A typed value is a value that has a type (poset). This is used in contexts where the poset to which the value belongs is not clear from the
context.

Subtypes based on the value for type

"VU" A (poset, value) pair.

26.17.1. VU - A (poset, value) pair.

D
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a

Extends: Value(address, type = "VU")

Property Symbol Type Description
poset 𝑃 Poset The poset to which the value belongs.
value 𝑣 ∈ 𝑃 any The value that belongs to the poset.
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26.18. Check - Checks for the maps, as used in test cases.

D
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a

Extends: Root(version, description, hash, kind = "Check")

Property Symbol Type Description
type string Discriminator variable to distinguish subtypes.

Subtypes based on the value for type

"L1Check" Check for a L1Map.
"LCheck" Check for a LMap.
"MapCheck" Check for a monotone map.
"SL1Check" Check for a SL1Map.
"SLCheck" Check for a SL1Map.
"SU1Check" Check for a SU1Map.
"SUCheck" Check for a SUMap.
"U1Check" Check for a U1Map.
"UCheck" Check for a UMap.

26.18.1. L1Check - Check for a L1Map.
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Extends: Check(type = "L1Check")

Property Symbol Type Description
m 𝑚 L1Map The map to check
data array[L1Check_Data] Data to check the L1Map.

L1Check_Data - An input-output pair for the L1Map

D
at
a Property Symbol Type Description

x 𝑥 any The input to the L1Map.
y LowerSet Expected result (a lower set).
elapsed number? Time taken for the check in seconds (optional).

26.18.2. LCheck - Check for a LMap.

D
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a

Extends: Check(type = "LCheck")

Property Symbol Type Description
m 𝑚 LMap The map to check
data array[LCheck_Data] Test pairs

LCheck_Data - An input-output pair for the map

D
at
a Property Symbol Type Description

x 𝑥 any The input to the map
y 𝑦 LowerSet The expected result (a lower set).
elapsed number? Time taken for the check in seconds.
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26.18.3. MapCheck - Check for a monotone map.

D
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a

Extends: Check(type = "MapCheck")

Property Symbol Type Description
m 𝑚 MonotoneMap The map to check.
data array[MapCheck_Data] An input-output pair, where ‘x‘ is the input to the map and ‘y‘ is

the expected result.

MapCheck_Data - An input-output pair for the map

D
at
a Property Symbol Type Description

x 𝑥 any The input to the map.
y 𝑦 any The expected result
elapsed number? Time taken to compute the result.

26.18.4. SL1Check - Check for a SL1Map.

D
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a

Extends: Check(type = "SL1Check")

Property Symbol Type Description
m 𝑚 SL1Map The map to check
data array[SL1Check_Data] Test pairs

SL1Check_Data - An input-output pair

D
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a

Property Symbol Type Description
x any
pess any
opt any
pess_y LowerSet
opt_y LowerSet
pess_elapsed number? Time taken for the check in seconds.
opt_elapsed number? Time taken for the check in seconds.

26.18.5. SLCheck - Check for a SL1Map.

D
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Extends: Check(type = "SLCheck")

Property Symbol Type Description
m 𝑚 SLMap The map to check
data array[SLCheck_Data] Test pairs

SLCheck_Data - An input-output pair for the SLMap

D
at
a

Property Symbol Type Description
x any
pess any
opt any
pess_y LowerSet
opt_y LowerSet
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D
at
a pess_elapsed number? Time taken for the check in seconds.

opt_elapsed number? Time taken for the check in seconds.

26.18.6. SU1Check - Check for a SU1Map.

D
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Extends: Check(type = "SU1Check")

Property Symbol Type Description
m 𝑚 SU1Map The map to check
data array[SU1Check_Data] Test pairs

SU1Check_Data - An input-output pair for the SU1Map

D
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Property Symbol Type Description
x any
pess any
opt any
pess_y UpperSet
opt_y UpperSet
pess_elapsed number? Time taken for the check in seconds.
opt_elapsed number? Time taken for the check in seconds.

26.18.7. SUCheck - Check for a SUMap.
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Extends: Check(type = "SUCheck")

Property Symbol Type Description
m 𝑚 SUMap The map to check
data array[SUCheck_Data] Test pairs

SUCheck_Data - An input-output pair for the SUMap

D
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Property Symbol Type Description
x any
opt any
opt_y UpperSet
pess any
pess_y UpperSet
pess_elapsed number? Time taken for the check in seconds.
opt_elapsed number? Time taken for the check in seconds.

26.18.8. U1Check - Check for a U1Map.

D
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Extends: Check(type = "U1Check")

Property Symbol Type Description
m 𝑚 U1Map The map to check
data array[U1Check_Data] Test pairs

250



U1Check_Data - An input-output pair for the U1Map

D
at
a Property Symbol Type Description

x any
y UpperSet
elapsed number? Time taken for the check in seconds.

26.18.9. UCheck - Check for a UMap.

D
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a

Extends: Check(type = "UCheck")

Property Symbol Type Description
m 𝑚 UMap The map to check
data array[UCheck_Data] Test pairs

UCheck_Data - An input-output pair for the UMap

D
at
a Property Symbol Type Description

x any
y UpperSet
elapsed number? Time taken for the check in seconds.
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27. Miscellaneous level
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27.1. LowerSet - Represents a lower set in a poset.

D
at
a Property Symbol Type Description

kind string Kind marker.
Must be equal to "LowerSet"

type string Discriminator variable to distinguish subtypes.

Subtypes based on the value for type

"LowerSet_LowerClosure" A lower set defined as the down closure of a finite set of points.

27.1.1. LowerSet_LowerClosure - A lower set defined as the down closure of a finite set of points.

D
at
a

Extends: LowerSet(kind, type = "LowerSet_LowerClosure")

Property Symbol Type Description
points array[any] The points in the lower set.
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27.2. Range - Description of a range of integers.

D
at
a

Property Symbol Type Description
start integer Start of the range (inclusive).
stop integer End of the range (exclusive).
ntot integer Total number of elements in the array.
type string Type marker

Must be equal to "Range"

This represents the range start:stop (inclusive of start, exclusive of stop) in a total of ntot elements.
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27.3. Unit - Units specifications

D
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Property Symbol Type Description
kind string Kind marker.

Must be equal to "Unit"
description string? A human-readable description of the unit (debug purposes).
type string Discriminator variable to distinguish subtypes.

Subtypes based on the value for type

"Unit_None" Represents the absence of units.
"Unit_Single" A simple unit.
"Unit_Vector" A vector of units for a product of posets.
"Unit_Wrapped" A special type of unit that is used to describe the units of composite types.

27.3.1. Unit_None - Represents the absence of units.

D
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Extends: Unit(kind, description, type = "Unit_None")

27.3.2. Unit_Single - A simple unit.
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Extends: Unit(kind, description, type = "Unit_Single")

Property Symbol Type Description Example
units string A string representing the unit. m

27.3.3. Unit_Vector - A vector of units for a product of posets.

D
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a

Extends: Unit(kind, description, type = "Unit_Vector")

Property Symbol Type Description
subs array[Unit] The subunits.
labels array[string]? labels for the subunits

27.3.4. Unit_Wrapped - A special type of unit that is used to describe the units of composite types.

D
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a

Extends: Unit(kind, description, type = "Unit_Wrapped")

Property Symbol Type Description
name string
inside array[Unit]
shape any
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27.4. UpperSet - Upper sets

D
at
a Property Symbol Type Description

kind string Kind marker.
Must be equal to "UpperSet"

type string Discriminator variable to distinguish subtypes.

Subtypes based on the value for type

"UpperSet_UpperClosure" An upper set defined as the up closure of a finite set of points.

27.4.1. UpperSet_UpperClosure - An upper set defined as the up closure of a finite set of points.

D
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a

Extends: UpperSet(kind, type = "UpperSet_UpperClosure")

Property Symbol Type Description
points array[any] The points in the set.
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27.5. Address - Specifies the origin of an object from a repo and a library.

D
at
a

Property Symbol Type Description
type string Type marker

Must be equal to "Address"
repo string? The Git repository URL
library string The library name
spec string The type of object

Possible values: "models", "templates", "values", "posets",
"primitivedps", "interfaces", "queries"

thing string The name of the object
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